
Sam Palermo
Analog & Mixed-Signal Center

Texas A&M University

Lecture 14: Analog MZM Driver with Linearization

ECEN721: Optical Interconnects 
Circuits and Systems

Spring 2024



Announcements
• Exam 2 is on Apr. 23

• In class
• One double-sided 8.5x11 notes page allowed
• Bring your calculator
• Covers through Lecture 12

• Project Report Due Apr 30

• Project Presentations May 7 (3:30PM-5:30PM)
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Outline
• Motivation
• Driver Design
• Measurement Results
• Conclusion
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Radio-Over-Fiber Systems 
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• Remote antenna units
• Indoor wireless communications
• 5G cellular communications



Nonlinearity in RoF Systems
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• MZM cosine transfer function
̶ Major source of nonlinearity
̶ AM-AM compression
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16-QAM EVM vs AM-AM
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• Assuming ideal cosine model for MZM
• EVM degrades when AM-AM compression increases
• Lower Vπ MZM has higher gain, but more nonlinearity



MZM Linearization Approaches
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• Optical domain linearization occupies large PIC area
• Electrical domain linearization approaches

̶ Arcsine function from square law of transistor
̶ Polynomial predistortion
̶ IM3 injection
̶ Diode-based predistortion

• Proposed programmable linearizer is able to compensate 
AM-AM and is highly tunable to generate predistortion

MZM MZM

DC BiasDC Bias
MZM

DC Bias

MZM

RF Input RF Input



Outline
• Motivation
• Driver Design
• Measurement Results
• Conclusion

8



MZM Driver Architecture
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• Programmable inverter-based amplifier linearizer 
generates predistortion to compensate MZM nonlinearity

• 3-stage amplifier provides gain to deliver 12dBm linear 
output power to drive MZM
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Inverter-Based Amplifier Linearizer

10

• 17 unit segments 
consisting of 
inverter-based 
amplifiers

• Segments 1-3 
provide gain without 
major expansion
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• Segments 4-9 provide signal expansion at 
progressively larger input power levels



CMOS Driver
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• 3 pseudo-differential common-source amplifier stages
• Capacitive neutralization improves reverse isolation
• Cascode structures in first stage improves stability and in last stage 

allows for operation with a higher supply
• Inter-stage and output-stage matching implemented with symmetrical 

magnetically coupled resonator technique
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28nm CMOS Unit Cell Layout
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32 x 600um = 19.2um

• Unit cell methodology 
allows for easy scaling 
of each amplifier stage
̶ 32 600nm width fingers
̶ Parasitics minimized with 

higher metal routing for 
drain connection

̶ Gate resistance reduced 
with double-sided 
connection

̶ Source impedance 
reduced with stacked 
M1/2 layers



• Adjusting Coupling factor by tuning radius
• Requirement for zero gain ripple

Mutual coupling resonator (MCR)
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Output matching
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• Inductor L1 adopted to tune the impedance 
Zamp

• Conjugate matching for power delivery and 
output return loss
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28nm CMOS Prototype

16

Linearizer
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• GSG probe pads for high-speed input and output
• DC supplies and serial control signals applied via wirebonds to PCB



Test Setup
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• 40GHz LiNbO3-MZM with 7V RF Vπ at 30GHz
• MZM biased at quadrature point



S-Parameters & Group Delay

18

• 20-35GHz 3dB bandwidth with max 18dB gain
• Group delay variation of the entire RoF link is 

<115ps within the 20-35 GHz bandwidth



AM-AM Compensation
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• Activating linearizer allows for 3dB OP1dB extension
• Driver delivers 12dBm output power with expansive 

response that compensates MZM compression

RoF Link AM-AM & AM-PM MZM Driver AM-AM w/ Linearizer

20GHz

35GHz



Two-Tone Measurements
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• 4.1dBm IIP3 for entire RoF link



Summary Table
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References [Hosseinzadeh RFIC 
2019]

[Sadhwani JLT 
2003]

[Okyere Texas 
Symposium on  2017] This Work

Technology Si-SiGe CMOS 180nm 65nm CMOS 28nm CMOS

Frequency 0.5-20GHz 0.28GHz 1GHz 20-35GHz

Power Consumption 1700mW* 162mW 49.2mW 180mW

Max Voltage Swing 2Vpp N/A N/A 2.5Vpp

IIP3 22dBm 6.8dBm N/A 4.1dBm

Supply Voltage 2.5/3.3V 1.8V N/A 0.9/1.6V

Power Efficiency** 11.76 GHz/W 1.73GHz/W N/A 194.44GHz/W

Technique IM3 Injection Adaptive 
Predistoriton

Polynomial 
Predistortion Predistortion

*Total power of 4 stages
**Power Efficiency = Max Frequency / Power Consumption



Conclusion

• A power-efficient 28nm CMOS MZM driver 
for an external MZM is implemented

• 20-35GHz bandwidth and 2.5Vpp output 
swing is achieved

• Programmable linearizer is able to extend 
OP1dB by 3dB and has the flexibility to 
support different MZM types
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