ECEN721: Optical Interconnects Circuits and Systems Spring 2024

Lecture 4: Receiver Analysis

Sam Palermo
Analog \& Mixed-Signal Center
Texas A\&M University

Announcements

- Majority of material follows Sackinger Chapter 4

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Receiver Model

- Photodetector model
- Linear channel representing the transimpedance amplifier (TIA) and main amplifier (MA) gain and an optional low-pass filter
- Detector with a decision threshold, $V_{D T H}$

Receiver Detector Model

- Signal current source $i_{P D}$ which is linearly related to the optical power
- Noise current source $i_{n, A M P}$ whose spectrum is approximated as uniform and signal dependent

Receiver Linear Channel (Front-End)

- Modeled with a linear transfer function $H(f)$ relating the output voltage v_{O} amplitude \& phase with input current $i_{P D}$
- From a sensitivity perspective, the signals are small \& linearity generally holds
- Single input-referred noise current source with a spectrum that produces the correct output-referred noise spectrum after passing through $H(f)$
- Generally, the TIA's input-referred noise dominates

Detector and Amplifier Noise

- Detector noise
- Nonstationary - rms value changes with the bit value
- Uniform (white) frequency spectrum

- Noise power spectral density must formally be written as a time-varying function
- Amplifier noise
- Stationary - rms independent of time
- Non-white frequency spectrum which is well modeled as having a white component and a component that increases \propto to f^{2}

$$
I_{n, a m p}^{2}(f)=\alpha_{0}+\alpha_{2} f^{2}+\ldots
$$

Receiver Decision Circuit

- Compares the linear channel output v_{O} with a decision threshold $V_{\text {DTH }}$
- For binary (OOK) modulation
- Above $V_{\text {DTH }} \rightarrow$ "One" bit
- Below $V_{\text {DTH }} \rightarrow$ "Zero" bit
- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Bit Errors

The receiver front - end output before the decision element can be modeled as the superposition of the desired signal and the noise

$$
v_{O}(t)=v_{S}(t)+v_{n}(t)
$$

Occasionally, the instantaneous noise voltage $v_{n}(t)$ can suffiently corrupt the output and exceed the decision threshold $V_{D T H}$ to cause a bit error.

Ideally, this happens at a low - probability or bit - error rate (BER)

Output Noise - Amplifier Component

[Sackinger]

Output Noise Power Spectrum : $V_{n, a m p}^{2}(f)=|H(f)|^{2} \cdot I_{n, a m p}^{2}(f)$
Integrating this noise spectrum over the decision circuit bandwidth $B W_{D}$
gives the total noise power experienced by the decision circuit

$$
\overline{v_{n, a m p}^{2}}=\int_{0}^{B W_{D}}|H(f)|^{2} \cdot I_{n, a m p}^{2}(f) d f
$$

- Note that since $H(f)$ generally rolls-off quickly, the exact upper bound is not too critical and could be set to a very high value (infinity)

Output Noise - Detector Component

Formally, because the detector noise is nonstationary, we should write it as

$$
V_{n, P D}^{2}(f, t)=H(f) \cdot \int_{-\infty}^{\infty} I_{n, P D}^{2}\left(f, t-t^{\prime}\right) \cdot h\left(t^{\prime}\right) \cdot e^{j 2 \pi f t^{\prime}} d t^{\prime}
$$

where $h(t)$ is the front-end impulse response.

- This effective convolution implies that the noise can impact not only it's bits, but can also spread to impact other bits
- However, we generally assume that the noise varies slowly relate to $h(t)$ and we can simplify the detector noise analysis

$$
\begin{gathered}
V_{n, P D}^{2}(f, t)=|H(f)|^{2} \cdot I_{n, P D}^{2}(f, t) \\
\overline{v_{n, P D(t)}^{2}}=\int_{0}^{B W_{D}}|H(f)|^{2} \cdot I_{n, P D}^{2}(f, t) d f
\end{gathered}
$$

- For simple OOK modulation, we use 2 values of the time-dependent output noise power

Total Output Noise

- The total output rms noise value is the root-sum-of-squares of the uncorrelated detector and amplifier noise components

$$
\begin{gathered}
v_{n}^{r m s}(t)=\sqrt{\overline{v_{n, P D}^{2}}(t)+\overline{v_{n, a m p}^{2}}(t)} \\
=\sqrt{\left.\int_{0}^{B W_{D}} \mid H(f)\right)^{2} \cdot\left[I_{n, P D}^{2}(f, t)+I_{n, a m p}^{2}(f)\right] d f}
\end{gathered}
$$

- For simple OOK modulation, we will have two rms values

$$
v_{n, 0}^{r m s} \text { and } v_{n, 1}^{r m s}
$$

Signal, Noise, and Bit-Error Rate (BER)

[Sackinger]

NRZ Signal + Noise
Noise Statistics

- The noise is Gaussian with a standard deviation equal to the noise voltage rms value
- With an equal distribution of 1 s and 0 s , setting $V_{\text {DTH }}$ at the crossover of the two distributions yields the fewest bit errors
- The bit-error rate (BER) is defined as the probability that a 0 is misinterpreted as a 1 or vice-versa

BER Calculation

- For BER, we should calculate the area under the Gaussian "tails"
- Assuming equal 0 and 1 noise statistics for now, the 2 tails should be equal and we just need to calculate 1 of them

$$
B E R=\int_{Q}^{\infty} G a u s s(x) d x \text { with } Q=\frac{V_{D T H}}{v_{n}^{r m s}}=\frac{v_{S}^{p p}}{2 v_{n}^{r m s}}
$$

- Here Gauss(x) is a normalized Gaussian distribution ($\mu=0, \sigma=1$)
- The lower bound Q is the difference between the levels and the decision threshold, normalized by the Gaussian distribution standard deviation, σ

Personick Q and BER

- The Q parameter is called the Personick Q and is a measure of the ratio between the signal and noise

$$
\int_{Q}^{\infty} \operatorname{Gauss}(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{Q}^{\infty} e^{-\frac{x^{2}}{2}} d x=\frac{1}{2} \operatorname{erfc}\left(\frac{Q}{\sqrt{2}}\right)
$$

Table 4.1 Numerical relationship between \mathcal{Q} and bit-error rate.

\mathcal{Q}	$B E R$	\mathcal{Q}	$B E R$
0.0	$1 / 2$	5.998	10^{-9}
3.090	10^{-3}	6.361	10^{-10}
3.719	10^{-4}	6.706	10^{-11}
4.265	10^{-5}	7.035	10^{-12}
4.753	10^{-6}	7.349	10^{-13}
5.199	10^{-7}	7.651	10^{-14}
5.612	10^{-8}	7.942	10^{-15}

If we want $\mathrm{BER}=10^{-12}$, then we need $Q=7.035$ or

$$
v_{S}^{p p}=14.07 v_{n}^{r m s}, \text { assuming equal } 1 \text { and } 0 \text { noise statistics }
$$

What if I Have Unequal Noise Distributions?

Neglecting any noise memory effect, the rms noise simply alternates

$$
\text { between } v_{n, 0}^{r m s} \text { and } v_{n, 1}^{r m s}
$$

We have a relatively thinner, lower - noise distribution for the 0 s, with $\sigma_{n, 0}=v_{n, 0}^{r m s}$, and a thicker, higher - noise distribution for the 1 s ,

Signal-to-Noise Ratio

- In optical receiver analysis, the signal-to-noise ratio (SNR) is often defined as the mean-free average signal power divided by the average noise power Mean - Free AverageSignal Power : $\overline{v_{s}^{2}(t)}-\overline{v_{S}(t)^{2}}$
For a DC - balanced NRZ signal, this is $\left(\frac{v_{s}^{p p}}{2}\right)^{2}$

$$
\text { Noise Power : } \frac{\left(\overline{v_{n, 0}^{2}}+\overline{v_{n, 1}^{2}}\right)}{2}
$$

$$
S N R=\frac{\left(v_{s}^{p p}\right)^{2}}{2\left(\overline{v_{n, 0}^{2}}+\overline{v_{n, 1}^{2}}\right)}
$$

Signal-to-Noise Ratio Extremes

1. Noise is dominated by the amplifier, with equal noise on $0 s$ and 1s

$$
S N R=\frac{\left(v_{s}^{p p}\right)^{2}}{2\left(\overline{v_{n, 0}^{2}}+\overline{v_{n, 1}^{2}}\right)}=\frac{\left(v_{s}^{p p}\right)^{2}}{2\left(2\left(v_{n}^{r m s}\right)^{2}\right)}=Q^{2}, \text { with } v_{n, 1}^{r m s}=v_{n, 0}^{r m s}
$$

For a BER $=10^{-12}(Q=7.0) \Rightarrow S N R=(7.0)^{2}=49.0=16.9 \mathrm{~dB}$
2. Noise is dominated by the detector/optical amplifier, with un-equal noise on 0 s and 1 s

For a BER $=10^{-12}(Q=7.0) \Rightarrow S N R=\frac{(7.0)^{2}}{2}=24.5=13.9 \mathrm{~dB}$

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Electrical Receiver Sensitivity

- Sensitivity is the minimum input-referred signal necessary to achieve the desired bit-error rate
Electrical Receiver Sensitivity, $i_{\text {sens }}^{p p}$, is the minimum peak - to - peak
signal current at the receiver input to achieve the desired BER.
An input current swing produces an output voltage swing

$$
v_{S}^{p p}=H_{0} i_{S}^{p p}=2 Q v_{n}^{r m s}
$$

where H_{0} is the midband value of $H(f)$.

$$
i_{\text {sens }}^{p p}=\frac{2 Q v_{n}^{r m s}}{H_{0}} \text { for the } Q \text { necessary for the } \mathrm{BER}
$$

Input-Referred RMS Noise: $i_{n}^{r m s}=\frac{v_{n}^{r m s}}{H_{0}}$

$$
i_{s e n s}^{p p}=2 Q i_{n}^{r m s}
$$

Electrical Receiver Sensitivity

If $i_{n}^{r m s}=380 \mathrm{nA}$, what is the electrical receiver sensitivity for a $\mathrm{BER}=10^{-12}$?

$$
i_{\text {sens }}^{p p}=2 Q i_{n}^{r m s}=2(7.035)(380 \mathrm{nA})=5.35 \mu \mathrm{~A}
$$

- What if I have unequal noise distributions on 0s and 1 s ?

$$
\begin{aligned}
& v_{s}^{p p}=Q\left(v_{n, 0}^{m s s}+v_{n, 1}^{m s s}\right) \Rightarrow i_{s e n s}^{p p}=Q\left(i_{n, 0}^{m m s}+i_{n, 1}^{m m s}\right) \\
& \text { where } i_{n, 0}^{m s s}=\frac{v_{n, 0}^{m m s}}{H_{0}} \text { and } i_{n, 1}^{m s}=\frac{v_{n, 1}^{m m}}{H_{0}}
\end{aligned}
$$

- Note that so far we have assumed an ideal slicer for the decision circuit. A real slicer's minimum signal input and offset will degrade this sensitivity. More about this later.

Optical Receiver Sensitivity

Optical Receiver Sensitivity, $\bar{P}_{\text {sens }}$, is the minimum optical power, averaged over time, required to achieve the desired BER.
Assuming a DC - balanced signal with a high extinction ratio (more about this later), the average signal current is

$$
\begin{gathered}
\overline{i_{S}}=\frac{i_{S}^{p p}}{2} \Rightarrow \overline{P_{S}}=\frac{i i_{S}^{p p}}{2 R} \\
\overline{\overline{P_{\text {sens }}}} \frac{i i_{\text {sens }}^{p p}}{2 R}=\frac{2 Q i_{n}^{r m s}}{2 R}=\frac{Q i_{n}^{r m s}}{R}
\end{gathered}
$$

or if we have different noise distributions

$$
\overline{P_{\text {sens }}}=\frac{Q\left(i_{n, 0}^{r m s}+i_{n, 1}^{r m s}\right)}{2 R}
$$

Optical Receiver Sensitivity

If $i_{n}^{r m s}=380 \mathrm{nA}$ and $R=0.8 \mathrm{~A} / \mathrm{W}$, what is the optical receiver sensitivity for a $\mathrm{BER}=10^{-12}$?

$$
\overline{P_{\text {sens }}}=\frac{Q i_{n}^{r m s}}{R}=\frac{(7.035)(380 \mathrm{nA})}{0.8 \mathrm{~A} / \mathrm{W}}=3.34 \mu \mathrm{~W}=-24.8 \mathrm{dBm}
$$

- Note that the optical receiver sensitivity is based on the average signal value, whereas the electrical sensitivity is based on the peak-to-peak signal value

Optical RX Sensitivity w/ Ideal Photodetector

- In order to compare the relative performance of different electrical receivers, it is useful to normalize out the photodetector performance
- The sensitivity excluding the PD's quantum efficiency η is

$$
\eta \overline{P_{\text {sens }}}=\frac{h c}{\lambda q} \cdot Q \cdot i_{n}^{r m s}
$$

or if we have different noise distributions

$$
\eta \overline{P_{\text {sens }}}=\frac{h c}{\lambda q} \cdot \frac{Q\left(i_{n, 0}^{r m s}+i_{n, 1}^{r m s}\right)}{2}
$$

Optical RX Sensitivity w/ Ideal Photodetector

- Previous example using PD with $\mathrm{R}=0.8 \mathrm{~A} / \mathrm{W}$

$$
\begin{aligned}
& \text { If } i_{n}^{r m s}=380 \mathrm{nA} \text { and } R=0.8 \mathrm{~A} / \mathrm{W}, \text { what is the optical receiver } \\
& \text { sensitivity for a BER }=10^{-12} ? \\
& \overline{P_{\text {sens }}}=\frac{Q i_{n}^{r m s}}{R}=\frac{(7.035)(380 \mathrm{nA})}{0.8 \mathrm{~A} / \mathrm{W}}=3.34 \mu \mathrm{~W}=-24.8 \mathrm{dBm}
\end{aligned}
$$

- Now, normalizing (multiplying) by the quantum efficiency or dividing by an ideal responsivity at a given wavelength

If $i_{n}^{r m s}=380 \mathrm{nA}$ and we are operating at a wavelenth of 1550 nm, what is the optical receiver sensitivity for a $\operatorname{BER}=10^{-12}$ with an ideal photodetector?
$\eta \overline{P_{\text {sens }}}=\frac{h c}{\lambda q} \cdot Q i_{n}^{r m s}=\frac{(7.035)(380 \mathrm{nA})}{\left(8 \times 10^{5}(A / W \cdot m)\right)(1550 \mathrm{~nm})}=\frac{2.67 \mu \mathrm{~W}}{1.24}=2.16 \mu \mathrm{~W}=-26.7 \mathrm{dBm}$

Low and High Power Limits

- The sensitivity limit is the weakest signal for which we can achieve the desired BER
- However, if the signal is too large, we can also have bad effects that degrade BER
- Pulse-width distortion
- Data-dependent jitter
- The overload limit is the maximum signal for which we can achieve the desired BER
- Input overload current $i_{o u n}^{p p}$
- This is the maximum peak-to-peak signal current for which a desired BER can be achieved
- Optical overload power $\bar{P}_{\text {owl }}$
- This is the maximum time-averaged optical power for which a desired BER can be achieved
- The dynamic range is the ratio of the overload limit and the sensitivity limit

$$
\text { Dynamic Range }=\frac{i_{o v l}^{p p}}{i_{\text {sens }}^{p p}}=\frac{\bar{P}_{\text {ovl }}}{\bar{P}_{\text {sens }}}
$$

Reference Bit-Error Rates Examples

- Sensitivity must be specified at a desired BER!

Assuming $i_{n}^{r m s}=380 \mathrm{nA}$ and $R=0.8 \mathrm{~A} / \mathrm{W}$ for the following

- SONET OC-48 ($2.5 \mathrm{~Gb} / \mathrm{s}$) requires $\mathrm{BER} \leq 10^{-10}$ ($Q=6.361$)

$$
\overline{P_{\text {sens }}}=\frac{Q i_{n}^{r m s}}{R}=\frac{(6.361)(380 \mathrm{nA})}{0.8 \mathrm{~A} / \mathrm{W}}=3.02 \mu \mathrm{~W}=-25.2 \mathrm{dBm}
$$

- SONET OC-192 (10Gb/s) requires $\mathrm{BER} \leq 10^{-12}$ ($Q=7.035$)

$$
\overline{P_{\text {sens }}}=\frac{Q i_{n}^{r m s}}{R}=\frac{(7.035)(380 \mathrm{nA})}{0.8 \mathrm{~A} / \mathrm{W}}=3.34 \mu \mathrm{~W}=-24.8 \mathrm{dBm}
$$

- What about $\mathrm{BER} \leq 10^{-15}$? $(Q=7.942)$

$$
\overline{P_{\text {sens }}}=\frac{Q i_{n}^{r m s}}{R}=\frac{(7.942)(380 \mathrm{nA})}{0.8 \mathrm{~A} / \mathrm{W}}=3.77 \mu \mathrm{~W}=-24.2 \mathrm{dBm}
$$

Sensitivity Analysis w/ Amplifier Noise Only

- Here we are assuming that amplifier noise dominates

$$
i_{n}^{r m s}=i_{n, a m p}^{r m s}
$$

- With a p-i-n photodetector $\bar{P}_{\text {sens }, P I N}=\frac{Q i_{h, a m p}^{r m s}}{R}$
- With an APD

$$
\bar{P}_{\text {sens }, A P D}=\frac{1}{M} \cdot \frac{Q i_{n, a m p}^{r m s}}{R}
$$

- With an optically preamplified p-i-n detector $\bar{P}_{\text {sens, } A P D}=\frac{1}{G} \frac{Q_{i n}^{i m s m p}}{R}$

Assuming $\mathrm{R}=0.8 \mathrm{~A} / \mathrm{W}, \mathrm{M}=10, \mathrm{G}=100$, and $\mathrm{BER}=10^{-12}$

Parameter	Symbol	$2.5 \mathrm{~Gb} / \mathrm{s}$	$10 \mathrm{~Gb} / \mathrm{s}$
Input rms noise due to amplifier	$i_{n \text { amp }}^{m s}$	380 nA	$1.4 \mu \mathrm{~A}$
Input signal swing for $B E R=10^{-12}$	$i_{\text {sens }}^{p p}$	$5.3 \mu \mathrm{~A}$	$19.7 \mu \mathrm{~A}$
Sensitivity of p-i-n receiver	$\bar{P}_{\text {sens } . P I N}$	-24.8 dBm	-19.1 dBm
Sensitivity of APD receiver	$\bar{P}_{\text {sens. } A P D}$	-34.8 dBm	-29.1 dBm
Sensitivity of OA + p-i-n receiver	$\bar{P}_{\text {sens } . O A}$	-44.8 dBm	-39.1 dBm

If we neglect detector noise, the optically preamplified $p-i-n$
detector only requires an average optical power of -39.1 dBm or $123 n W$!

Now Let's Include the Detector Noise

- Starting with a p-i-n detector RX, because of the signaldependent detector noise we need to consider 2 different noise values

$$
\overline{i_{n, 0}^{2}}=\overline{i_{n, P I N, 0}^{2}}+\overline{i_{n, a m p}^{2}} \text { and } \overline{i_{n, 1}^{2}}=\overline{i_{n, P I N, 1}^{2}}+\overline{i_{n, a m p}^{2}}
$$

- Here we assume that the detector noise is very small for a 0 bit and that we have a high extinction ratio, i.e. $P_{1}=2 \bar{P}_{\text {sens }}$

$$
\begin{gathered}
i_{n, 0}^{r m s}=i_{n, a m p}^{r m s} \text { and } i_{n, 1}^{r m s}=\sqrt{4 q R \bar{P}_{\text {sens }} B W_{n}+\left(i_{n, a m p}^{r m s}\right)^{2}} \\
\text { Utilizing } \bar{P}_{\text {sens }}=\frac{Q\left(i_{n, 0}^{r m s}+i_{n, 1}^{r m s}\right)}{2 R} \text { we can derive that } \\
\bar{P}_{\text {sens,PIN }}=\frac{Q i_{n, a m p}^{r m s}}{R}+\frac{Q^{2} q B W_{n}}{R} \\
\text { Amplifier Noise }
\end{gathered}
$$

Now Let's Include the Detector Noise

- With an APD receiver, we assume the following 2 different noise values

$$
\begin{gathered}
i_{n, 0}^{r m s}=i_{n, a m p}^{r m s} \text { and } i_{n, 1}^{r m s}=\sqrt{F \cdot M^{2} 4 q R \bar{P}_{\text {sens }} B W_{n}+\left(i_{n, a m p}^{r m s}\right)^{2}} \\
\bar{P}_{\text {sens }, A P D}=\frac{1}{M} \cdot \frac{Q i_{n, a m p}^{r m s}}{R}+F \cdot \frac{Q^{2} q B W_{n}}{R}
\end{gathered}
$$

- With an optically preamplified p-i-n detector receiver, we assume the following 2 different noise values

$$
\begin{gathered}
i_{n, 0}^{r m s}=i_{n, a m p}^{r m s} \text { and } i_{n, 1}^{r m s}=\sqrt{\eta F \cdot G^{2} 4 q R \bar{P}_{\text {sens }} B W_{n}+\left(i_{n, a m p}^{r m s}\right)^{2}} \\
\bar{P}_{\text {sens }, O A}=\frac{1}{G} \cdot \frac{Q i_{n, a m p}^{r m s}}{R}+\eta F \cdot \frac{Q^{2} q B W_{n}}{R}
\end{gathered}
$$

- The amplifier noise is suppressed with increasing detector gain, while the shot noise increases with the excess noise factor

Sensitivity w/ Amplifier \& Detector Noise

Assuming $\mathrm{R}=0.8 \mathrm{~A} / \mathrm{W}, \mathrm{M}=10, \mathrm{G}=100$, and $\mathrm{BER}=10^{-12}$
For the APD: $\mathrm{F}=6(7.8 \mathrm{~dB})$

For the OA+p-i-n: $\eta=0.64, \mathrm{~F}=3.16(5 \mathrm{~dB})$

- For the $10 \mathrm{~Gb} / \mathrm{s}$ receivers, relative to amplifier noise only
- p-i-n RX sensitivity is virtually unchanged $\Rightarrow \mathrm{OK}$ to ignore shot noise
- APD RX sensitivity is degraded by $\sim 1 \mathrm{~dB} \Rightarrow$ ignoring shot noise gives you a reasonable estimate. Depending on the link budget margin, may or may not be able to neglect shot noise.
- OA + p-i-n RX sensitivity degrades by $>3 \mathrm{~dB} \Rightarrow$ definitely need to include the shot noise

BER Plots

- To analyze RX performance, we often plot BER or Q versus the average optical power
- At low power levels, this should track $\bar{P}_{\text {sens,PIN }}=\frac{Q i_{n, a m p}^{r m s}}{R}+\frac{Q^{2} q B W_{n}}{R}$

If we plot versus linear power, the Q function increases linearly and the BER improves $\propto \operatorname{erfc}(\mathrm{Q})$

If we plot versus power in dB , then $10 \log (\mathrm{Q})$ function increases linearly

BER Plots

- The sensitivity limit occurs at the minimum power level for the desired BER
- The BER will improve if we increase the power further, until the shot noise term begins to dominate and we reach a BER floor
- As power is increased further, signal distortions occur and we reach the overload limit, beyond which the BER tends to degrade rapidly

Optimum APD Gain

- Recall for an APD, that as the avalanche gain M increases, so does the excess noise factor F and they are related by the ionizationcoefficient ratio k_{A}
- Considering that the sensitivity is inversely proportional to M and proportional to F, there exists an optimum APD gain

$$
\begin{gathered}
\bar{P}_{\text {sens }, A P D}=\frac{1}{M} \cdot \frac{Q i_{n, a m p}^{r m s}}{R}+F \cdot \frac{Q^{2} q B W_{n}}{R} \\
M_{\text {opt }}=\sqrt{\frac{i_{m, a m p}^{r m s}}{Q k_{A} q B W_{n}}-\frac{1-k_{A}}{k_{A}}}
\end{gathered}
$$

$$
F=k_{A} M+\left(1-k_{A}\right)\left(2-\frac{1}{M}\right)
$$

- The optimum APD gain increases with more amplifier noise, as the APD gain suppresses this noise
- Note for an optically preamplified p-i-n RX, the noise figure goes down with increased gain G , and thus higher G always improves sensitivity

What If We Had a Perfect Noiseless Amplifier?

- If we can somehow reduce our amplifier noise to be very low, we will ultimately be limited by the detector noise

$$
\begin{aligned}
& \bar{P}_{\text {sens }, P I N}=\frac{Q^{2} q B W_{n}}{R} \quad \bar{P}_{\text {sens }, A P D}=F \cdot \frac{Q^{2} q B W_{n}}{R} \quad \bar{P}_{\text {sens }, O A}=\eta F \cdot \frac{Q^{2} q B W_{n}}{R} \\
& \text { Assuming R=0.8A/W, } \mathrm{M}=10, \mathrm{G}=100 \text {, and } \mathrm{BER}=10^{-12} \\
& \text { For the APD: } \mathrm{F}=6(7.8 \mathrm{~dB}) \\
& \text { For the OA+p-i-n: } \eta=0.64, \mathrm{~F}=3.16(5 \mathrm{~dB})
\end{aligned}
$$

Table 4.4 Maximum receiver sensitivities at $B E R=10^{-12}$ for various photodetectors. A noiseless amplifier is assumed.

Parameter	Symbol	$2.5 \mathrm{~Gb} / \mathrm{s}$	$10 \mathrm{~Gb} / \mathrm{s}$
Sensitivity of p-i-n receiver	$\bar{P}_{\text {sens } . P I N}$	-47.3 dBm	-41.3 dBm
Sensitivity of APD receiver	$\bar{P}_{\text {sens. } A P D}$	-39.5 dBm	-33.5 dBm
Sensitivity of OA + p-i-n receiver	$\bar{P}_{\text {sens. } O A}$	-44.2 dBm	-38.2 dBm

- As evident by the equations above, the p-i-n RX performs best
- The APD RX sensitivity is degraded by F (7.8dB)
- The OA+p-i-n RX sensitivity is degraded by hF ($-1.9 \mathrm{~dB}+5 \mathrm{~dB}=3.1 \mathrm{~dB}$)

What If Everything Is Perfect?

- If we have zero amplifier and detector noise, we can receive data with an infinitesimally amount of optical power, right?
- Uh no, as we still need to at least detect one photon to determine that we have a " 1 " bit, which is the quantum limit
- Photon count per "1" bit, n, follows a Poisson distribution

$$
\operatorname{Poisson}(n)=e^{-M} \cdot \frac{M^{n}}{n!}
$$

where M is the mean of the distribution

- Assuming no power is sent for a " 0 ", these bits will always be correct

Quantum Limit Sensitivity

- The error probability for a " 1 " is Poisson(0)

$$
B E R=\frac{1}{2} \operatorname{Poisson}(0)=\frac{1}{2} e^{-M}
$$

Thus, we need an average number of M photons per "1" bit

$$
M=-\ln (2 B E R)
$$

Per bit, we need $M / 2$ photons, which results in an average power of

$$
\bar{P}_{\text {sens }, q u a n t}=\frac{-\ln (2 B E R)}{2} \cdot \frac{h c}{\lambda} \cdot B
$$

Table 4.5 Quantum limit for the sensitivity at $B E R=10^{-12}$

Parameter	Symbol	$2.5 \mathrm{~Gb} / \mathrm{s}$	$10 \mathrm{~Gb} / \mathrm{s}$
Quantum limit	$\bar{P}_{\text {sens, quant }}$	-53.6 dBm	-47.6 dBm

- How do the previous example RX sensitivities with amplifier and detector noise compare relative to the $10 \mathrm{~Gb} / \mathrm{s}$ quantum limit sensitivity?
- p-i-n RX $=+28.5 \mathrm{~dB}$
- APD RX = +19.8dB
- $\mathrm{OA}+\mathrm{p}-\mathrm{i}-\mathrm{n}=+12 \mathrm{~dB}$

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Total Input-Referred Noise

- In order to calculate the RX sensitivity, we need the inputreferred rms current noise
- The easiest way to obtain this (in simulations) is to integrate the output noise spectrum over the decision element bandwidth and divide by the midband gain H_{0}

$$
\begin{gathered}
\overline{v_{n}^{2}}=\int_{0}^{B W_{D}}|H(f)|^{2} \cdot I_{n}^{2}(f) d f \\
\overline{i_{n}^{2}}=\frac{\overline{v_{n}^{2}}}{H_{0}^{2}}=\frac{1}{H_{0}^{2}} \int_{0}^{B W_{D}}|H(f)|^{2} \cdot I_{n}^{2}(f) d f
\end{gathered}
$$

where $I_{n}^{2}(f)=I_{n, P D}^{2}(f)+I_{n, \text { amp }}^{2}(f)$ are the input - referred noise power spectrum of the detector and amplifier noise.

$$
i_{n}^{r m s}=\sqrt{i_{n}^{2}}=\sqrt{\frac{\overline{v_{n}^{2}}}{H_{0}^{2}}}=\frac{v_{n}^{r m s}}{H_{0}}
$$

How to Get the Input RMS Noise from the Input Noise Power Spectrum?

- If we cannot simulate the output noise spectrum, we can get the inputreferred rms noise from the input noise spectrum through integration
- However, we must be very careful regarding the bounds of the integral due to the rapidly rising f^{2} component

$$
\overline{i_{n}^{2}}=\int_{0}^{\Omega} I_{n}^{2}(f) d f
$$

Noise Bandwidths

The input - noise spectrum can be expressed as

$$
\begin{gathered}
I_{n}^{2}(f)=\alpha_{0}+\alpha_{2} f^{2} \\
\overline{i_{n}^{2}}=\frac{1}{H_{0}^{2}} \int_{0}^{B W_{D}}|H(f)|^{2}\left(\alpha_{0}+\alpha_{2} f^{2}\right) d f \\
=\frac{\alpha_{0}}{H_{0}^{2}} \int_{0}^{B W_{D}}|H(f)|^{2} d f+\frac{\alpha_{2}}{H_{0}^{2}} \int_{0}^{B W_{D}}|H(f)|^{2} f^{2} d f \\
=\alpha_{0} B W_{n}+\frac{\alpha_{2}}{3} B W_{n 2}^{3}
\end{gathered}
$$

where

$$
B W_{n}=\frac{1}{H_{0}^{2}} \int_{0}^{B W_{D}}|H(f)|^{2} d f \text { and } B W_{n 2}^{3}=\frac{1}{H_{0}^{2}} \int_{0}^{B W_{D}}|H(f)|^{2} f^{2} d f
$$

$B W_{n}$ is identical to the noise bandwidth of the receiver's frequency response.
$B W_{n 2}$ is the second - order noise bandwidth for the f^{2} noise component.

Noise Bandwidths

$$
\begin{gathered}
\overline{i_{n}^{2}}=\alpha_{0} B W_{n}+\frac{\alpha_{2}}{3} B W_{n 2}^{3} \\
\text { where } \\
B W_{n}=\frac{1}{H_{0}^{2}} \int_{0}^{B W_{D}}|H(f)|^{2} d f \text { and } B W_{n 2}^{3}=\frac{1}{H_{0}^{2}} \int_{0}^{B W_{D}}|H(f)|^{2} f^{2} d f
\end{gathered}
$$

- The bandwidths BW_{n} and $\mathrm{BW}_{\mathrm{n} 2}$ depend only on the receiver's frequency response and the decision circuit's bandwidth BW
- Note that BW_{D} is not too critical if it is larger than the receiver bandwidth
- Assuming $\mathrm{BW}_{\mathrm{D}}=\infty, \mathrm{BW}_{\mathrm{n}}$ and $\mathrm{BW}_{\mathrm{n} 2}$ are calculated for typical receiver frequency responses

Table 4.6 Numerical values for $B W_{n}$ and $B W_{n 2}$.

$H(f)$	$B W_{n}$	$B W_{n 2}$
1st-order low pass	$1.57 \cdot B W_{3 \mathrm{~dB}}$	∞
2nd-order low pass, crit. damped $(Q=0.500)$	$1.22 \cdot B W_{3 \mathrm{~dB}}$	$2.07 \cdot B W_{3 \mathrm{~dB}}$
2nd-order low pass, Bessel $(Q=0.577)$	$1.15 \cdot B W_{3 \mathrm{~dB}}$	$1.78 \cdot B W_{3 \mathrm{~dB}}$
2nd-order low pass, Butterworth $(Q=0.707)$	$1.11 \cdot B W_{3 \mathrm{~dB}}$	$1.49 \cdot B W_{3 \mathrm{~dB}}$
Brick wall low pass	$1.00 \cdot B W_{3 \mathrm{~dB}}$	$1.00 \cdot B W_{3 \mathrm{~dB}}$
Rectangular (impulse response) filter	$0.500 \cdot B$	∞
NRZ to full raised-cosine filter	$0.564 \cdot B$	$0.639 \cdot B$

What if I Just Integrate Up To the 3dB Bandwidth?

- What we should do is use the table data and calculate

$$
\overline{i_{n}^{2}}=\alpha_{0} B W_{n}+\frac{\alpha_{2}}{3} B W_{n 2}^{3}
$$

- But, what if we simply integrate up to the
 3dB bandwidth, which is equivalent to using

$$
\overline{i_{n}^{2}}=\alpha_{0} B W_{3 d B}+\frac{\alpha_{2}}{3} B W_{3 d B}^{3}
$$

- Referring to the table, this is only correct for a Brick Wall Low Pass response and can lead to significant error
- For example, with a $2^{\text {nd }}$-order Butterworth response, this underestimates the white noise component by 1.11x and the f^{2} component by $3.33 x$

Personick Integrals

- Optical receiver literature often uses constants from Personick Integrals

$$
\overline{i_{n}^{2}}=\alpha_{0} B W_{n}+\frac{\alpha_{2}}{3} B W_{n 2}^{3}=\alpha_{0} \cdot I_{2} B+\alpha_{2} \cdot I_{3} B^{3}
$$

where B is the bit rate

$$
I_{2}=\frac{B W_{n}}{B} \text { and } I_{3}=\frac{B W_{n 2}^{3}}{3 B^{3}}
$$

- The Personick Integrals I_{2} and I_{3} are normalized noise bandwidths
- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Power Penalty

- So far we have primarily been considering random noise sources and assumed that we have had an ideal transmitter, receiver decision circuit, etc...
- The actual receiver sensitivity will be degraded by impairments throughout the optical link and is quantified by power penalties
- The power penalty $P P$ is the increase in average transmit power necessary to maintain the desired $B E R$, relative to an ideal case where we don't have the impairment
- This is quantified in $\mathrm{dBs}, 10 \log (P P)$

Typical Impairments

- Transmitter
- Extinction ratio
- Relative intensity noise (RIN)
- Output power variations
- Fiber
- Dispersion
- Nonlinear effects
- Detector
- Dark current
- TIA
- Distortions (ISI)
- Offset
- MA
- Distortions (ISI)
- Offset
- Noise figure
- Low-frequency cutoff
- CDR
- Decision-threshold offset
- Decision-threshold ambiguity
- Sampling-time offset
- Sampling-time jitter

Decision-Threshold Offset PP

- So far we have assumed that the decision threshold is in the ideal place

Assuming equal noise distributions and DC - balanced data

$$
V_{D T H}=\frac{v_{S}^{p p}}{2}
$$

- What if there is an offset?

$$
V_{D T H}^{\prime}=V_{D T H}+\delta v_{S}^{p p}
$$

Depending on the polarity on the offset, we must increase the distance of one of the levels (high level) from the offset threshold. This implies a new peak - to - peak signal level $v_{S}^{\prime p p}$ with

$$
\begin{gathered}
\frac{v_{S}^{\prime p p}}{2}=\frac{v_{S}^{p p}}{2}+\delta v_{S}^{p p} \\
v_{S}^{\prime p p}=v_{S}^{p p}+2 \delta v_{S}^{p p}=v_{S}^{p p}(1+2 \delta)
\end{gathered}
$$

Decision-Threshold Offset PP

Thus the signal swing must be increased by

$$
\frac{v_{S}^{\prime p p}}{v_{S}^{p p}}=1+2 \delta
$$

and the power penalty is

$$
P P=1+2 \delta
$$

- Note that we are neglecting the improved BER on one of the levels (low level), but formally considering this has only a small impact on the resulting PP
Example 1: $v_{n}^{r m s}=1 m V$ and the decision-threshold offset is 1 mV

$$
\begin{gathered}
\text { For a } \mathrm{BER}=10^{-12} \Rightarrow v_{S}^{P P}=14.07 \mathrm{mV} \\
\qquad \begin{array}{c}
\delta=\frac{1 \mathrm{mV}}{14.07 \mathrm{mV}}=0.071 \\
P P=1+2 \delta=1.142=0.577 \mathrm{~dB}
\end{array}
\end{gathered}
$$

Decision-Threshold Offset PP

Example 2: What should the offset be for only a 0.1 dB power penalty?

$$
\begin{gathered}
\delta=\frac{P P-1}{2} \\
\delta=\frac{10^{\frac{0.1}{10}}-1}{2}=0.012
\end{gathered}
$$

Thus the offset should be

$$
\delta v_{S}^{p p}=0.012(14.07 \mathrm{mV})=164 \mu V
$$

- Good receiver offset control is necessary to minimize this power penalty!

Dark Current PP

- Dark current by itself isn't a major issue, as we generally assume that the receiver can somehow subtract it out
- However, a potential problem is the shot noise that it induces, which can be quantified as a power penalty

$$
\overline{i_{n, D K}^{2}}=2 q I_{D K} B W_{n}
$$

Dark Current PP

- To keep things simple, let's assume that the receiver noise is dominated by the amplifier noise. Note, this will slightly overestimate the dark current PP.
- The dark current noise increases the total noise by

$$
\frac{\overline{i_{n, a m p}^{2}}+\overline{i_{n, D K}^{2}}}{\overline{i_{n, a m p}^{2}}}=1+\frac{2 q I_{D K} B W_{n}}{\overline{i_{n, a m p}^{2}}}
$$

As the sensitivity is proportional to $i_{n}^{r m s}$

$$
P P=\sqrt{1+\frac{2 q I_{D K} B W_{n}}{\overline{i_{n, a m p}^{2}}}}
$$

Dark Current PP

Example 1: Assume a $2.5 \mathrm{~Gb} / \mathrm{s}$ receiver with $i_{n, a m p}^{r m s}=380 \mathrm{nA}, B W_{n}=1.9 \mathrm{GHz}$,

$$
P P=\sqrt{\text { and } I_{D K}=5 n A} \text {. }
$$

Example 2: What if I have an APD RX with $F=6$ and $M=10$?

$$
\begin{aligned}
& P P=\sqrt{1+\frac{F \cdot M^{2} 2 q I_{D K} B W_{n}}{i_{n, a m p}^{2}}}=\sqrt{1+\frac{6(10)^{2}(2)\left(1.6 \times 10^{-19} C\right)(5 n A)(1.9 \mathrm{GHz})}{(380 \mathrm{nA})^{2}}} \\
&= 1.0063=0.027 \mathrm{~dB}
\end{aligned}
$$

Dark Current PP

Example 3: What must the dark current be for a 0.05 dB power penalty?

$$
I_{D K}<\left(P P^{2}-1\right) \frac{\overline{i_{n, a m p}^{2}}}{2 q B W_{n}}
$$

Using the $2.5 \mathrm{~Gb} / \mathrm{s}$ receiver numbers

$$
I_{D K}<\left(\left(10^{\frac{0.05}{10}}\right)^{2}-1\right) \frac{(380 \mathrm{nA})^{2}}{2\left(1.6 \times 10^{-19} \mathrm{C}\right)(1.9 \mathrm{GHz})}=5.53 \mu \mathrm{~A}
$$

- As long as the effective dark current is in the low $\mu \mathrm{A}$ or less, the power penalty is generally negligible
- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Noise vs ISI Bandwidth Trade-Offs

- If we design our receiver to have a very wide bandwidth, then we will receive the signal with minimal distortion
- However, noise will grow as bandwidth increases
- From a basic sensitivity perspective, decreasing bandwidth results in ever-improving sensitivity
- However, this neglects the filtering of the high-frequency pulses (bits) which causes intersymbol interference (ISI)
- Thus, there is an optimum bandwidth from a sensitivity perspective to balance noise and ISI
- This optimum bandwidth is generally about $(2 / 3) B$

Eye Diagrams

Use a precise clock to chop the data into equal periods

overlay each period onto one plot

Eye Diagrams vs Data Rate

Eye Diagrams vs Channel

Channel Responses

Inter-Symbol Interference (ISI)

- Previous bits residual state can distort the current bit, resulting in inter-symbol interference (ISI)
- ISI is caused by
- Reflections, Channel resonances, Channel loss (dispersion)

Legacy BP 5Gb/s Pulse Response

Legacy BP 5Gb/s Pulse Response

ISI Impact

- At channel input (TX output), eye diagram is wide open
- As data pulses propagate through channel, they experience dispersion and have significant ISI
- Result is a closed eye at channel output (RX input)

[Meghelli (IBM) ISSCC 2006]

Eye Diagrams w/ a 2nd-Order Butterworth RX

- No ISI present
- Assume that the noise $\left(\mathrm{BER}=10^{-12}\right)$ is exactly equal to the eye height, and we have no margin
- Still minimal (no) ISI present
- Assuming white noise dominates, we have a sqrt(2) reduction in rms noise
- We could reduce our optical power by the same sqrt(2) factor and obtain the same BER!
- Severe ISI ($\sim 1 / 2$ eye height)
- While the rms noise is reduced by $2 x$, the overall vertical margin is the same as the $4 / 3 B$ RX
- Note that if we are off in time (horizontally), we won't achieve our desired BER!

ISI Power Penalty

- In order to get the same effective (vertical) eye opening, we have to increase our optical signal power to overcome the ISI

- Note, this power penalty is a bit conservative, as the worstcase data pattern, which produces the eye closure can occur at a low probability. This is a peak-distortion analysis power penalty.

Optimum Receiver Bandwidth

$$
B W_{3 \mathrm{~dB}}=\frac{4}{3} B
$$

(

- Assuming white noise dominates, the sensitivity improves by a sqrt factor as bandwidth decreases
- However, around (2/3) B the ISI power penalty increases rapidly
- Overall, the optimum bandwidth is near 60\%-70\% of the bit rate

Will a $B / 3$ Bandwidth RX Work?

- If I am willing to live with a 1.5 dB degradation in sensitivity, can I design my receiver with $B / 3$ bandwidth?
- 13.3 GHz for a $40 \mathrm{~Gb} / \mathrm{s}$ RX!

- Maybe, there is much more sensitivity to timing noise (jitter)
- Note that while the $(4 / 3) \mathrm{B}$ receiver has theoretically the same sensitivity, it maintains the same effective eye height over a much wider time window

$$
B W_{3 \mathrm{abB}}=\frac{4}{3} B
$$

Bandwidth Allocation

Detector Linear Channel
 Decision Ckt.

- Note that the equivalent bandwidth of the entire receiver front-end must be close to (2/3) B
- Thus, each individual block must have a larger bandwidth

$$
\frac{1}{B W^{2}} \approx \frac{1}{B W_{1}^{2}}+\frac{1}{B W_{2}^{2}}+\ldots
$$

Bandwidth Allocation Strategies

- Wide bandwidth circuits and a precise low-pass filter
- Often a Bessel-Thompson filter is used to limit the noise
- Applicable for low-speed receivers (<2.5Gb/s)
- TIA sets the receiver bandwidth
- Allows for a higher TIA gain and better noise performance
- This means that the subsequent MA stages need to have a much wider bandwidth
- Higher bandwidth than a fixed filter, but also less controlled
- All blocks have similar bandwidths
- If we are designing at the highest speeds, then we can't afford to overdesign any of the blocks
- Applicable for higher-speed receivers (>10Gb/s)

Optimum Receiver Response

- While we have shown that a bandwidth of $\sim(2 / 3) B$ is optimum from a receiver-induced ISI and noise perspective, is this truly the optimal response when we consider other factors?
- Important factors
- Received signal ISI
- Input-referred noise spectrum
- RX clock jitter
- Bit estimation technique

Low ISI Input Optimal RX Response

- A matched filter receiver maximizes the sampled signal-to-noise ratio if the input ISI is minimal
- This has an impulse response $h(t)$ which is proportional to a time-reversed copy of the received pulses $\mathrm{x}(\mathrm{t})$
- For NRZ signals, this is a simple rectangular filter with an impulse response being a rectangular pulse with length of one bit period

Rectangular Filter

$$
H(f)=\frac{\sin (\pi f / B)}{\pi f / B} e^{-j \pi f / B}
$$

- If we convolve the NRZ input with the rectangular filter impulse response, we get a triangular output waveform
- Not sampling exactly in the center of the eye will result in a power penalty
- In the frequency domain, the rectangular filter has

Noise Bandwidth : $B W_{n}=B / 2$
3-dB Bandwidth : $B W_{3 d B}=0.443 B$

Integrating Receiver Block Diagram

[Emami VLSI 2002]

Demultiplexing Receiver

- Demultiplexing with multiple clock phases allows higher data rate
- Data Rate = \#Clock Phases x Clock Frequency
- Gives sense-amp time to resolve data
- Allows continuous data resolution
- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

What If We Have Significant ISI?

- If we have significant ISI in our system, then an integrating receiver is not optimal
- It is preferred to have a receiver with bandwidth $\sim(2 / 3)$ B to filter the noise, and then have circuitry which cancels the ISI
- A Viterbi decoder, which performs a maximumlikelihood sequence detection, is an optimum realization of an ISI canceller. However, this is generally too complex (power/area).
- Instead, an equalizer is often used to cancel ISI

Receiver with Equalization

- An FIR filter, also called a feed-forward equalizer (FFE), is used to (primarily) cancel pre-cursor ISI
- A decision feedback equalizer (DFE) cancels postcursor ISI

Pre- and Post-Cursor ISI

- With post-cursor ISI, the bits before our current bit induces some error in the detected level
- With pre-cursor ISI, the bits after our current bit induce the error
- ISI can span over multiple bit periods

RX FIR Equalization

- Delay analog input signal and multiply by equalization coefficients
- Pros
- With sufficient dynamic range, can amplify high frequency content (rather than attenuate low frequencies)
- Can cancel ISI in pre-cursor and beyond filter span
- Filter tap coefficients can be adaptively tuned without any back-channel
- Cons
- Amplifies noise/crosstalk
- Implementation of analog delays
- Tap precision

RX Equalization Noise Enhancement

- Linear RX equalizers don't discriminate between signal, noise, and cross-talk
- While signal-to-distortion (ISI) ratio is improved, SNR remains unchanged

Analog RX FIR Equalization Example

- 5-tap equalizer with tap spacing of $\mathrm{T}_{\mathrm{b}} / 2$

$3^{\text {rd }}$-order delay cell

D. Hernandez-Garduno and J. Silva-Martinez, "A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells,"

RX Decision Feedback Equalization (DFE)

- DFE is a non-linear equalizer
- Slicer makes a symbol decision, i.e. quantizes input
- ISI is then directly subtracted from the incoming signal via a feedback FIR filter

RX Decision Feedback Equalization (DFE)

- Pros
- Can boost high frequency content without noise and crosstalk amplification
- Filter tap coefficients can be adaptively tuned without any back-channel
- Cons
- Cannot cancel pre-cursor ISI
- Chance for error propagation
- Low in practical links ($B E R=10^{-12}$)
- Critical feedback timing path
- Timing of ISI subtraction complicates CDR phase detection

$$
z_{k}=y_{k}-w_{1} \tilde{d}_{k-1} \cdots-w_{n-1} \tilde{d}_{k-(n-1)}-w_{n} \tilde{d}_{k-n}
$$

[Payne]

DFE Example

- If only DFE equalization, DFE tap coefficients should equal the unequalized channel pulse response values $\left[a_{1} a_{2} \ldots a_{n}\right]$
- With other equalization, DFE tap coefficients should equal the pre-DFE pulse response values
- DFE provides flexibility in the optimization of other equalizer circuits
- i.e., you can optimize a TX equalizer without caring about the ISI terms that the DFE will take care of

$$
\left[\mathrm{w}_{1} \mathrm{w}_{2}\right]=\left[\mathrm{a}_{1} \mathrm{a}_{2}\right]
$$

Direct Feedback DFE Example (TI)

- $6.25 \mathrm{~Gb} / \mathrm{s} 4-\mathrm{tap}$ DFE
- $1 / 2$ rate architecture
- Adaptive tap algorithm
- Closes timing on 1st tap in $1 / 2$ UI for convergence of both adaptive equalization tap values and CDR

Feedback tap mux

Setting Equalizer Values

- Simplest approach to setting equalizer values (tap weights, poles, zeros) is to fix them for a specific system
- Choose optimal values based on lab measurements
- Sensitive to manufacturing and environment variations
- An adaptive tuning approach allows the optimization of the equalizers for varying channels, environmental conditions, and data rates
- Important issues with adaptive equalization
- Extracting equalization correction (error) signals
- Adaptation algorithm and hardware overhead
- Communicating the correction information to the equalizer circuit

FIR Adaptation Error Extraction

- In order to adapting the FIR filter, we need to measure the response at the receiver input
- Equalizer adaptation (error) information is often obtained by comparing the receiver input versus the desired symbol levels, dLev
- This necessitates additional samplers at the receiver with programmable threshold levels

[Stojanovic JSSC 2005]

FIR Adaptation Algorithm

- The sign-sign LMS algorithm is often used to adapt equalization taps due to implementation simplicity

$$
w_{n+1}^{k}=w_{n}^{k}+\Delta_{w} \operatorname{sign}\left(d_{n-k}\right) \operatorname{sign}\left(e_{n}\right)
$$

$w=$ tap coefficients, $n=$ time instant,$k=$ tap index, $d_{n}=$ received data,

$$
e_{n}=\text { error with respect to desired data level, } d L e v
$$

- As the desired data level is a function of the transmitter swing and channel loss, the desired data level is not necessarily known and should also be adapted

$$
d L e v_{n+1}=d L e v_{n}-\Delta_{d L e v} \operatorname{sign}\left(e_{n}\right)
$$

[Stojanovic JSSC 2005]

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Eye Diagram and Spec Mask

- Links must have margin in both the voltage AND timing domain for proper operation
- For independent design (interoperability) of TX and RX, a spec eye mask is used

Eye at RX sampler

RX clock timing noise or jitter (random noise only here)
[Hall]

Jitter Histogram

High and Low Signal Voltage Distribution at Time t_{S}

Decision Point

- Used to extract the jitter PDF
- Consists of both deterministic and random components
- Need to decompose these components to accurately estimate jitter at a given BER

Jitter Categories

Total Jitter (TJ)

- The total jitter PDF is produced by convolving the random and deterministic jitter PDFs

$$
P D F_{J T}(t)=P D F_{R J}(t) * P D F_{D J}(t)
$$

where $P D F_{D J}(t)=P D F_{S J}(t) * P D F_{D C D}(t) * P D F_{I S I}(t) * P D F_{B U J}(t)$

Jitter and Bit Error Rate

- Jitter consists of both deterministic and random components

- Total jitter must be quoted at a given BER
- At BER=10-12, jitter ~1675ps and eye width margin ~200ps
- System can potentially achieve BER $=10^{-18}$ before being jitter limited

System Jitter Budget

- For a system to achieve a minimum BER performance

$$
U I \geq D J_{\delta \delta}(s y s)+2 Q \sigma_{R M S}(s y s)
$$

- The convolution of the individual deterministic jitter components is approximated by linear addition of the terms

$$
D J_{\delta \delta}(s y s)=\sum_{i} D J_{\delta \delta}(i)
$$

- The convolution of the individual random jitter components results in a root-sum-of-squares system rms value

$$
\sigma_{R M S}(s y s)=\sqrt{\sum_{i} \sigma_{R M S}^{2}(i)}
$$

Jitter Budget Example - PCI Express System

Jitter Model

Jitter Frequency Content

Time Interval Error $\operatorname{TIE}(i)=\frac{\varphi_{n}\left(i T_{c}\right)}{2 \pi f_{c}}$
where $T_{c}=\frac{1}{f_{c}}$ is the ideal bit/clock period.

$$
P N(f)=20 \log _{10}\left(2 \pi f_{c} \cdot F\{T I E\}\right)
$$

System Jitter Filtering

- Jitter sources get shaped/filtered differently depending where they are in the clocking system

CDR (Embedded Clocking) System

- Reference clock jitter gets low-pass filtered by the TX PLL and high-pass filtered by the RX PLL/CDR when we consider the phase error between the sample clock and incoming data

Filtered RMS Jitter $=\sqrt{2 \int_{f_{1}}^{f_{2}} \mid F\left\{\left.T I E\right|^{2} \cdot|H(f)|^{2} d f\right.}$

Jitter Budget Example - PCI Express System

$$
\begin{aligned}
& D J_{\delta \delta}(\text { sys })=D J_{\delta \delta}(T X)+D J_{\delta \delta}(\text { channel })+D J_{\delta \delta}(R X)+D J_{\delta \delta}(\text { clock }) \\
& \sigma_{R M S}(\text { sys })=\sqrt{\sigma_{R M S}^{2}(T X)+\sigma_{R M S}^{2}(\text { channel })+\sigma_{R M S}^{2}(R X)+\sigma_{R M S}^{2}(\text { clock })}
\end{aligned}
$$

TABLE 13-2. PCI Express 2.5-Gb/s Jitter Budget at 10^{-12} BER

Component	Term $\quad \sigma_{\text {RJ }}(\mathrm{ps})$	$\mathrm{DJ}_{\delta \delta}(\mathrm{ps})$	TJ (ps)
Reference clock	TJ ${ }_{\text {clock }} \quad[4.7$	41.9	108
Transmitter	$\mathrm{TJ}_{\mathrm{TX}} \quad 2.8$	60.6	100
Channel	$\mathrm{TJ}_{\text {channel }} \longrightarrow 0$	90	90
Receiver	$\mathrm{TJ}_{\mathrm{Rx}} \quad 2.8$	120.6	$\xrightarrow{147} 160$
Linear TJ	-		458
RSS TJ	$6.15 * 14.07=86.5$	313.1	399.6

Table 4.1 Numericakrelationship between \mathcal{Q} and bit-error rate.
[Hall]

\mathcal{Q}	$B E R$	\mathcal{Q}	$B E R$
0.0	$1 / 2$	5.998	10^{-9}
3.090	10^{-3}	6.361	10^{-10}
3.719	10^{-4}	6.706	10^{-11}
4.265	10^{-5}	7.035	10^{-12}
4.753	10^{-6}	7.349	10^{-13}
5.199	10^{-7}	7.651	10^{-14}
5.612	10^{-8}	7.942	10^{-15}

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Forward Error Correction

- From previous analysis, we found that we need a certain SNR for a given BER
- w/ NRZ it is Q^{2} or $\sim 17 \mathrm{~dB}$ for $\mathrm{BER}=10^{-12}$ (equal noise statistics)
- Can we do better?
- Yes, if we add some redundancy in the bits that we transmit and use this to correct errors at the receiver
- This is called forward error correction (FEC)
- Common codes are Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH)

Shannon's Channel Capacity Theorem

- If sufficient coding is employed, error-free transmission over a channel with additive white Gaussian noise is possible for

$$
B \leq B W \log _{2}(1+S N R)
$$

Here B is the information bit rate, which is lower than the channel
bit rate with coding. If we assume ideal Nyquist signaling, we need
a minimum channel bandwidth

$$
B W=\frac{B}{2 r}
$$

where r is the code rate and $\frac{B}{r}$ is the channel bit rate. Thus, with coding

$$
\begin{gathered}
B \leq \frac{B}{2 r} \log _{2}(1+S N R) \\
S N R=2^{2 r}-1
\end{gathered}
$$

For example, if we have $\mathrm{r}=0.8$ (which is a 25% data rate overhead) then

$$
S N R=2^{2(0.8)}-1=2.03=3.08 d B \Rightarrow \text { Much smaller than } 17 \mathrm{~dB}!!
$$

Reed-Solomon Code Example

- Reed-Solomon codes are often used in the Synchronous Optical Networking (SONET) standard
- An important parameter in any error-correcting code is it's overhead or redundancy, with a $\operatorname{RS}(255,239)$ code having $\mathrm{n}=255$ symbols/codeword, but only $\mathrm{k}=239$ information symbols (although 1 is used for framing and isn't considered in the data payload)
- The overhead is $255 /(239-1)=1.071$ or 7.1%
- This is equivalent to $r=238 / 255=0.933$
- A RS(n,k) code can correct for (n-k)/2 symbol errors in a codeword
- RS $(255,239)$ can correct for 8 symbols/codeword

Coding Gain

$$
\begin{aligned}
& \text { BER vs SNR for R-S } 255 \text { Code }(t=8) \\
& \text { At } \mathrm{BER}=10^{-12} \\
& \text { Gross Coding Gain ~5.9dB } \\
& \text { Net Electrical Coding Gain ~5.6dB } \\
& \text { Gross Coding Gain at the desired BER }=\frac{S N R_{\text {out }}{ }^{\text {SNR }}{ }^{\text {(dB) }}}{S N R_{\text {in }}}=\frac{Q_{\text {out }}^{2}}{Q_{\text {in }}^{2}} \\
& \text { However, for a fairer comparison we should consider the } \frac{1}{r} \text { increase } \\
& \text { in bandwidth necessary for the code, which will yield } \frac{1}{\sqrt{r}} \text { more noise. } \\
& \text { Net Electrical Coding Gain }(\mathrm{NECG})=r \cdot \frac{Q_{o u t}^{2}}{Q_{\text {in }}^{2}}
\end{aligned}
$$

Soft-Decision Decoding

- So far we have talked about codes which use binary "harddecisions"
- Superior performance ($\sim 2 \mathrm{~dB}$) occurs if we use more "analog" information in the form of "soft-decisions"
- Soft decisions are utilized in turbo codes and low-density parity check codes (LDPC)
- In an NRZ system, soft decisions can be realized with 2 additional comparators with some Δ offset or with an ADC front-end
- An AGC loop may be necessary
 to maintain required linearity

Next Time

- Transimpedance Amplifier (TIA) Circuits

