ECEN 721: Optical Interconnects

Homework \#2

Due: February 13, 2024, 5:00PM

Homeworks will not be received after due.

Instructor: Sam Palermo

1. Multi-Mode Fiber Channel. A short distance $32 \mathrm{~Gb} / \mathrm{s}$ interconnect system uses a graded-index multimode fiber (GRIN-MMF) channel with $n_{\text {core }}=1.48$ and $n_{\text {clad }}=1.46$. What is the maximum transmission distance such that the pulse spreading due to modal dispersion is 10% of the bit period? Refer to Lecture 2 for the GRIN-MMF modal dispersion model.
2. Single-Mode Fiber Channel. A $32 \mathrm{~Gb} / \mathrm{s}$ system operating at $\lambda=1310 \mathrm{~nm}$ utilizes a single-mode fiber channel with loss of $0.4 \mathrm{~dB} / \mathrm{km}$ and $D=0.5 \mathrm{ps} /(\mathrm{nm} * \mathrm{~km})$. The transmitter laser source has a 1 nm linewidth and outputs $500 \mu \mathrm{~W}$ average power. Assuming a receiver sensitivity $\bar{P}_{\text {sens }}=-23 \mathrm{dBm}$, answer the following.
a. What is the maximum transmission distance? Is the link loss- or (chromatic) dispersion-limited? For chromatic dispersion, assume that $\Delta \mathrm{T}$ should be at most half the bit period.
b. If the fiber length is 5 km , what is the maximum data rate?
3. Vertical p-i-n Detector. An InGaAs vertical p-i-n detector has a $1 \mu \mathrm{~m}$ intrinsic region with an absorption coefficient $\alpha=10^{4} \mathrm{~cm}^{-1}$. The device is biased to yield carrier velocities of $10^{5} \mathrm{~m} / \mathrm{s}$ and electrical parasitics of $\mathrm{R}_{\mathrm{PD}}=20 \Omega$ and $\mathrm{C}_{\mathrm{PD}}=70 \mathrm{fF}$.
a. Assuming no reflection losses, what is the responsivity at $\lambda=1550 \mathrm{~nm}$?
b. What is the total PD bandwidth, including both transit-time and RC effects?
4. Waveguide p-i-n Detector. A Ge waveguide p-i-n detector has a 340 nm intrinsic with an absorption coefficient $\alpha=10^{3} \mathrm{~cm}^{-1}$ and a $15 \mu \mathrm{~m}$ absorption length. The device is biased to yield carrier velocities of $10^{5} \mathrm{~m} / \mathrm{s}$ and electrical parasitics of $\mathrm{R}_{\mathrm{PD}}=50 \Omega$ and $\mathrm{C}_{\mathrm{PD}}=10 \mathrm{fF}$.
a. Assuming no reflection losses, what is the responsivity at $\lambda=1550 \mathrm{~nm}$?
b. What is the total PD bandwidth, including both transit-time and RC effects?
5. Simple Resistive Front-End Sensitivity. A simple front-end with noise bandwidth $\mathrm{BW}_{\mathrm{n}}=22 \mathrm{GHz}$ is constructed with a 50Ω resistor. This front-end is used with 3 effective photodetector configurations.
a. p -i-n detector with $\mathrm{R}=1 \mathrm{~A} / \mathrm{W}$
b. APD with $\mathrm{R}=1 \mathrm{~A} / \mathrm{W}, \mathrm{M}=8, \mathrm{~F}=4$
c. $\mathrm{OA}+\mathrm{p}-\mathrm{i}-\mathrm{n}$ with $\mathrm{R}=1 \mathrm{~A} / \mathrm{W}, \mathrm{G}=50, \eta \mathrm{~F}=2$

For these 3 effective photodetector configurations:
i. Give the optical sensitivity for a $\mathrm{BER}=10^{-12}$ considering both amplifier and detector noise. Hint: You need to first compute the "amplifier" noise, which is the resistor rms current noise over a 22 GHz bandwidth. Assume T=300K.
ii. With the computed sensitivity and assuming a high extinction ratio, what is the high-level detector shot noise, $i_{n, X, 1}^{r m s}$?

