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Announcements

• HW3 is due Mar. 27

• Exam dates have changed
• Exam 2 is on Apr. 10
• Exam 3 is on May 3 (3PM-5PM)
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Agenda & References

• Noise Types
• Noise Properties
• Resistor Noise Model
• Diode Noise Model
• MOSFET Noise
• Filtered Noise
• OTA Noise Example

• Reading
• Razavi Chapter 7
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Noise Significance

• Why is noise important?
• Sets minimum signal level for a given performance 

parameter
• Directly trades with power dissipation and bandwidth

• Reduced supply voltages in modern technologies 
degrades noise performance
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• Noise is often proportional to kT/C
• Increasing capacitance to improve noise performance 

has a cost in increase power consumption for a given 
bandwidth



Interference Noise

• Interference “Man-Made” Noise
• Deterministic signal, i.e. not truly “random”

• Could potentially be modeled and predicted, but practically this may be 
hard to do

• Examples
• Power supply noise
• Electromagnetic interference (EMI)
• Substrate coupling

• Solutions
• Fully differential circuits
• Layout techniques

• Not the focus of this lecture
• Unless the deterministic noise is approximated as a random process
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Inherent Noise

• “Electronic” or “Device” Noise
• Random signal
• Fundamental property of the circuits
• Examples

• Thermal noise caused by thermally-excited random motion of carriers
• Flicker (1/f) noise caused by material defects
• Shot noise caused by pulses of current from individual carriers in 

semiconductor junctions

• Solutions
• Proper circuit topology
• More power!!!

• Is the focus of this lecture
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Noise Properties

• Noise is random
• Instantaneous noise value is unpredictable and the 

noise must be treated statistically
• Can only predict the average noise power
• Model with a Gaussian amplitude distribution
• Important properties: mean (average), variance, 

power spectral density (noise frequency spectrum)
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RMS Value

• If we assume that the noise has zero mean 
(generally valid)

• RMS or “sigma” value is the square-root of the 
noise variance over a suitable averaging time 
interval, T
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Signal-to-Noise Ratio (SNR)

• Quantified in units of dB
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Thermal Noise Spectrum

• The power spectral density (PSD) quantifies how 
much power a signal carries at a given frequency

• Thermal noise has a uniform or “white” PSD
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• The total average noise power Pn in a particular 
frequency band is found by integrating the PSD
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Thermal Noise of a Resistor

• The noise PSD of a resistor is 
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Resistor Noise Model

• An equivalent voltage or current generator 
can model the resistor thermal noise
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Noise Summation
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Correlation

• Last term describes the correlation 
between the two signals, defined by the 
correlation coefficient, C
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• Correlation always satisfies -1≤C≤1
• C=+1, fully-correlated in-phase (0)
• C=-1, fully-correlated out-of-phase (180)
• C=0, uncorrelated (90)



Uncorrelated Signals

• For two uncorrelated signals, the mean-
squared sum is given by
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Noise Example #1: Two Series Resistors

• The noise of the two resistors is uncorrelated or 
statistically independent, so C=0
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• Always add independent noise sources using 
mean squared values
• Never add RMS values of independent sources
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• Lets compute the output voltage: Apply superposition (noise sources 
are small signals, you can use small signal models)!
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Noise Example #2: Voltage Divider

Above is what you do for deterministic signals, 
but we cannot do this for the resistor noise
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Diode Noise Model

• Shot noise in diodes is caused by pulses of current 
from individual carriers in semiconductor junctions

• White spectral density
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• Where q=1.6x10-19C and ID is the diode DC current 
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Thermal Noise

=> Spectral Density of the thermal noise drain current (CMOS
transistor biased @ linear region)
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MOSFET 1/f (Flicker) Noise

• Caused by traps near Si/SiO2 interface that 
randomly capture and release carriers
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1/f Noise Corner Frequency

• This is the frequency at 
which the flicker noise 
density equals the 
thermal noise density
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only way to reduce fco is to use longer 
channel devices
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Equivalent input referred voltage noise
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NOISE COMPONENTS (values provided are for a 0.8 m technology)
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Filtered Noise

• Noise output spectral density is a function only of the 
magnitude of the transfer function, and not its phase

• With multiple uncorrelated noise sources, combined 
output is also uncorrelated

26

 fvni
2      

     fvfjAfv

fvfjAfv

nino

nino





2

2 222





 fvn
2
1

 fvn
2
2

 fvn
2
3

 fvno
2      fvfjAfv ni

i
ino

2

3,2,1

22 2


 

[Johns]

[Johns]



First-Order RC Circuit Example
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What is the total output noise power?
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First-Order RC Circuit Example
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Noise is generated by R but integrated noise is function of C (??)
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To get more insight, lets have a closer look on the operations!

Notice that:
When R increases thermal noise 
increases too but the corner 
frequency decreases, leading to a 
constant area under the curves!



Noise Bandwidth

• The noise bandwidth is equal to the frequency 
span of a brickwall filter having the same output 
noise rms value
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Output referred noise: Take advantage of SYMMETRIES!

id1
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M1 M1

iout
VX

M2 M2 Output referred current noise density

Superposition: Every transistor contributes; 
consider one at the time. 

Analysis: You can use standard circuit analysis 
techniques but at the end of the day you have to 
consider POWER.

Output noise density: Each noise component 
represent the RMS value of random uncorrelated 
noise! Then add the power noise components
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Noise injected into the common-source 
node equally splits into the two branches
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Output referred noise: Take advantage of SYMMETRIES!
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Output referred current noise density due to the P-
type devices:

Left hand side transistor:
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This noise can usually be ignored, as ideally 
zero net current flows to the output
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Output and input referred noise
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In this case, noise due to the current source 
produces no net output noise

Be careful because this is not always the case!
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Integrated Input referred noise
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Next Time

• Three Current Mirror OTA
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