ECEN720: High-Speed Links
Circuits and Systems
Spring 2019

Lecture 2: Channel Components, Wires, & Transmission Lines

Sam Palermo
Analog & Mixed-Signal Center
Texas A&M University
Announcements

• Lab
 • Lab begins on Jan 30 and is in CVLB 324
 • Prelab 1 due at beginning of lab on Jan 30
 • Lab 1 report and Prelab 2 due on Feb 6
 • TA Ankur Kumar
 • ankur.kumar@tamu.edu
 • Office Hours M 11AM-1PM, WEB 160

• Reference Material Posted on Website
 • TDR theory application note
 • S-parameter notes
Agenda

- Channel Components
 - IC Packages, PCBs, connectors, vias, PCB Traces

- Wire Models
 - Resistance, capacitance, inductance

- Transmission Lines
 - Propagation constant
 - Characteristic impedance
 - Loss
 - Reflections
 - Termination examples
 - Differential transmission lines
Channel Components

[Image of a schematic diagram showing the components of a channel, including Line card trace, Edge connector, Backplane trace, and Via stub, with labels for Packaged SerDes, Tx IC, and Rx IC.]

[Text: Meghelli (IBM) ISSCC 2006]
IC Packages

- Package style depends on application and pin count

- Packaging technology hasn’t been able to increase pin count at same rate as on-chip aggregate bandwidth
 - Leads to I/O constrained designs and higher data rate per pin

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Pin Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Outline Package (SOP)</td>
<td>8 – 56</td>
</tr>
<tr>
<td>Quad Flat Package (QFP)</td>
<td>64 - 304</td>
</tr>
<tr>
<td>Plastic Ball Grid Array (PBGA)</td>
<td>256 - 420</td>
</tr>
<tr>
<td>Enhanced Ball Grid Array (EBGA)</td>
<td>352 - 896</td>
</tr>
<tr>
<td>Flip Chip Ball Grid Array (FC-BGA)</td>
<td>1089 - 2116</td>
</tr>
</tbody>
</table>

[Package Images - Fujitsu]
IC Package Examples

- Wirebonding is most common die attach method
- Flip-chip packaging allows for more efficient heat removal
- 2D solder ball array on chip allows for more signals and lower signal and supply impedance
IC Package Model

Bondwires
- L ~ 1nH/mm
- Mutual L “K”
- \(C_{\text{couple}} \sim 20\text{fF/mm} \)

Package Trace
- L ~ 0.7-1nH/mm
- Mutual L “K”
- \(C_{\text{layer}} \sim 80-90\text{fF/mm} \)
- \(C_{\text{couple}} \sim 40\text{fF/mm} \)
Printed Circuit Boards

- Components soldered on top (and bottom)

- Typical boards have 4-8 signal layers and an equal number of power and ground planes

- Backplanes can have over 30 layers
PCB Stackup

- Signals typically on top and bottom layers

- GND/Power plane pairs and signal layer pairs alternate in board interior

- Typical copper trace thickness
 - “0.5oz” (17.5um) for signal layers
 - “1oz” (35um) for power planes
Connectors

- Connectors are used to transfer signals from board-to-board

- Typical differential pair density between 16-32 pairs/10mm
Connectors

- Important to maintain proper differential impedance through connector
- Crosstalk can be an issue in the connectors
Vias

- Used to connect PCB layers

- Made by drilling a hole through the board which is plated with copper
 - Pads connect to signal layers/traces
 - Clearance holes avoid power planes

- Expensive in terms of signal density and integrity
 - Consume multiple trace tracks
 - Typically lower impedance and create “stubs”
Impact of Via Stubs at Connectors

- **Legacy BP** has default straight vias
 - Creates severe nulls which kills signal integrity
- **Refined BP** has expensive backdrilled vias
PCB Trace Configurations

- Microstrips are signal traces on PCB outer surfaces
 - Trace is not enclosed and susceptible to cross-talk
- Striplines are sandwiched between two parallel ground planes
 - Has increased isolation

[Johnson]
Wire Models

• Resistance

• Capacitance

• Inductance

• Transmission line theory
Wire Resistance

- Wire resistance is determined by material resistivity, \(\rho \), and geometry
- Causes signal loss and propagation delay

\[
R = \frac{\rho l}{A} = \frac{\rho l}{wh}
\]

\[
R = \frac{\rho l}{A} = \frac{\rho l}{\pi r^2}
\]
Wire Capacitance

- Wire capacitance is determined by dielectric permittivity, ε, and geometry
- Best to use lowest ε_r
 - Lower capacitance
 - Higher propagation velocity

\[
C_{\text{Parallel Plate}} = \frac{w \varepsilon}{s}
\]
\[
C_{\text{Coaxial}} = \frac{2\pi \varepsilon}{\log(r_2/r_1)}
\]
\[
C_{\text{Wire Pair}} = \frac{\pi \varepsilon}{\log(s/r)}
\]
\[
C_{\text{Rectangle over ground}} = \frac{w \varepsilon}{s} + \frac{2\pi \varepsilon}{\log(4s/h)}
\]

<table>
<thead>
<tr>
<th>Material</th>
<th>ε_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
</tr>
<tr>
<td>Teflon</td>
<td>2</td>
</tr>
<tr>
<td>Polyimide</td>
<td>3</td>
</tr>
<tr>
<td>Silicon dioxide</td>
<td>3.9</td>
</tr>
<tr>
<td>Glass-epoxy (PC board)</td>
<td>4</td>
</tr>
<tr>
<td>Alumina</td>
<td>10</td>
</tr>
<tr>
<td>Silicon</td>
<td>11.7</td>
</tr>
</tbody>
</table>
Wire Inductance

- Wire inductance is determined by material permeability, μ, and closed-loop geometry.

- For wire in homogeneous medium

$$CL = \varepsilon \mu$$

- Generally $\mu = \mu_0 = 4\pi \times 10^{-7} \text{H/m}$
Wire Models

- **Model Types**
 - Ideal
 - Lumped C, R, L
 - RC transmission line
 - LC transmission line
 - RLGC transmission line

- **Condition for LC or RLGC model (vs RC)**
 \[f_0 \geq \frac{R}{2\pi L} \]

<table>
<thead>
<tr>
<th>Wire</th>
<th>R</th>
<th>L</th>
<th>C</th>
<th>>f (LC wire)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG24 Twisted Pair</td>
<td>0.08Ω/m</td>
<td>400nH/m</td>
<td>40pF/m</td>
<td>32kHz</td>
</tr>
<tr>
<td>PCB Trace</td>
<td>5Ω/m</td>
<td>300nH/m</td>
<td>100pF/m</td>
<td>2.7MHz</td>
</tr>
<tr>
<td>On-Chip Min. Width M6 (0.18µm CMOS node)</td>
<td>40kΩ/m</td>
<td>4µH/m</td>
<td>300pF/m</td>
<td>1.6GHz</td>
</tr>
</tbody>
</table>
RLGC Transmission Line Model

As \(dx \to 0 \)

\[
\frac{\partial V(x, t)}{\partial x} = -RI(x, t) - L \frac{\partial I(x, t)}{\partial t} \quad (1)
\]

\[
\frac{\partial I(x, t)}{\partial x} = -GV(x, t) - C \frac{\partial V(x, t)}{\partial t} \quad (2)
\]

General Transmission Line Equations
Time-Harmonic Transmission Line Eqs.

• Assuming a traveling sinusoidal wave with angular frequency, \(\omega \)

\[
\frac{dV(x)}{dx} = -(R + j\omega L)I(x) \quad (3)
\]

\[
\frac{dI(x)}{dx} = -(G + j\omega C)V(x) \quad (4)
\]

• Differentiating (3) and plugging in (4) (and vice versa)

\[
\frac{d^2V(x)}{dx^2} = \gamma^2 V(x) \quad (5)
\]

\[
\frac{d^2I(x)}{dx^2} = \gamma^2 I(x) \quad (6)
\]

where \(\gamma \) is the propagation constant

\[
\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} \quad (m^{-1})
\]
Transmission Line Propagation Constant

- Solutions to the Time-Harmonic Line Equations:

\[V(x) = V_f(x) + V_r(x) = V_{f0}e^{-\gamma x} + V_{r0}e^{\gamma x} \]

\[I(x) = I_f(x) + I_r(x) = I_{f0}e^{-\gamma x} + I_{r0}e^{\gamma x} \]

where

\[\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} \text{ (m}^{-1}\text{)} \]

- What does the propagation constant tell us?
 - Real part (\(\alpha\)) determines attenuation/distance (Np/m)
 - Imaginary part (\(\beta\)) determines phase shift/distance (rad/m)
 - **Signal phase velocity**

\[\nu = \omega/\beta \text{ (m/s)} \]
Transmission Line Impedance, Z_0

- For an infinitely long line, the voltage/current ratio is Z_0
- From time-harmonic transmission line eqs. (3) and (4)

$$Z_0 = \frac{V(x)}{I(x)} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \quad (\Omega)$$

- Driving a line terminated by Z_0 is the same as driving an infinitely long line

[Dally]
Lossless LC Transmission Lines

- If $R_{dx}=G_{dx}=0$
 \[\gamma = \alpha + j\beta = j\omega\sqrt{LC} \]
 \[\alpha = 0 \quad \text{No Loss!} \]
 \[\beta = \omega\sqrt{LC} \]

- Waves propagate w/o distortion
 - Velocity and impedance independent of frequency
 - Impedance is purely real

\[\nu = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} \]
\[Z_0 = \sqrt{\frac{L}{C}} \]

[Johnson]
Low-Loss LRC Transmission Lines

- If $R/\omega L$ and $G/\omega C << 1$
- Behave similar to ideal LC transmission line, but ...
 - Experience resistive and dielectric loss
 - Frequency dependent propagation velocity results in dispersion
 - Fast step, followed by slow DC tail

\[
\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}
\]

\[
\approx j\omega \sqrt{LC} \left(1 - j \frac{RC + GL}{\omega LC}\right)^{1/2}
\]

\[
\approx \frac{R}{2Z_0} + \frac{GZ_0}{2} + j\omega \sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L}\right)^2 + \frac{1}{8} \left(\frac{G}{\omega C}\right)^2\right]
\]

\[
= \alpha_R + \alpha_D + j\beta
\]

- Resistive Loss
 \[
 \alpha_R \approx \frac{R}{2Z_0}
 \]

- Dielectric Loss
 \[
 \alpha_D \approx \frac{GZ_0}{2}
 \]

\[
\beta \approx \omega \sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L}\right)^2 + \frac{1}{8} \left(\frac{G}{\omega C}\right)^2\right]
\]

\[

\nu \approx \left(\sqrt{LC} \left[1 + \frac{1}{8} \left(\frac{R}{\omega L}\right)^2 + \frac{1}{8} \left(\frac{G}{\omega C}\right)^2\right]\right)^{-1}
\]
Skin Effect (Resistive Loss)

- High-frequency current density falls off exponentially from conductor surface
- Skin depth, δ, is where current falls by e^{-1} relative to full conductor
 - Decreases proportional to $\sqrt{\text{frequency}}$
- Relevant at critical frequency f_s where skin depth equals half conductor height (or radius)
 - Above f_s resistance/loss increases proportional to $\sqrt{\text{frequency}}$

$$J = e^{-\frac{d}{\delta}}$$
$$\delta = (\pi \mu \sigma)^{-\frac{1}{2}}$$

For rectangular conductor:

$$f_s = \frac{\rho}{\pi \mu \left(\frac{h}{2}\right)^2}$$

$$R(f) = R_{DC} \left(\frac{f}{f_s}\right)^{\frac{1}{2}}$$

$$\alpha_R = \frac{R_{DC}}{2Z_0} \left(\frac{f}{f_s}\right)^{\frac{1}{2}}$$
Skin Effect (Resistive Loss)

5-mil Stripguide
\[R_{DC} = 7 \Omega/m, \ f_s = 43MHz \]

30 AWG Pair
\[R_{DC} = 0.08 \Omega/m, \ f_s = 67kHz \]

\[\alpha_R = \frac{R_{DC}}{2Z_0 \left(\frac{f}{f_s} \right)^{1/2}} \]
Dielectric Absorption (Loss)

- An alternating electric field causes dielectric atoms to rotate and absorb signal energy in the form of heat.
- Dielectric loss is expressed in terms of the loss tangent.
- Loss increases directly proportional to frequency.

\[\tan \delta_D = \frac{G}{\omega C} \]

Table 3-4: Electrical Properties of PC Board Dielectrics

<table>
<thead>
<tr>
<th>Material</th>
<th>(\varepsilon_r)</th>
<th>(\tan \delta_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woven glass, epoxy resin ("FR-4")</td>
<td>4.7</td>
<td>0.035</td>
</tr>
<tr>
<td>Woven glass, polyimide resin</td>
<td>4.4</td>
<td>0.025</td>
</tr>
<tr>
<td>Woven glass, polyphenylene oxide resin (GETEK)</td>
<td>3.9</td>
<td>0.010</td>
</tr>
<tr>
<td>Woven glass, PTFE resin (Teflon)</td>
<td>2.55</td>
<td>0.005</td>
</tr>
<tr>
<td>Nonwoven glass, PTFE resin</td>
<td>2.25</td>
<td>0.001</td>
</tr>
</tbody>
</table>

[Dally]
Total Wire Loss

Graph:

- **Graph Title:** Measured Attenuation vs. Frequency
- **Axes:**
 - Y-axis: Attenuation (0.2 to 1.0)
 - X-axis: Frequency (1 MHz to 6 GHz)
- **Lines:**
 - **Dielectric Loss**
 - **Conductor Loss**
 - **Calculated Attenuation**
- **Legend:**
 - Measured Attenuation

Note: [Dally]
Reflections & Telegrapher’s Eq.

- With a Thevenin-equivalent model of the line:

 Termination Current: \[I_T = \frac{2V_i}{Z_0 + Z_T} \]

- KCL at Termination:

 \[I_f = \frac{V_i}{Z_0}, \quad I_r = I_f - I_T \]

 \[I_r = \frac{V_i}{Z_0} - \frac{2V_i}{Z_T + Z_0} \]

 \[I_r = \frac{V_i}{Z_0} \left(\frac{Z_T - Z_0}{Z_T + Z_0} \right) \]

 Telegrapher’s Equation or Reflection Coefficient:

 \[k_r = \frac{I_r}{I_f} = \frac{V_r}{V_i} = \frac{Z_T - Z_0}{Z_T + Z_0} \]
Termination Examples - Ideal

\[R_S = 50\Omega \]
\[Z_0 = 50\Omega,\ t_d = 1\text{ns} \]
\[R_T = 50\Omega \]

Source termination

\[V_i = 1V \left(\frac{50}{50 + 50} \right) = 0.5V \]

\[k_{rT} = \frac{50 - 50}{50 + 50} = 0 \]
\[k_{rS} = \frac{50 - 50}{50 + 50} = 0 \]

In (step begins at 1ns)
Termination Examples - Open

\[R_S = 50\Omega \]
\[Z_0 = 50\Omega, \ t_d = 1\text{ns} \]
\[R_T \sim \infty \text{ (1M}\Omega) \]

\[V_i = 1V \left(\frac{50}{50 + 50}\right) = 0.5V \]

\[k_{rT} = \frac{\infty - 50}{\infty + 50} = +1 \]

\[k_{rS} = \frac{50 - 50}{50 + 50} = 0 \]
Termination Examples - Short

\[V_i = 1V \left(\frac{50}{50 + 50} \right) = 0.5V \]

\[k_{rT} = \frac{0 - 50}{0 + 50} = -1 \]

\[k_{rS} = \frac{50 - 50}{50 + 50} = 0 \]

\[R_S = 50\Omega \]
\[Z_0 = 50\Omega, \quad t_d = 1ns \]
\[R_T = 0\Omega \]
Arbitrary Termination Example

\[V_i = 1V \left(\frac{50}{400 + 50} \right) = 0.111V \]

\[k_{rT} = \frac{600 - 50}{600 + 50} = 0.846 \]

\[k_{rS} = \frac{400 - 50}{400 + 50} = 0.778 \]

\[R_S = 400 \Omega \]
\[Z_0 = 50 \Omega, \quad t_d = 1ns \]
\[R_T = 600 \Omega \]
Lattice Diagram

\(R_S = 400 \Omega \)
\(Z_0 = 50 \Omega, \ t_d = 1\text{ns} \)
\(R_T = 600 \Omega \)

- Rings up to 0.6V (DC voltage division)
- in (step begins at 1ns)
Termination Reflection Patterns

- \(R_S = 25\Omega, RT = 25\Omega \)
 - \(kr_S & kr_T < 0 \)
 - Voltages Converge

- \(R_S = 25\Omega, RT = 100\Omega \)
 - \(kr_S < 0 & kr_T > 0 \)
 - Voltages Oscillate

- \(R_S = 100\Omega, RT = 25\Omega \)
 - \(kr_S > 0 & kr_T < 0 \)
 - Voltages Oscillate

- \(R_S = 100\Omega, RT = 100\Omega \)
 - \(kr_S > 0 & kr_T > 0 \)
 - Voltages Ring Up
Termination Schemes

- **No Termination**
 - Little to absorb line energy
 - Can generate oscillating waveform
 - Line must be **very short** relative to signal transition time
 - $n = 4 - 6$
 - Limited off-chip use

- **Source Termination**
 - Source output takes 2 steps up
 - Used in moderate speed point-to-point connections

\[
\begin{align*}
t_r &> nT_{\text{round-trip}} = 2nl\sqrt{LC} \\
t_{\text{porch}} &\approx 2l\sqrt{LC}
\end{align*}
\]
Termination Schemes

- **Receiver Termination**
 - No reflection from receiver
 - Watch out for intermediate impedance discontinuities
 - Little to absorb reflections at driver

- **Double Termination**
 - Best configuration for min reflections
 - Reflections absorbed at both driver and receiver
 - Get half the swing relative to single termination
 - Most common termination scheme for high performance serial links
Differential Signaling

• Differential signaling advantages
 • Self-referenced
 • Common-mode noise rejection
 • Increased signal swing
 • Reduced self-induced power-supply noise

• Requires 2x the number of signaling pins relative to single-ended signaling
 • But, smaller ratio of supply/signal (return) pins
 • Total pin overhead is typically 1.3-1.8x (vs 2x)
Odd & Even Modes

- Even mode
 - When equal voltages drive both lines, only one mode propagates called even mode
- Odd mode
 - When equal in magnitude, but out of phase, voltages drive both lines, only one mode propagates called odd mode
- For a differential pair (odd mode), a virtual reference plane exists between the conductors that provides a continuous return current path
 - Electric field is perpendicular to the virtual plane
 - Magnetic field is tangent to the virtual plane
Balanced Transmission Lines

- Even (common) mode excitation
 - Effective $C = C_C$
 - Effective $L = L + M$

- Odd (differential) mode excitation
 - Effective $C = C_C + 2C_d$
 - Effective $L = L - M$

$$Z_{DIFF} = 2Z_{odd}, \quad Z_{CM} = \frac{Z_{even}}{2}$$

$$Z_{even} = \left(\frac{L + M}{C_c} \right)^{\frac{1}{2}}$$

$$Z_{odd} = \left(\frac{L - M}{C_c + 2C_d} \right)^{\frac{1}{2}}$$
PI-Termination

\[Z_{\text{even}} = R_1 \]

\[Z_{\text{odd}} = R_1 \parallel R_2/2 = Z_{\text{even}} \parallel R_2/2 \]

\[R_2 = 2 \left(\frac{Z_{\text{odd}} Z_{\text{even}}}{Z_{\text{even}} - Z_{\text{odd}}} \right) \]
T-Termination

\[
Z_{\text{even}} = R_2 + 2R_1
\]

\[
Z_{\text{odd}} = R_2
\]

\[
R_1 = \frac{1}{2}(Z_{\text{even}} - Z_{\text{odd}})
\]
Next Time

- Channel modeling
 - Time domain reflectometer (TDR)
 - Network analysis