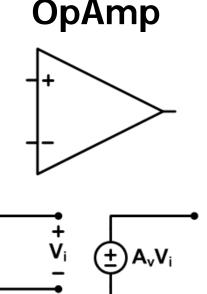
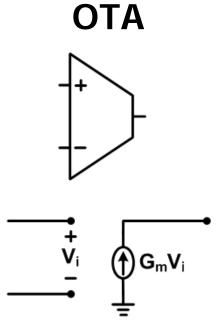
ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 16: Output Stages

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

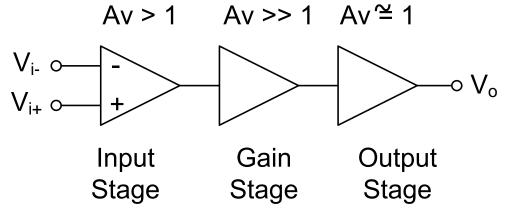

Announcements

- Project Report Due May 1
 - Email it to me by 5PM
- Exam 3 is on May 3
 - 3PM-5PM
 - Closed book w/ one standard note sheet
 - 8.5"x11" front & back
 - Bring your calculator
 - Covers material through Output Stages Lecture
 - Previous years' exam 3s are posted on the website for reference

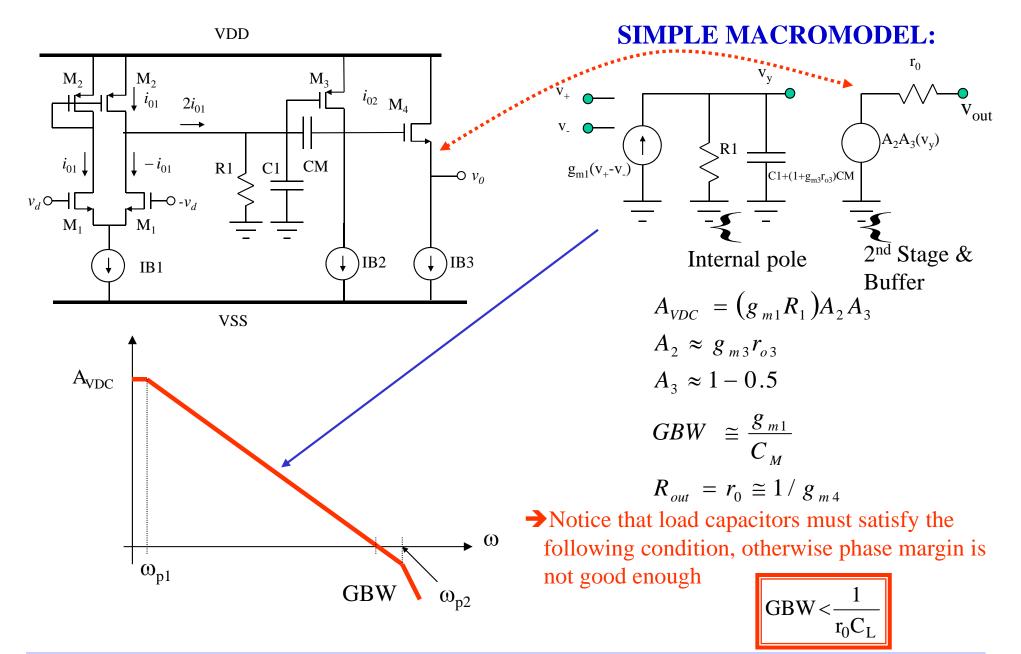

Agenda

- Output Stages
 - Source Follower (Class A)
 - Push-Pull (Class B)
 - Push-Pull w/ Small Quiescent Current (Class AB)

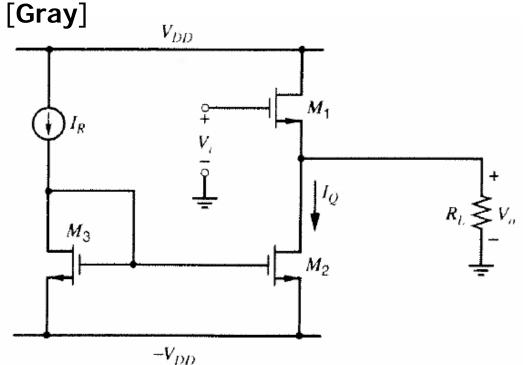
OpAmps and OTAs



- High voltage gain
- High input impedance
- Voltage source output (low impedance)

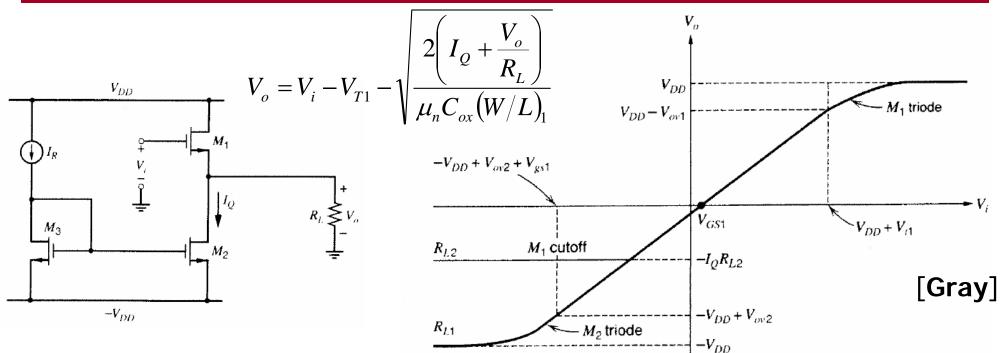

- High "voltage" gain
 - As long as it's driving a high impedance load (capacitor)
- High input impedance
- Current source output (high impedance)

Three-Stage OpAmp



- Differential input stage
 - Amplifies differential input
 - Sets specs such as G_m, CMRR, and slew rate
- Second gain stage
 - Provides additional gain
 - Often used to provide Miller compensation
- Output stage
 - "Power Amplifier"
 - Large current gain and near unity voltage gain
 - Small output impedance

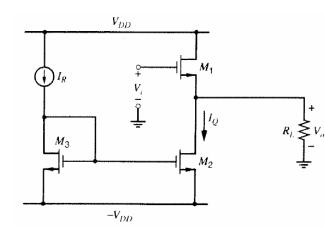
Buffered OTA = Operational Voltage Amplifier (OPAMP)


Source Follower (Class A) Output Stage

- Voltage gain close to 1
- Low output resistance
- DC level shift of V_{GS1}
- Class A output stage transistors conduct current over an entire input cycle

$$A_{dc} = \frac{g_{m1}}{g_{m1} + g_{o1} + g_{mb1} + g_{o2} + g_L} \approx \frac{g_{m1}R_L}{1 + g_{m1}R_L} \approx 1 \quad \text{(Optimistic)}$$
$$R_{out} = \frac{1}{g_{m1} + g_{o1} + g_{mb1} + g_{o2}} \approx \frac{1}{g_{m1}}$$

Source Follower (Class A) Transfer Characteristic



- Maximum V_o is set by M1 saturation condition
 - If $V_{in} \leq V_{DD}$, then Maximum $V_o = V_{DD} V_{GS1}$
 - Output transistors remain in saturation up to V_{o} = $V_{DD}\text{-}V_{DSAT1}$ if V_{in} swings up to $V_{DD}\text{+}V_{T1}$
- Minimum V_o depends on R_L
 - For small R_L (heavy load), M1 gets cutoff and $V_o \ge -I_Q R_L$
 - For large R_L (light load), M2 will go into triode region at $-V_{DD}+V_{DSAT2}$

Source Follower (Class A) Power Efficiency

Assuming a sinusoidal output voltage

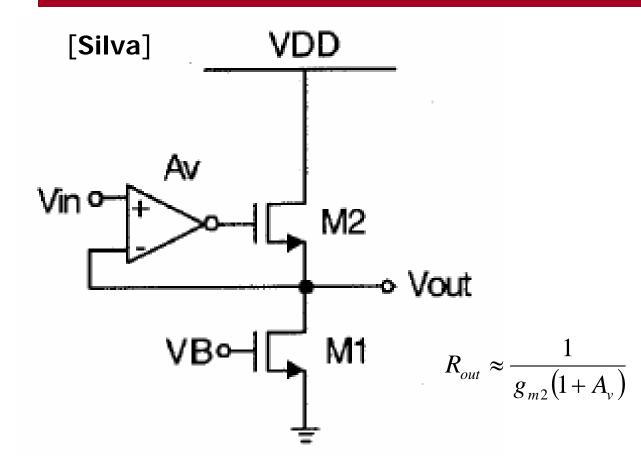
$$V_o = V_m \sin(\omega t)$$

The power delivered to the load at the signal frequency ω is

$$P_{ac} = \frac{\left(\frac{V_m}{\sqrt{2}}\right)^2}{R_L} = \frac{V_m^2}{2R_L}$$

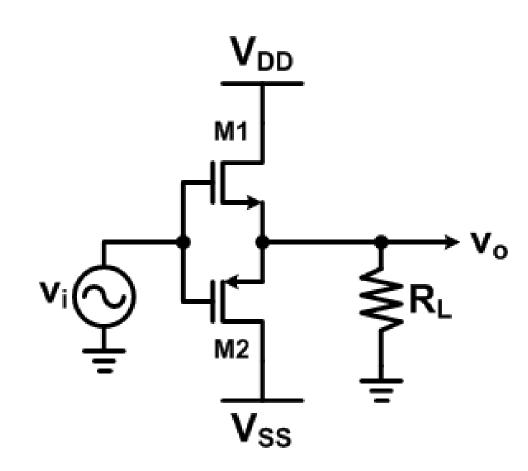
The average power consumed by the source follower is

$$P_{av} = \left(-I_Q\right)\left(-V_{DD}\right) + \left(I_Q\right)\left(V_{DD}\right) = 2I_Q V_{DD}$$

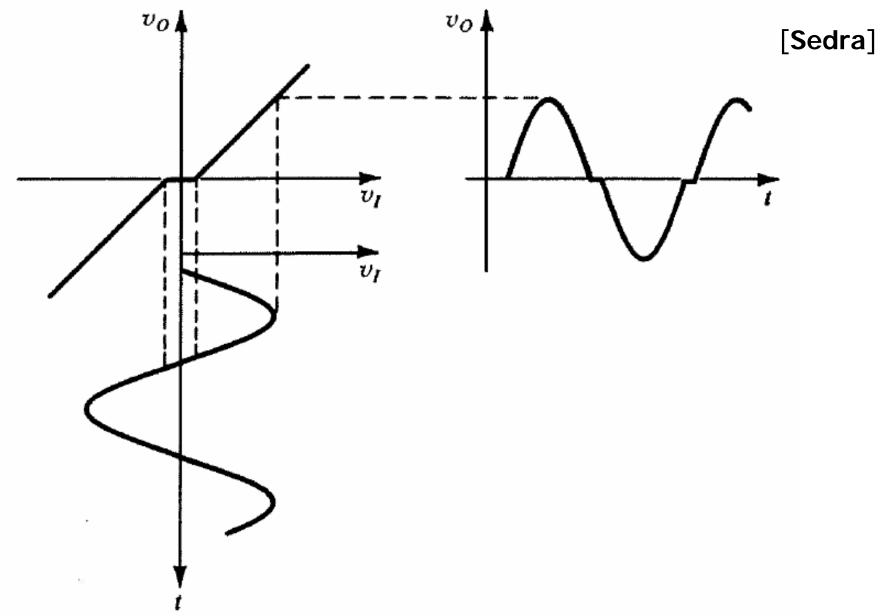

The output stage power efficiency is

$$P_{eff} \equiv \frac{P_{ac}}{P_{av}} = \frac{V_m^2}{4R_L I_Q V_{DD}}$$

Maximum power efficiency is achieved when the output amplitude approaches V_{DD} and I_{Q} is designed to be $\frac{V_{\text{DD}}}{R_{\text{L}}}$


Max
$$P_{eff} = \frac{1}{4}$$
 or 25% (not that good!)

Super Buffer Output Stage


- Employs a "gain-boosting" technique where the effective transcoductance of M2 is boosted by 1-A_v, where A_v is the gain from the source-to-gate, which should be negative for stability
- Results in an output resistance reduction by a $1/(1+A_v)$ factor

Push-Pull Source Follower (Class B) Output Stage

- Class B output stages have only one transistor conducting current for each half cycle
 - M1 during positive half
 - M2 during negative half
- Results in improved power efficiency by operating at zero quiescent current
 - However, if $-|V_{TP}| \le V_{in} \le V_{TN}$, then no output signal

Push-Pull Source Follower (Class B) Crossover Distortion

Push-Pull Source Follower (Class B) Power Efficiency

Assuming a sinusoidal output voltage

$$V_{o} = V_{m} \sin(\omega t)$$

The power delivered to the load at the signal frequency ω is

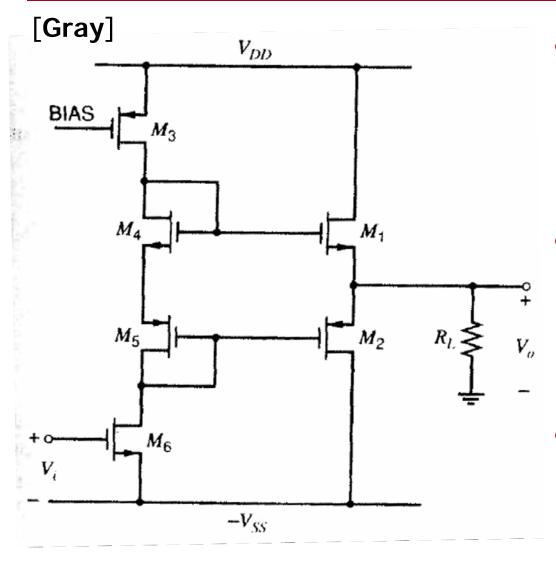
$$P_{ac} = \frac{\left(\frac{V_m}{\sqrt{2}}\right)^2}{R_L} = \frac{V_m^2}{2R_L}$$

The current consumed by the push - pull stage from the two supplies

consists of half - sine wave of peak amplitude
$$rac{{f V_m}}{{f R}_L}$$

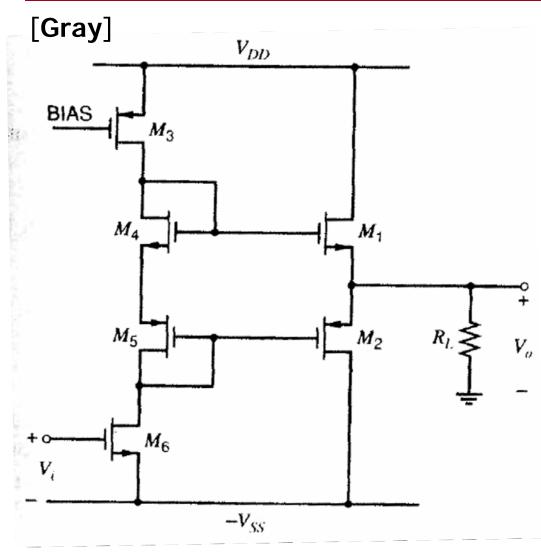
The average current will be
$$\frac{V_m}{\pi R_L}$$

 $P_{av} = \left(-\frac{V_m}{\pi R_L}\right) \left(-V_{DD}\right) + \left(\frac{V_m}{\pi R_L}\right) \left(V_{DD}\right) = \frac{2V_m V_{DD}}{\pi R_L}$


The output stage power efficiency is

$$P_{eff} \equiv \frac{P_{ac}}{P_{av}} = \frac{\pi V_m}{4V_{DL}}$$

Maximum power efficiency is achieved when the output amplitude approaches $V_{\mbox{\scriptsize DD}}$


Max
$$P_{eff} = \frac{\pi}{4}$$
 or 78.5% (much better!)

Push-Pull w/ Small Quiescent Current (Class AB) Output Stage

- Power efficiency of the Class-B output stage is great, but the crossover distortion is a major issue
- Solution to the crossover distortion is to bias the transistors into conduction at a low quiescent current
- Level-shift transistors M4 and M5 are sized such that V_{GS1} and V_{SG2} are slightly larger than their threshold voltages

Push-Pull w/ Small Quiescent Current (Class AB) Output Swing Range

- A drawback of the CMOS Class AB output stage is the limited output swing range
- Maximum V_o set by M1 source follower
 - $V_o \leq V_{DD} |V_{DSAT3}| V_{GS1}$
- Minimum Vo set by M2 source follower
 - $V_o \ge -V_{SS} + V_{DSAT6} + V_{SG2}$

Next Time

• Bandgap Reference Circuits