ECEN474: (Analog) VLSI Circuit Design Fall 2010

Lecture 24: OTA-C Filters

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

- Project
 - Preliminary report due Nov 19
 - No layout
 - Focus is on good circuit design
- No Class on Monday 11/15

Agenda

- OTA-C Filters
- Material is related primarily to Project #3
- Full class on filters offered (458, 622)

OTA-C Filter Applications

- Hard-disk drives require linear phase filters (>100MHz)
- RF systems require filters in the GHz range
- Wireless xcvrs intermediate frequency (IF) filters (>100MHz)
- Often used with variable gain amplifiers (VGAs) for automatic-gain control (AGC) to maximize dynamic range
- Low noise, low power, and high linearity are required

Hard-Disk Drive Receiver Front-End

OTA-Based Active Resistor

$$I_i = I_o = g_m V_i$$
$$R = \frac{V_i}{I_i} = \frac{1}{g_m}$$

OTA-Based Active Resistors

OTA-Based Integrator

OTA C_o reduces integration constant

$$\frac{V_2}{V_1} = \frac{g_m}{s(C + C_o) + g_o}$$

Lossy g_m-C Integrator (1st-Order LPF)

[Schaumann]

Ideally
$$\frac{V_2}{V_1} = -\frac{g_{m1}}{sC + g_{m2}}$$

Considering finite OTA output resistance and non - zero input and output capacitance

$$\frac{V_2}{V_1} = -\frac{g_{m1}}{s(C + 2C_o + C_i) + g_{m2} + 2g_o}$$

Fully Differential Lossy g_m-C Integrator

[Schaumann]

- Fully Differential
 - 2C because full gm current goes to each side
- Why just C here?

OTA-Based Inductor

[Schaumann]

$$I_1 = g_{m2}V_2$$
$$I_2 = g_{m1}V_1$$

From these two equations

$$\frac{V_1}{I_1} = \frac{1}{g_{m1}g_{m2}} \frac{I_2}{V_2}$$
$$Z_1 = \frac{1}{g_{m1}g_{m2}} Y_2$$
$$If \quad Y_2 = sC$$
$$Z_1 = \frac{sC}{g_{m1}g_{m2}} = sL_{eff}$$
$$L_{eff} = \frac{C}{g_{m1}g_{m2}}$$

Differential Grounded Inductor

Second-Order Filter

Differential Second-Order Filter

[Mohieldin]

OTA Output Resistance Effects

$$\omega_0 \cong \omega_{0ideal} \sqrt{1 + \frac{1}{Q_{ideal} A_V}}$$

CENTER FREQUENCY IS LITTLE SENSITIVE TO A_V

$$BW \cong BW_{ideal} \left(1 + 2\frac{Q_{ideal}}{A_{V}}\right)$$

BW IS QUITE SENSITIVE TO A_V

Av=gm1R1 (R1=R2 OTA output resistance)

OTA Non-Dominant Pole Effects

OTA Parasitic Capacitor Effects

$$\begin{split} \omega_{0} &= \omega_{0ideal} \sqrt{\frac{1}{1 + \frac{C_{f}}{C_{1}} + \frac{C_{f}}{C_{2}} + \frac{C_{in}(C_{2} + C_{f})}{C_{1}C_{2}}}}\\ BW &= BW_{ideal} \frac{1 + \left(1 + \frac{g_{m2} - g_{m1}}{g_{1}}\right) \frac{C_{f}}{C_{2}}}{1 + \frac{C_{in}}{C_{1}} + \frac{C_{f}}{C_{1}} + \frac{C_{f}}{C_{2}} \left(1 + \frac{C_{in}}{C_{1}}\right)} \end{split}$$

Little sensitive

Little sensitive

C1 and C2 are affected by the grounded parasitic capacitors (partially corrected by the automatic tuning system).

Cin introduces a high frequency zero.

Filters are little sensitive to miller effects !!!

OTA-C BPF Modeling Simulations

4th-Order BPF

4th-Order Filter Example

Magnitude, Phase, and Group Delay

Magnitude and phase response for the 4th order filter

Group delay: Effects of the parasitic poles

Optimization: Non-Dominant Pole & DC Gain

Useful References

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS, VOL. 53, NO. 4, APRIL 2006

A CMOS 140-mW Fourth-Order Continuous-Time Low-Pass Filter Stabilized With a Class AB Common-Mode Feedback Operating at 550 MHz

Pankaj Pandey, Jose Silva-Martinez, and Xuemei Liu

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 4, APRIL 2003

Brief Papers

A Fully Balanced Pseudo-Differential OTA With Common-Mode Feedforward and Inherent Common-Mode Feedback Detector

Ahmed Nader Mohieldin, Student Member, IEEE, Edgar Sánchez-Sinencio, Fellow, IEEE, and José Silva-Martínez, Senior Member, IEEE

 "Design of Analog Filters" by R. Schauman (Filters Textbook)

663

Next Time

- Analog Applications
 - Variable-Gain Amplifiers
 - Switch-Cap Filters, Broadband Amplifiers
- Bandgap Reference Circuits
- Distortion