Announcements

• Project descriptions are posted on the website
 • Preliminary report due 11/20 and will count as the final homework
Agenda

• DLL Basics

• DLL Delay Transfer Function

• DLL Applications
Delay-Locked Loop (DLL)

- DLLs lock delay of a voltage-controlled delay line (VCDL)
- Typically lock the delay to 1 or ½ input clock cycles
 - If locking to ½ clock cycle the DLL is sensitive to clock duty cycle
- DLL does not self-generate the output clock, only delays the input clock

[Sidiropoulos JSSC 1997]
• A VCO will accumulate jitter indefinitely
 • The rms jitter grows at a rate proportional to the $\sqrt{\text{time}}$
• A delay line only accumulates jitter proportional to the total delay of the delay line
DLL vs PLL

- Jitter does not accumulate (as much) in a DLL delay line like in a PLL VCO
 - A jitter event simply gets transferred to the output of the delay line once and forgotten, unlike being re-circulated in a VCO

- The order of the DLL is generally equal to the loop-filter order, which is often one
 - DLL stability and settling issues are more relaxed relative to a PLL

- DLLs cannot easily generate different output frequencies, unlike a PLL where we can just change the divide ratio

- DLLs have the potential to delay lock to undesired multiples of the reference cycle, necessitating additional lock detect circuitry with a wide delay range delay line
Voltage-Controlled Delay Line

[Sidiropoulos]

- The VCDL gain K_{DL} has units of s/V
Delay Cells
DLL Delay Transfer Function

- First-order loop as delay line doesn’t introduce a (low-frequency) pole
- The delay between reference and feedback signal is low-pass filtered
- Unconditionally stable as long as continuous-time approximation holds, i.e. $\omega_n < \omega_{ref}/10$

\[
D_O(s) = (D_I(s) - D_O(s)) \cdot F_{REF} \cdot \frac{I_{CH}}{sC_1} \cdot K_{DL}
\]

\[
\frac{D_O(s)}{D_I(s)} = \frac{1}{1 + s/\omega_N}
\]

\[
\omega_N = I_{CH} \cdot K_{DL} \cdot F_{REF} \cdot \frac{1}{C_1}
\]
DLL Applications

- Delay Compensation
- Multiphase Clock Generation
- Frequency Synthesis
- Clock & Data Recovery Systems
Delay Compensation

- A DLL with a replica buffer chain in the feedback path can be used to mask the delay of a clock buffer tree
A DLL can be used to generate multiple clock phases with precise phase spacing. Useful in CDRs and RF modulation and up/down-conversion. Phase errors are a function of the delay cell matching.
Reducing Clock Phase Error - 1

- Additional delay cells can be added controlled by individual DLLs matching the 90 spacing
- Secondary DLLs can be classical analog or, for more efficiency, a digital implementation
Reducing Clock Phase Error - 2

- Averaging with phase interpolator (PI) circuits can provide open-loop phase spacing compensation
Phase Interpolators

- Phase interpolators realize digital-to-phase conversion (DPC)
- Produce an output clock that is a weighted sum of two input clock phases
- Common circuit structures
 - Tail current summation interpolation
 - Voltage-mode interpolation
- Interpolator code mapping techniques
 - Sinusoidal
 - Linear
By adding an **ODD** number of clock phases generated by a DLL, an output frequency component results which is the input reference signal multiplied by the number of phases that are combined.
A resonance LC tank load can be used to enhance the desired harmonic and provide filtering of unwanted reference harmonics/spurs due to DLL static phase error and delay element mismatches.
Delay Cell Mismatch Impact

- DLL delay cell mismatch, due to process variation or deterministic layout mismatches, causes the delay of the cells to deviate from the ideal value.
- This results in phases that are not in the ideal position.
- An offset in one delay cell will show up at the output every f_{ref} period, resulting in spurious tones at f_{ref} and harmonics of f_{ref}.
Static Phase Error Impact

- If the DLL locks with a static phase error, then the output will have an output cycle with an exaggerated duty cycle error at the end of the delay chain cycle.
- This occurs every reference clock period and produces frequency-domain spurs at f_{ref} multiples away from the multiplied output frequency.
Experimental Results

- While excellent phase noise performance is achieved, the relatively high spurious tones may be an issue in some applications.
The DLL edges can also be combined with digital logic, allowing for area savings relative to LC-tank filtering.

CMOS DLL-Based 2-V 3.2-ps Jitter 1-GHz Clock Synthesizer and Temperature-Compensated Tunable Oscillator David J. Foley, and Michael P. Flynn
The delay line is configured as an oscillator for N-1 cycles
Then is “reset” by the input clock for one cycle
Multiplying DLL Delay Line

- Clock selection mux is implemented with CMOS transmission gates
- Delay elements are supply-regulated CMOS inverters
- Additional “trim” inverters are added to prevent Vctrl from falling too low and KDL from increasing dramatically

A Low-Power Multiplying DLL for Low-Jitter Multigigahertz Clock Generation in Highly Integrated Digital Chips, Ramin Farjad-Rad, William Dally, Hiok-Tiaq Ng, Ramesh Senthinathan, M.-J. Edward Lee, Rohit Rathi, and John Poulton
Critical Mux Select Signal

- When sel is high, rclk should get transferred to the delay line
- However, the next falling edge should be defined by bclk
- This results in very tight timing constraints in the sel generation circuitry
- If the sel signal is too slow, then an output cycle will have significant duty cycle distortion, resulting in bad spur performance
- A dynamic gate is used to increase the sel signal speed

A Low-Power Multiplying DLL for Low-Jitter Multigigahertz Clock Generation in Highly Integrated Digital Chips, Ramin Farjad-Rad, William Dally, Hiok-Tiaq Ng, Ramesh Senthinathan, M.-J. Edward Lee, Rohit Rathi, and John Poulton
Experimental Results

- The deterministic jitter is most likely dominated by the mux select operation

- Random jitter increases with N factor
 - The delay line is in oscillator mode for more cycles

\[f_{\text{ref}} = 250\text{MHz}, \ M = 8, \ f_{\text{out}} = 2\text{GHz} \]
Embedded Clock I/O Circuits

- TX PLL
- TX Clock Distribution
- CDR
 - Per-channel PLL-based
 - Dual-loop w/ Global PLL &
 - Local DLL/PI
 - Local Phase-Rotator PLLs
 - Global PLL requires RX clock distribution to individual channels
DLL Local Phase Generation

- Only differential clock is distributed from global PLL.
- Delay-Locked Loop (DLL) locally generates the multiple clock phases for the phase interpolators.
 - DLL can be per-channel or shared by a small number (4).
- Same architecture can be used in a forwarded-clock system.
 - Replace frequency synthesis PLL with forwarded-clock signals.

![Diagram of DLL Local Phase Generation](image)
Some Additional DLL References

• “A Low-Power Small-Area 7.28-ps-Jitter 1-GHz DLL-Based Clock Generator” Chulwoo Kim, et al.. JSSC 2002
• “The Design and Analysis of a DLL-Based Frequency Synthesizer for UWB Application”, Tai-Cheng Lee and Keng-Jan Hsiao. JSSC 2006
• “A 120-MHz–1.8-GHz CMOS DLL-Based Clock Generator for Dynamic Frequency Scaling”, Jin-Han Kim, JSSC 2006
Next Time

- Clock-and-Data Recovery Systems