ECEN620: Network Theory
Broadband Circuit Design
Fall 2020

Lecture 8: Divider Circuits

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Announcements

• HW3 due Oct 8
Agenda

• Divider Basics

• CML Divider

• Asynchronous vs Synchronous Dividers

• Dual-Modulus Prescalers

• Injection-Locked Dividers
Charge-Pump PLL Circuits

- Phase Detector
- Charge-Pump
- Loop Filter
- VCO
- Divider
Loop Divider

- Time-domain model

\[\omega_{fb}(t) = \frac{1}{N} \omega_{out}(t) \]

\[\phi_{fb}(t) = \int \frac{1}{N} \omega_{out}(t) \, dt = \frac{1}{N} \phi_{out}(t) \]
Basic Divide-by-2

• Divide-by-2 can be realized by a flip-flop in “negative feedback”

• Divider should operate correctly up to the maximum output clock frequency of interest PLUS some margin
Divide-by-2 with TSPC FF

True Single Phase Clock Flip-Flop

Advantages
- Reasonably fast, compact size, and no static power
- Requires only one phase of the clock

Disadvantages
- Signal needs to propagate through three gates per input cycle
- Need full swing CMOS inputs
- Dynamic flip-flop can fail at low frequency (test mode) due to leakage, as various nodes are floating during different CLK phases & output states
 - Ex: Q_bar is floating during when CLK is low

Divider Equivalent Circuit

Note: output inverter not in left schematic
Agenda

• Divider Basics

• CML Divider

• Asynchronous vs Synchronous Dividers

• Dual-Modulus Prescalers

• Injection-Locked Dividers
Divide-by-2 with CML FF

- **Advantages**
 - Signal only propagates through two CML gates per input cycle
 - Accepts CML input levels

- **Disadvantages**
 - Larger size and dissipates static power
 - Requires differential input
 - Need tail current biasing
 - Additional speedup (>50%) can be achieved with shunt peaking inductors

[Razavi]
CML Latch

- When the clock is high (M5 on), the input pair (M1 & M2) tracks (linearly amplifies) the input
- When the clock is low (M6 on), the regenerative pair (M3 & M4) latches (with positive feedback) the state

Low-Frequency Operation

- \(V_{in} \)
- \(CK \) (Senses and Stores)
- \(V_X \)
- \(V_Y \)
CML Latch

- When the clock is high (M5 on), the input pair (M1 & M2) tracks (linearly amplifies) the input.
- When the clock is low (M6 on), the regenerative pair (M3 & M4) latches (with positive feedback) the state.
- This regenerative pair continues to provide gain in the store mode, allowing for short cycle operation.
- The minimum cross-coupled pair gain to hold the state is $g_{m3,4}R_D > 1$.

High-Frequency Operation
Optimized CML FF for High-Speed Dividers

- The cross-coupled pair gate and drain capacitances slow down the latch/flip-flop.
- If the flip-flop is switching at high-speed, the regenerative pair gain can actually have a loop gain less than unity due to the short hold state.
- One way to achieve this is by using a different current in the track state (I_{SS1}) and the hold state (I_{SS2}), allowing for smaller regeneration transistors when $I_{SS2} < I_{SS1}$.
CML Latch Swing Control

- If suitable resistors are not available in a certain process, the PMOS triode-region loads can be used.
- Due to PVT variations, feedback control is generally required to maintain the desired CML logic swing level.
- A replica circuit produces the required PMOS gate bias to insure the desired CML logic swing for a given I_{SS}.
- Note, triode PMOS loads will generally have more parasitic capacitance than linear resistors, resulting in a slower circuit.
CML Latch with PMOS Diode Loads

- PMOS diode loads may allow for simpler biasing over PVT variations
- One issue with this is the large headroom (|VTP|+VOD) required to turn-on the PMOS diode
 - NMOS source followers can allow for similar headroom as with triode loads
CML Latch with PMOS Diode Loads

- PMOS diode loads may allow for simpler biasing over PVT variations
- One issue with this is the large headroom (|VTP|+VOD) required to turn-on the PMOS diode
 - NMOS source followers can allow for similar headroom as with triode loads
- Another issue stems from the highly non-linear effective resistance which can introduce inter-symbol interference for random data
 - Note, this is not an issue for periodic switching divider applications
• Interestingly, the divider minimum required clock swing can actually decrease with frequency
• This is due to the feedback configuration of the divider yielding an effective ring oscillator topology that will naturally oscillate at certain frequency
• Near this frequency, the input clock amplitude can be very low
• For frequencies above this natural oscillation frequency, the minimum clock input amplitude increases
Divider Circuit Style Partitioning

- While CML dividers generally operate at the highest speed, the static power consumption reduces their efficiency at lower speeds.
- For large divide ratios, a mixture of CML and static CMOS dividers are often used.
- The first fastest fixed dividers (prescalers) are CML, while the following lower frequency dividers are static CMOS.
Agenda

• Divider Basics
• CML Divider
• *Asynchronous vs Synchronous Dividers*
• Dual-Modulus Prescalers
• Injection-Locked Dividers
Binary Dividers: Asynchronous vs Synchronous

Asynchronous Divider

- Advantages
 - Each stage runs at lower frequency, resulting in reduced power
 - Reduced high frequency clock loading

- Disadvantage
 - Jitter accumulation

Synchronous Divider

- Advantage
 - Reduced jitter

- Disadvantage
 - All flip-flops work at maximum frequency, resulting in high power
 - Large loading on high frequency clock

[Perrott]
Jitter in Asynchronous vs Synchronous Dividers

Asynchronous

- Jitter accumulates with the clock-to-Q delays through the divider
- Extra divider delay can also degrade PLL phase margin

Synchronous

- Divider output is “sampled” with high frequency clock
- Jitter on divider clock is similar to VCO output
- Minimal divider delay

[Perrott]
Agenda

- Divider Basics
- CML Divider
- Asynchronous vs Synchronous Dividers
- Dual-Modulus Prescalers
- Injection-Locked Dividers
Dual Modulus Prescalers

\[\div 2/3 \]

\[\div 15/16 \]

Synchronous $\div 3/4$
- For /15, first prescaler circuit divides by 3 once and 4 three times during the 15 cycles

Asynchronous $\div 4$

MC = 0 $\rightarrow \div 3$
MC = 1 $\rightarrow \div 2$

MC = 0 $\rightarrow \div 15$
MC = 1 $\rightarrow \div 16$

[Razavi]
For /129, first prescaler circuit divides by 5 once and 4 thirty-one times during the 129 cycles.

The synchronous ÷4/5 block with the extra NAND logic limits the maximum operating frequency and has 3 flip-flops operating at the maximum speed.

Mode=0 → ÷128
Mode=1 → ÷129

Asynchronous ÷32

[Crainwick JSSC 1996]
• In order to ÷129, instead of adding an extra high-frequency cycle in a ÷4/5 block, simply delay the phase of the ÷4 signal by 90°
• Allows for a fully-asynchronous design with only 1 flip-flop operating at the maximum speed
• Needs quadrature phase outputs at the ÷4 outputs

[Crainickx JSSC 1996]
Adding an Extra Cycle with a 90° Shift

• A differential Master/Slave flip-flop provides quadrature signals at the latch outputs.

• Every 128 cycles, delay the ÷4 signal by 90° to yield a divide by 129 output.

Switches from F4.I to F4.Q phase!
Watch Out For Glitches!

- There is the potential for glitches at the output of the phase selector during low-frequency operation, causing the divider to fail.
- This is solved by insuring a minimum rise time (slowing down C0), such that the block selects a signal when it has a sufficient high value.

[Craninckx J SSC 1996]
\(\div 128/129 \) Phase-Switching
Dual-Modulus Prescaler

- In a 0.7\textmu m CMOS process achieved
 - 2.65GHz operation with 5V power supply
 - 1.75GHz operation with 3V power supply

[Craninckx J SSC 1996]
Improved Glitch Robustness Using ÷8 Signals

- Using ÷8 signals and switching 45° allows for improved glitch robustness
- Requires two parallel ÷2 blocks
- Careful! These two ÷2 blocks have two possible phase relationships
- Need to detect this relationship to determine the appropriate phase switching order

[Shu J SSC 2003]
Agenda

• Divider Basics
• CML Divider
• Asynchronous vs Synchronous Dividers
• Dual-Modulus Prescalers
• Injection-Locked Dividers
Injection-Locked Frequency Dividers

LC-oscillator type (/ 2)

\[v_I = V_I \cos(2\omega_it) \]
\[v_O = V_O \cos(\omega_O t + \varphi) \]
\[i_I = I_I \cos(2\omega_it) + I_{DC} \]

Ring-oscillator type (/ 3)

[Verma JSSC 2003, Rategh JSSC 1999] [Lo CI CC 2009]

- Superharmonic injection-locked oscillators (ILOs) can realize frequency dividers
- Faster and lower power than flip-flop based dividers
- Injection locking range can be limited
LC-Oscillator-Based ILFDs

• Advantages
 • Better noise performance (LC filtering)
 • Low power consumption
 • Very high operation frequency ($\sim f_{\text{max}}$)

• Disadvantages
 • Smaller locking range (LC limited)
 • Unwanted harmonics
 • Large silicon area due to L and C
 • Very difficult to provide multiple phases or large divisor number in one LC oscillator stage (area penalty)
 • Difficult to find an excellent source to inject signal
Ring-Oscillator-Based ILFDs

• Advantages
 • Smaller area
 • Wide locking range
 • Small power consumption

• Disadvantages
 • Inferior phase noise to LC ILFDs (Still decent)
 • Worse unwanted harmonics (No LC resonant filtering)
 • False locking
Complementary Injection-Locked Frequency Divider

- Large odd-modulus
- Only dynamic power consumption
- 100% frequency locking range
- Differential input/output
- 50% duty cycle
- Small area

/3, 5, 7, ...
Complementary Injection Scheme

- Complementary injection reinforces the injection strength to widen the frequency locking range
- Only when the inverter transits state the tail transistors inject current
- Independent tail injection to each stage avoids the interference between each stage

Injection Signal

- Ring-oscillator output
- Tail NMOS injection current
- Tail PMOS injection current
Locking Range (Input Sensitivity)

- Over 100% locking range (Post-layout simulation in 0.18 µm CMOS technology)
Power Consumption & Phase Noise

- Power consumption
 - One ring-oscillator stage: \(P_{\text{Stage}} \approx CV_{DD}^2 f_{\text{Inj}} \left(\frac{1}{2n+1} \right) \)
 - CI LFD: \(P_{\text{Total}} \approx 2CV_{DD}^2 f_{\text{Inj}} \)
 - Power consumption is independent of the division modulus (number of delay elements)
- CI LFD phase noise is mainly determined by the injection signal phase noise

From top to bottom:
(1) free running CI LFD
(2) incident signal
(3) locked CI LFD
Next Time

- Frequency Synthesizer Examples