Texas A&M University Department of Electrical and Computer Engineering

ECEN 689 – Optical Interconnects

Spring 2016

Exam #1

Instructor: Sam Palermo

- Please write your name in the space provided below
- Please verify that there are 6 pages in your exam
- You may use one double-sided page of notes and equations for the exam
- Good Luck!

Problem	Score	Max Score	
1		35	
2		45	
3		20	
Total		100	

Name:	SAM	PALERMO	
UIN:	_		

Table 4.1 Numerical relationship between Q and bit-error rate.

Q	BER	Q	BER
0.0	1/2	5.998	10-9
3.090	10-3	6.361	10^{-10}
3.719	10 ⁻⁴	6.706	10-11
4.265	10 ⁻⁵	7.035	10-12
4.753	10 ⁻⁶	7.349	10^{-13}
5.199	10^{-7}	7.651	10^{-14}
5.612	10 ⁻⁸	7.942	10^{-15}

Table 4.6 Numerical values for BW_n and BW_{n2} .

H(f)	BW_n	BW_{n2}
1st-order low pass	1.57 · BW _{3dB}	∞
2nd-order low pass, crit. damped ($Q = 0.500$)	$1.22 \cdot BW_{3dB}$	$2.07 \cdot BW_{3dB}$
2nd-order low pass, Bessel ($Q = 0.577$)	$1.15 \cdot BW_{3dB}$	1.78 · BW _{3dB}
2nd-order low pass, Butterworth ($Q = 0.707$)	$1.11 \cdot BW_{3dB}$	1.49 · BW _{3dB}
Brick wall low pass	$1.00 \cdot BW_{3dB}$	1.00 · BW _{3dB}
Rectangular (impulse response) filter	$0.500 \cdot B$	∞
NRZ to full raised-cosine filter	$0.564 \cdot B$	0.639 · B

Problem 1 (35 points)

This problem involves the design of a waveguide p-i-n detector and an estimation of the average transmit power for a 56Gb/s system operating at λ =1310nm.

a) A Ge waveguide p-i-n detector has an absorption coefficient $\alpha=10^4$ cm⁻¹. What is the necessary absorption length for a responsivity of 1A/W?

necessary absorption length for a responsivity of IA/W?

$$R = N \frac{q}{hc} \lambda \implies N = R \frac{hc}{e\lambda} = (1 \frac{A}{W}) \frac{1}{(8 \times 10^5 \frac{A}{Wm})(1310 nm)}$$

$$N = 0.954$$

$$N = 1 - e^{-x Labs} \implies Labs = -\frac{\ln(1-N)}{2} = \frac{\ln(1-0.954)}{10^4 cm^4}$$

$$= 308 \mu cm = 3.08 \mu m$$

Labs = 3, 08 mm

b) The detector must have a 56GHz bandwidth to not limit the system. The device is biased to yield carrier velocities of 10^5 m/s and electrical parasitics of R_{PD} =50 Ω and C_{PD} =(1fF/ μ m)*L_{abs}. Using the L_{abs} calculated in (a), what is the necessary intrinsic width to achieve the 56GHz bandwidth?

$$C_{PO} = (1 + F/un) (3.08 \mu m) = 3.08 f = 8 \mu m = 269 me$$

$$BW = \frac{1}{2\pi BW} - R_{PO}(PO) V_{h} = \frac{1}{2\pi (566 + 2)} - (501)(3.08 + F) \left[10^{5} \text{ m/s}\right]$$

$$W = \left(\frac{1}{2\pi BW} - R_{PO}(PO) V_{h} - \left[\frac{1}{2\pi (566 + 2)} - (501)(3.08 + F)\right] \left[10^{5} \text{ m/s}\right]$$

$$W_{int} = 269 \text{ mes}$$

c) This detector is used in a 5km link with single-mode fiber that has a loss of 0.4dB/km. In addition to the fiber loss, the link must handle an additional 6dB loss due to coupling and waveguide losses. The receiver in the system has a sensitivity of $i_{sens}^{pp} = 200\mu A$ and R=1A/W. What is the required average transmit power?

$$\overline{P}_{TX} = \frac{\overline{P}_{Sens}}{(F,ber Loss/length)(length)(Additional Loss)}$$

$$\overline{P}_{Sens} = \frac{is}{2R} = \frac{200\mu A}{2(^{1}A_{U})} = 100\mu W = -10dBm$$

$$\overline{P}_{TX} = -10dB_{m} - [(-0.4dB/km)(5kn) - 6dB]$$

$$\overline{P}_{TX} = -2dB_{m}$$

$$= -7dB_{m}$$

Problem 2 (45 points)

A 56Gb/s optical receiver consists of a TIA followed by a comparator acting as the decision circuit.

a) The TIA is designed to yield a 2nd-order low-pass Butterworth response with BW_{3dB}=40GHz. It has an input-noise spectrum described by

$$I_n^2(f) = \alpha_0 + \alpha_2 f^2 = 10^{-22} \frac{A^2}{Hz} + \left(5 \times 10^{-43} \frac{A^2}{Hz^3}\right) f^2.$$

What is the input rms noise current? Refer to the Page 2 table for relevant noise bandwidths.

$$\int_{1}^{2} = X_{0}BW_{1} + \frac{X_{2}}{3}BW_{12}^{3} = 10^{-22}\frac{A^{2}}{Hz}(1,11)(406Hz) + \frac{5\times 10^{-43}A^{2}}{Hz^{2}}\left[(1.49)(406Hz)\right]^{3}$$

$$\int_{1}^{2} = 39.7\times 10^{-12}A^{2} \implies \int_{1}^{1} \int_{1}^{1} = 6.30\mu A$$

 $i_{n,amp}^{rms} = 6.30 \mu A$ at a BEL=10¹²

b) Assuming a photodetector with R=0.8A/W, what is the receiver sensitivity including both amplifier and detector noise? You can assume an ideal extinction ratio and zero dark current. Also calculate the total low-level and high-level rms noise currents.

$$\bar{P}_{sens} = \frac{Q_{nam}^{ins}}{R} + \frac{Q_{q}^{2}BW_{h}}{R} = \frac{(7.035)(6.3\mu)}{0.8} + \frac{(7.035)^{2}(1.6\times10^{-14})(1.11)(406Hz)}{0.8}$$

$$= 55.8\mu W = -12.5dBm$$

$$\bar{P}_{sens} = -12.5dBm$$

10,0 = 10,000 = 6.3 p.A

 $i_{n,0}^{rms} = 6,30\mu A$

11,1 = 14(1.61014)(0.8)(559,)(1.1)(406)+ (6.34)2

 $i_{n,1}^{rms} = 6.40 \mu A$

c) The comparator has a decision-threshold offset of 1mV. Assuming a TIA midband gain $H_0=500\Omega$, what is the power penalty associated with this decision-threshold offset?

$$V_{SPP} = H_0 Q \left(\frac{1}{1000} + \frac{1}{1000} \right) = 500 \left(\frac{7.035}{6.3} \right) \left(\frac{6.3}{1000} + \frac{44.7}{1000} \right) = 44.7 \text{ mV}$$

$$S = \frac{1 \text{mV}}{44.7 \text{mV}} = 22.4 \text{ mV}$$

PPoffset = D1918

Problem 3 (20 points)

The jitter budget of a 56Gb/s optical link operating at λ =1310nm can be modeled as having the random and deterministic jitter components shown in the figure below. The 5km single-mode fiber channel has D=0.5ps/(nm*km) and the transmit laser source has a 1nm linewidth.

a) Assuming Gaussian pulse inputs, the SMF channel's DJ can be modeled as the difference between the output pulse width and the ideal 56Gb/s pulse width. What is the channel's DJ?

$$\Delta T = D(\Delta X)L = \frac{(0.5 \frac{PS}{N-1}Km)(1nm)(5Km)}{(1nm)(5Km)} = 2.5ps$$

$$T_{OUT} = \sqrt{(\frac{1}{566})^2 + (2.5p)^2} = 18.03ps$$

$$Chance OT = 18.03ps - \frac{1}{566} = 0.174ps$$

DJ_{channel} = 0,174ps

b) What is the maximum RX random rms jitter, $\sigma_{RJ,RX}$, for a BER=10⁻¹² at the 56Gb/s data rate?

$$\frac{1}{DR} = DJ_{tot} + 2QJ_{RJ,tot}$$

$$\frac{1}{DR} - DJ_{tot} + \frac{1}{566} - (2p + 0.174p + 4ps) = 0.830 ps$$

$$\frac{1}{2Q} = \frac{1}{2(7.035)} = 0.830 ps$$

$$\frac{1}{2(7.035)} = \sqrt{6(83)^2 - (0.5)^2}$$
Max $\sigma_{RJ,RX} = 0.662 ps$

c) Now assume that we use employ FEC in the system which allows for an input BER= 10^{-4} , what is the maximum RX random rms jitter, $\sigma_{RJ,RX}$, now?

Now
$$\sigma_{R5,+0+} = \frac{1}{566} - (2ps + 0.174ps + 4ps)$$

$$= 1.57ps$$

$$= 1.57ps$$

$$= -1(1.57)^2 - (0.5)^2$$

Max $\sigma_{RJ,RX}$ (w/ FEC) = 1.49 ps

Scratch Paper

March 10, 2016