ECEN721: Optical Interconnects Circuits and Systems Spring 2024

Lecture 4: Receiver Analysis

Sam Palermo Analog & Mixed-Signal Center Texas A&M University

Announcements

Majority of material follows Sackinger Chapter 4

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Receiver Model

- Photodetector model
- Linear channel representing the transimpedance amplifier (TIA) and main amplifier (MA) gain and an optional low-pass filter
- Detector with a decision threshold, V_{DTH}

Receiver Detector Model

- Signal current source *i_{PD}* which is linearly related to the optical power
- Noise current source *i_{n,AMP}* whose spectrum is approximated as uniform and signal dependent

Receiver Linear Channel (Front-End)

- Modeled with a linear transfer function H(f) relating the output voltage v_O amplitude & phase with input current i_{PD}
 - From a sensitivity perspective, the signals are small & linearity generally holds
- Single input-referred noise current source with a spectrum that produces the correct output-referred noise spectrum after passing through H(f)
- Generally, the TIA's input-referred noise dominates

Detector and Amplifier Noise

- Detector noise
 - Nonstationary rms value changes with the bit value
 - Uniform (white) frequency spectrum
 - Noise power spectral density must formally be written as a time-varying function
- Amplifier noise
 - Stationary rms independent of time
 - Non-white frequency spectrum which is well modeled as having a white component and a component that increases ∞ to f²

$$I_{n,amp}^{2}(f) = \alpha_0 + \alpha_2 f^2 + \dots$$

$$I_{n,PD}^2(f,t) \sim \operatorname{bit_value}(t)$$

Receiver Decision Circuit

- Compares the linear channel output V_O with a decision threshold V_{DTH}
- For binary (OOK) modulation
 - Above $V_{DTH} \rightarrow$ "One" bit
 - Below $V_{DTH} \rightarrow$ "Zero" bit

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Bit Errors

The receiver front - end output before the decision element can be modeled as the superposition of the desired signal and the noise $v_O(t) = v_S(t) + v_n(t)$

Occasionally, the instantaneous noise voltage $v_n(t)$ can sufficiently corrupt the output and exceed the decision threshold V_{DTH} to cause a bit error.

Ideally, this happens at a low - probability or bit - error rate (BER)

Output Noise – Amplifier Component

Output Noise Power Spectrum : $V_{n,amp}^2(f) = |H(f)|^2 \cdot I_{n,amp}^2(f)$

Integrating this noise spectrum over the decision circuit bandwidth BW_D

gives the total noise power experienced by the decision circuit

$$\overline{v_{n}^{2}}_{,amp} = \int_{0}^{BW_{D}} \left| H(f) \right|^{2} \cdot I_{n,amp}^{2}(f) df$$

 Note that since H(f) generally rolls-off quickly, the exact upper bound is not too critical and could be set to a very high value (infinity)

Output Noise – Detector Component

Formally, because the detector noise is nonstationary, we should write it as

$$V_{n,PD}^{2}(f,t) = H(f) \cdot \int_{-\infty}^{\infty} I_{n,PD}^{2}(f,t-t') \cdot h(t') \cdot e^{j2\pi ft'} dt'$$

where h(t) is the front - end impulse response.

- This effective convolution implies that the noise can impact not only it's bits, but can also spread to impact other bits
- However, we generally assume that the noise varies slowly relate to h(t) and we can simplify the detector noise analysis

$$V_{n,PD}^{2}(f,t) = |H(f)|^{2} \cdot I_{n,PD}^{2}(f,t)$$
$$\overline{v_{n,PD}^{2}}(f,t) = \int_{0}^{BW_{D}} |H(f)|^{2} \cdot I_{n,PD}^{2}(f,t) df$$

 For simple OOK modulation, we use 2 values of the time-dependent output noise power

Total Output Noise

 The total output rms noise value is the root-sum-of-squares of the uncorrelated detector and amplifier noise components

$$v_{n}^{rms}(t) = \sqrt{v_{n,PD}^{2}(t) + v_{n,amp}^{2}(t)}$$
$$= \sqrt{\int_{0}^{BW_{D}} |H(f)|^{2} \cdot \left[I_{n,PD}^{2}(f,t) + I_{n,amp}^{2}(f)\right]} df$$

• For simple OOK modulation, we will have two rms values

$$v_{n,0}^{rms}$$
 and $v_{n,1}^{rms}$

Signal, Noise, and Bit-Error Rate (BER)

NRZ Signal + Noise

Noise Statistics

- The noise is Gaussian with a standard deviation equal to the noise voltage rms value
- With an equal distribution of 1s and 0s, setting V_{DTH} at the crossover of the two distributions yields the fewest bit errors
- The bit-error rate (BER) is defined as the probability that a 0 is misinterpreted as a 1 or vice-versa

BER Calculation

NRZ Signal + Noise

Noise Statistics

- For BER, we should calculate the area under the Gaussian "tails"
- Assuming equal 0 and 1 noise statistics for now, the 2 tails should be equal and we just need to calculate 1 of them

$$BER = \int_{Q}^{\infty} Gauss(x) dx \quad \text{with} \quad Q = \frac{V_{DTH}}{v_n^{rms}} = \frac{v_S^{pp}}{2v_n^{rms}}$$

- Here Gauss(x) is a normalized Gaussian distribution (μ =0, σ =1)
- The lower bound Q is the difference between the levels and the decision threshold, normalized by the Gaussian distribution standard deviation, σ

Personick Q and BER

• The *Q* parameter is called the Personick *Q* and is a measure of the ratio between the signal and noise

$$\int_{Q}^{\infty} Gauss(x)dx = \frac{1}{\sqrt{2\pi}} \int_{Q}^{\infty} e^{-\frac{x^2}{2}} dx = \frac{1}{2} erfc\left(\frac{Q}{\sqrt{2}}\right)$$

Table 4.1 Numerical relationship between Q and bit-error rate.

Q	BER	Q	BER	
0.0	1/2	5.998	10-9	
3.090	10-3	6.361	10^{-10}	
3.719	10^{-4}	6.706	10-11	
4.265	10^{-5}	7.035	10^{-12}	
4.753	10^{-6}	7.349	10^{-13}	
5.199	10^{-7}	7.651	10^{-14}	
5.612	10^{-8}	7.942	10^{-15}	

If we want BER = 10^{-12} , then we need Q = 7.035 or $v_S^{pp} = 14.07 v_n^{rms}$, assuming equal 1 and 0 noise statistics

What if I Have Unequal Noise Distributions?

Neglecting any noise memory effect, the rms noise simply alternates between $v_{n,0}^{rms}$ and $v_{n,1}^{rms}$

We have a relatively thinner, lower - noise distribution for the 0s, with $\sigma_{n,0} = v_{n,0}^{rms}$, and a thicker, higher - noise distribution for the 1s, with $\sigma_{n,1} = v_{n,1}^{rms}$. $f_v(x|a_0=0)$ $\bigvee_{n=0}^{\text{f}_{v}(x|a_{0}=1)} BER = \int_{Q}^{\infty} Gauss(x)dx \text{ with } Q = \frac{v_{s}^{pp}}{v_{n=0}^{rms} + v_{n=1}^{rms}}$ "1" Mean "0" Mean 17

Signal-to-Noise Ratio

 In optical receiver analysis, the signal-to-noise ratio (SNR) is often defined as the mean-free average signal power divided by the average noise power

Mean - Free Average Signal Power : $v_s^2(t) - \overline{v_S(t)}^2$

For a DC - balanced NRZ signal, this is $\left(\frac{v_s^{pp}}{2}\right)^2$

Noise Power:
$$\frac{\left(\overline{v_{n,0}^2} + \overline{v_{n,1}^2}\right)}{2}$$

$$SNR = \frac{\left(v_s^{pp}\right)^2}{2\left(\overline{v_{n,0}^2} + \overline{v_{n,1}^2}\right)}$$

Signal-to-Noise Ratio Extremes

 Noise is dominated by the amplifier, with equal noise on 0s and 1s

$$SNR = \frac{\left(v_s^{pp}\right)^2}{2\left(\overline{v_{n,0}^2} + \overline{v_{n,1}^2}\right)} = \frac{\left(v_s^{pp}\right)^2}{2\left(2\left(v_n^{rms}\right)^2\right)} = Q^2, \text{ with } v_{n,1}^{rms} = v_{n,0}^{rms}$$

For a BER = $10^{-12} (Q = 7.0) \Rightarrow SNR = (7.0)^2 = 49.0 = 16.9 dB$

2. Noise is dominated by the detector/optical amplifier, with un-equal noise on 0s and 1s

$$SNR = \frac{\left(v_s^{pp}\right)^2}{2\left(v_{n,0}^2 + v_{n,1}^2\right)} \approx \frac{\left(v_s^{pp}\right)^2}{2\left(v_{n,1}^2\right)} = \frac{Q^2}{2}, \text{ with } v_{n,1}^{rms} >> v_{n,0}^{rms}$$

For a BER = $10^{-12} (Q = 7.0) \Rightarrow SNR = \frac{(7.0)^2}{2} = 24.5 = 13.9 dB$

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Electrical Receiver Sensitivity

• Sensitivity is the minimum input-referred signal necessary to achieve the desired bit-error rate Electrical Receiver Sensitivity, *i*^{pp}_{sens}, is the minimum peak - to - peak signal current at the receiver input to achieve the desired BER.

An input current swing produces an output voltage swing

$$v_S^{pp} = H_0 i_S^{pp} = 2Q v_n^{rms}$$

where H_0 is the midband value of H(f).

 $i_{sens}^{pp} = \frac{2Qv_n^{rms}}{H_0}$ for the Q necessary for the BER

Input - Referred RMS Noise : $i_n^{rms} = \frac{v_n^{rms}}{H_0}$ $i_{sens}^{pp} = 2Qi_n^{rms}$

Electrical Receiver Sensitivity

If $i_n^{rms} = 380$ nA, what is the electrical receiver sensitivity for a BER = 10^{-12} ? $i_{sens}^{pp} = 2Qi_n^{rms} = 2(7.035)(380$ nA) = $5.35 \mu A$

 What if I have unequal noise distributions on 0s and 1s?

$$v_{S}^{pp} = Q(v_{n,0}^{rms} + v_{n,1}^{rms}) \implies i_{sens}^{pp} = Q(i_{n,0}^{rms} + i_{n,1}^{rms})$$

where $i_{n,0}^{rms} = \frac{v_{n,0}^{rms}}{H_0}$ and $i_{n,1}^{rms} = \frac{v_{n,1}^{rms}}{H_0}$

 Note that so far we have assumed an ideal slicer for the decision circuit. A real slicer's minimum signal input and offset will degrade this sensitivity. More about this later.

Optical Receiver Sensitivity

Optical Receiver Sensitivity, *P_{sens}*, is the minimum optical power, averaged over time, required to achieve the desired BER.
Assuming a DC - balanced signal with a high extinction ratio (more

about this later), the average signal current is

$$\overline{i_S} = \frac{i_S^{pp}}{2} \implies \overline{P_S} = \frac{i_S^{pp}}{2R}$$

$$\overline{P_{sens}} = \frac{i_{sens}^{pp}}{2R} = \frac{2Qi_n^{rms}}{2R} = \frac{Qi_n^{rms}}{R}$$
or if we have different noise distributions
$$\overline{P_{sens}} = \frac{Q(i_{n,0}^{rms} + i_{n,1}^{rms})}{2R}$$

Optical Receiver Sensitivity

If
$$i_n^{rms} = 380$$
nA and $R = 0.8A/W$, what is the optical receiver
sensitivity for a BER = 10^{-12} ?
 $\overline{P_{sens}} = \frac{Qi_n^{rms}}{R} = \frac{(7.035)(380$ nA)}{0.8A/W} = 3.34 \mu W = -24.8 dBm

 Note that the optical receiver sensitivity is based on the average signal value, whereas the electrical sensitivity is based on the peak-to-peak signal value

Optical RX Sensitivity w/ Ideal Photodetector

- In order to compare the relative performance of different electrical receivers, it is useful to normalize out the photodetector performance
- The sensitivity excluding the PD's quantum efficiency η is

$$\eta \overline{P_{sens}} = \frac{hc}{\lambda q} \cdot Q \cdot i_n^{rms}$$

or if we have different noise distributions

$$\eta \overline{P_{sens}} = \frac{hc}{\lambda q} \cdot \frac{Q\left(i_{n,0}^{rms} + i_{n,1}^{rms}\right)}{2}$$

Optical RX Sensitivity w/ Ideal Photodetector

Previous example using PD with R=0.8A/W

If $i_n^{rms} = 380$ nA and R = 0.8A/W, what is the optical receiver

sensitivity for a BER = 10^{-12} ?

 $\overline{P_{sens}} = \frac{Qi_n^{rms}}{R} = \frac{(7.035)(380nA)}{0.8A/W} = 3.34\,\mu W = -24.8dBm$

 Now, normalizing (multiplying) by the quantum efficiency or dividing by an ideal responsivity at a given wavelength

If $i_n^{rms} = 380$ nA and we are operating at a wavelenth of 1550nm, what is the optical receiver sensitivity for a BER = 10^{-12} with an ideal photodetector? $\eta \overline{P_{sens}} = \frac{hc}{\lambda q} \cdot Q i_n^{rms} = \frac{(7.035)(380$ nA)}{(8 \times 10^5 (A/W \cdot m))(1550nm)} = $\frac{2.67 \mu W}{1.24} = 2.16 \mu W = -26.7 dBm$

Low and High Power Limits

- The sensitivity limit is the weakest signal for which we can achieve the desired BER
- However, if the signal is too large, we can also have bad effects that degrade BER
 - Pulse-width distortion
 - Data-dependent jitter
- The overload limit is the maximum signal for which we can achieve the desired BER

Dynamic Range

- Input overload current i_{ovl}^{pp}
 - This is the maximum peak-to-peak signal current for which a desired BER can be achieved
- Optical overload power \overline{P}_{ovl}
 - This is the maximum time-averaged optical power for which a desired BER can be achieved
- The dynamic range is the ratio of the overload limit and the sensitivity limit

Dynamic Range =
$$\frac{i_{ovl}^{pp}}{i_{sens}^{pp}} = \frac{\overline{P}_{ovl}}{\overline{P}_{sens}}$$

Reference Bit-Error Rates Examples

• Sensitivity must be specified at a desired BER!

Assuming $i_n^{rms} = 380$ nA and R = 0.8A/W for the following

• SONET OC-48 (2.5Gb/s) requires BER $\leq 10^{-10}$ (*Q*=6.361)

$$\overline{P_{sens}} = \frac{Qi_n^{rms}}{R} = \frac{(6.361)(380nA)}{0.8A/W} = 3.02\,\mu W = -25.2dBm$$

SONET OC-192 (10Gb/s) requires BER≤10⁻¹² (Q=7.035)

$$\overline{P_{sens}} = \frac{Qi_n^{rms}}{R} = \frac{(7.035)(380nA)}{0.8A/W} = 3.34\,\mu W = -24.8dBm$$

• What about BER $\leq 10^{-15}$? (Q = 7.942)

$$\overline{P_{sens}} = \frac{Qi_n^{rms}}{R} = \frac{(7.942)(380nA)}{0.8A/W} = 3.77\,\mu W = -24.2dBm$$

Sensitivity Analysis w/ Amplifier Noise Only

 $i_n^{rms} = i_{n,amp}^{rms}$

 $Qi_{n,amp}$

Here we are assuming that amplifier noise dominates

• With a p-i-n photodetector
$$\overline{P}_{sens,PIN} =$$

• With an APD

$$\overline{P}_{sens,APD} = \frac{1}{M} \cdot \frac{Qi_{n,amp}^{rms}}{R}$$

With an optically preamplified p-i-n detector

$$\overline{P}_{sens,APD} = \frac{1}{G} \cdot \frac{Qi_{n,amp}^{rms}}{R}$$

Assuming R=0.8A/W, M=10, G=100, and BER= 10^{-12}

Parameter	Symbol	2.5 Gb/s	10 Gb/s
Input rms noise due to amplifier	i ^{rms} n.amp	380 nA	$1.4\mu\mathrm{A}$
Input signal swing for $BER = 10^{-12}$	$i_{n,\text{amp}}^{rms}$ i_{sens}^{pp}	$5.3 \mu \text{A}$	$19.7 \mu \text{A}$
Sensitivity of p-i-n receiver	$\overline{P}_{\text{sens},PIN}$	-24.8 dBm	-19.1 dBm
Sensitivity of APD receiver	$\overline{P}_{\text{sens},APD}$	-34.8 dBm	-29.1 dBm
Sensitivity of OA + p-i-n receiver	$\overline{P}_{\text{sens},OA}$	-44.8 dBm	-39.1 dBm

If we neglect detector noise, the optically preamplified p-i-n detector only requires an average optical power of -39.1dBm or 123nW!

Now Let's Include the Detector Noise

 Starting with a p-i-n detector RX, because of the signaldependent detector noise we need to consider 2 different noise values

$$\overline{i_{n,0}^{2}} = \overline{i_{n,PIN,0}^{2}} + \overline{i_{n,amp}^{2}}$$
 and $\overline{i_{n,1}^{2}} = \overline{i_{n,PIN,1}^{2}} + \overline{i_{n,amp}^{2}}$

• Here we assume that the detector noise is very small for a 0 bit and that we have a high extinction ratio, i.e. $P_1 = 2\overline{P}_{sens}$

$$i_{n,0}^{rms} = i_{n,amp}^{rms}$$
 and $i_{n,1}^{rms} = \sqrt{4qR\overline{P}_{sens}BW_n} + (i_{n,amp}^{rms})^2$
Utilizing $\overline{P}_{sens} = \frac{Q(i_{n,0}^{rms} + i_{n,1}^{rms})}{2R}$ we can derive that

$$\overline{P}_{sens,PIN} = \frac{Qi_{n,amp}^{rms}}{R} + \frac{Q^2qBW_n}{R}$$
Amplifier Noise Shot Noise

Now Let's Include the Detector Noise

• With an APD receiver, we assume the following 2 different noise values

$$i_{n,0}^{rms} = i_{n,amp}^{rms} \text{ and } i_{n,1}^{rms} = \sqrt{F \cdot M^2 4qR\overline{P}_{sens}BW_n} + \left(i_{n,amp}^{rms}\right)^2$$
$$\overline{P}_{sens,APD} = \frac{1}{M} \cdot \frac{Qi_{n,amp}^{rms}}{R} + F \cdot \frac{Q^2qBW_n}{R}$$

 With an optically preamplified p-i-n detector receiver, we assume the following 2 different noise values

$$i_{n,0}^{rms} = i_{n,amp}^{rms} \text{ and } i_{n,1}^{rms} = \sqrt{\eta F \cdot G^2 4qR\overline{P}_{sens}BW_n} + (i_{n,amp}^{rms})^2$$
$$\overline{P}_{sens,OA} = \frac{1}{G} \cdot \frac{Qi_{n,amp}^{rms}}{R} + \eta F \cdot \frac{Q^2 qBW_n}{R}$$

 The amplifier noise is suppressed with increasing detector gain, while the shot noise increases with the excess noise factor

Sensitivity w/ Amplifier & Detector Noise

Assuming R=0.8A/W, M=10, G=100, and BER=10 ⁻¹² For the APD: F=6 (7.8dB) For the OA+p-i-n: η =0.64, F=3.16 (5dB) w/amp noise only (previous table)						
Parameter	Symbol	2.5 Gb/s	10 Gb/s	10 Gb/s Δ		
Input rms noise due to amplifier Sensitivity of p-i-n receiver Sensitivity of APD receiver Sensitivity of OA + p-i-n receiver	$\frac{i_{n,\text{amp}}^{rms}}{\overline{P}_{\text{sens},PIN}}$ $\frac{\overline{P}_{\text{sens},APD}}{\overline{P}_{\text{sens},OA}}$	380 nA -24.7 dBm -33.5 dBm -41.5 dBm	$1.4 \mu A$ -19.1 dBm -27.8 dBm -35.6 dBm	0dB 1.3dB 3.5dB		

- For the 10Gb/s receivers, relative to amplifier noise only
 - p-i-n RX sensitivity is virtually unchanged \Rightarrow OK to ignore shot noise
 - APD RX sensitivity is degraded by ~1dB ⇒ ignoring shot noise gives you a reasonable estimate. Depending on the link budget margin, may or may not be able to neglect shot noise.
 - OA + p-i-n RX sensitivity degrades by >3dB ⇒ definitely need to include the shot noise

BER Plots

To analyze RX performance, we often plot BER or Q versus the average optical power $Q\iota_{n,amp}$

BER

 10^{-3}

 10^{-6}

10⁻⁹

10⁻¹²

10⁻¹⁵

10⁻²⁰

 $\overline{P}_{sens,PIN} =$

-34 -33 -32 -31 -30

At low power levels, this should track

If we plot versus linear power, the Q function increases linearly and the BER improves \propto erfc(Q)

If we plot versus power in dB, then 10log(Q) function increases linearly

Optical Power \overline{P}_{s} [dBm]

R

Dynamic Range

BER Floor

10 log Q

6

7

8

9

10

Û

BER Plots

- The sensitivity limit occurs at the minimum power level for the desired BER
- The BER will improve if we increase the power further, until the shot noise term begins to dominate and we reach a BER floor
- As power is increased further, signal distortions occur and we reach the overload limit, beyond which the BER tends to degrade rapidly

Optimum APD Gain

- Recall for an APD, that as the avalanche gain M increases, so does the excess noise factor F and they are related by the ionizationcoefficient ratio k_A
- Considering that the sensitivity is inversely proportional to M and proportional to F, there exists an optimum APD gain

$$\overline{P}_{sens,APD} = \frac{1}{M} \cdot \frac{Qi_{n,amp}^{rms}}{R} + F \cdot \frac{Q^2 qBW_n}{R}$$
$$M_{opt} = \sqrt{\frac{i_{m,amp}^{rms}}{Qk_A qBW_n} - \frac{1 - k_A}{k_A}}$$

$$F = k_A M + \left(1 - k_A\right) \left(2 - \frac{1}{M}\right)$$

- The optimum APD gain increases with more amplifier noise, as the APD gain suppresses this noise
- Note for an optically preamplified p-i-n RX, the noise figure goes down with increased gain G, and thus higher G always improves sensitivity

What If We Had a Perfect Noiseless Amplifier?

 If we can somehow reduce our amplifier noise to be very low, we will ultimately be limited by the detector noise

$$\overline{P}_{sens,PIN} = \frac{Q^2 q B W_n}{R} \qquad \overline{P}_{sens,APD} = F \cdot \frac{Q^2 q B W_n}{R} \qquad \overline{P}_{sens,OA} = \eta F \cdot \frac{Q^2 q B W_n}{R}$$
Assuming R=0.8A/W, M=10, G=100, and BER=10⁻¹²
For the APD: F=6 (7.8dB)
For the OA+p-i-n: η =0.64, F=3.16 (5dB)

Table 4.4 Maximum receiver sensitivities at $BER = 10^{-12}$ for various photodetectors. A noiseless amplifier is assumed.

Parameter	Symbol	2.5 Gb/s	10 Gb/s
Sensitivity of p-i-n receiver	$\overline{P}_{\text{sens},PIN}$	-47.3 dBm	-41.3 dBm
Sensitivity of APD receiver	$\overline{P}_{\text{sens},APD}$	-39.5 dBm	-33.5 dBm
Sensitivity of OA + p-i-n receiver	$\overline{P}_{\text{sens.OA}}$	$-44.2\mathrm{dBm}$	-38.2 dBm

- As evident by the equations above, the p-i-n RX performs best
- The APD RX sensitivity is degraded by F (7.8dB)
- The OA+p-i-n RX sensitivity is degraded by hF (-1.9dB+5dB=3.1dB)

What If Everything Is Perfect?

- If we have zero amplifier and detector noise, we can receive data with an infinitesimally amount of optical power, right?
- Uh no, as we still need to at least detect one photon to determine that we have a "1" bit, which is the quantum limit
- Photon count per "1" bit, n, follows a Poisson distribution

$$\operatorname{Poisson}(n) = e^{-M} \cdot \frac{M^n}{n!}$$

where M is the mean of the distribution

 Assuming no power is sent for a "0", these bits will always be correct

Quantum Limit Sensitivity

The error probability for a "1" is Poisson(0)

$$BER = \frac{1}{2} \operatorname{Poisson}(0) = \frac{1}{2} e^{-\lambda}$$

Thus, we need an average number of M photons per "1" bit $M = -\ln(2BER)$

Per bit, we need M/2 photons, which results in an average power of

$$\overline{P}_{sens,quant} = \frac{-\ln(2BER)}{2} \cdot \frac{hc}{\lambda} \cdot B$$

where *B* is the bit rate

Table 4.5 Quantum limit for the sensitivity at $BER = 10^{-12}$

Parameter	Symbol	2.5 Gb/s	10 Gb/s
Quantum limit	$\overline{P}_{\text{sens,quant}}$	-53.6 dBm	-47.6 dBm

- How do the previous example RX sensitivities with amplifier and detector noise compare relative to the 10Gb/s quantum limit sensitivity?
 - p-i-n RX = +28.5dB
 - APD RX = +19.8 dB
 - OA + p-i-n = +12dB

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Total Input-Referred Noise

- In order to calculate the RX sensitivity, we need the inputreferred rms current noise
- The easiest way to obtain this (in simulations) is to integrate the output noise spectrum over the decision element bandwidth and divide by the midband gain H₀

$$\overline{v_n^2} = \int_0^{BW_D} |H(f)|^2 \cdot I_n^2(f) df$$
$$\overline{i_n^2} = \frac{\overline{v_n^2}}{H_0^2} = \frac{1}{H_0^2} \int_0^{BW_D} |H(f)|^2 \cdot I_n^2(f) df$$

where $I_n^2(f) = I_{n,PD}^2(f) + I_{n,amp}^2(f)$ are the input - referred noise power spectrum of the detector and amplifier noise.

$$i_n^{rms} = \sqrt{\overline{i_n^2}} = \sqrt{\frac{\overline{v_n^2}}{H_0^2}} = \frac{v_n^{rms}}{H_0}$$

 Note that since *H(f)* generally rolls-off quickly, the exact
 upper bound is not too critical and could be set to a very high value (infinity)

How to Get the Input RMS Noise from the Input Noise Power Spectrum?

- If we cannot simulate the output noise spectrum, we can get the inputreferred rms noise from the input noise spectrum through integration
- However, we must be very careful regarding the bounds of the integral due to the rapidly rising f² component

$$\overline{i_n^2} = \int_0^\infty I_n^2(f) df$$

Noise Bandwidths

The input - noise spectrum can be expressed as

$$I_{n}^{2}(f) = \alpha_{0} + \alpha_{2}f^{2}$$

$$\overline{i_{n}^{2}} = \frac{1}{H_{0}^{2}} \int_{0}^{BW_{D}} |H(f)|^{2} (\alpha_{0} + \alpha_{2}f^{2}) df$$

$$= \frac{\alpha_{0}}{H_{0}^{2}} \int_{0}^{BW_{D}} |H(f)|^{2} df + \frac{\alpha_{2}}{H_{0}^{2}} \int_{0}^{BW_{D}} |H(f)|^{2} f^{2} df$$

$$= \alpha_{0}BW_{n} + \frac{\alpha_{2}}{3}BW_{n2}^{3}$$
where
$$BW_{n} = \frac{1}{H_{0}^{2}} \int_{0}^{BW_{D}} |H(f)|^{2} df \text{ and } BW_{n2}^{3} = \frac{1}{H_{0}^{2}} \int_{0}^{BW_{D}} |H(f)|^{2} f^{2} df$$

 BW_n is identical to the noise bandwidth of the receiver's frequency response. BW_{n2} is the second - order noise bandwidth for the f^2 noise component.

Noise Bandwidths

$$\overline{i_n^2} = \alpha_0 B W_n + \frac{\alpha_2}{3} B W_{n2}^3$$

where

$$BW_n = \frac{1}{H_0^2} \int_0^{BW_D} |H(f)|^2 df \text{ and } BW_{n2}^3 = \frac{1}{H_0^2} \int_0^{BW_D} |H(f)|^2 f^2 df$$

- The bandwidths BW_n and BW_{n2} depend only on the receiver's frequency response and the decision circuit's bandwidth BW_D
- Note that BW_D is not too critical if it is larger than the receiver bandwidth
- Assuming $BW_D = \infty$, BW_n and BW_{n2} are calculated for typical receiver frequency responses

Table 4.6	Numerical	values for	BW _n	and BW_{n2} .
-----------	-----------	------------	-----------------	-----------------

H(f)	BW _n	BW_{n2}	
1 st-order low pass	1.57 · <i>BW</i> _{3dB}	∞	I_n^2 BW $\alpha_2 f^2$
2nd-order low pass, crit. damped ($Q = 0.500$)	$1.22 \cdot BW_{3dB}$	$2.07 \cdot BW_{3dB}$	BW3dB
2nd-order low pass, Bessel ($Q = 0.577$)	1.15 · <i>BW</i> _{3dB}	1.78 · BW _{3dB}	
2nd-order low pass, Butterworth ($Q = 0.707$)	$1.11 \cdot BW_{3dB}$	$1.49 \cdot BW_{3dB}$	α_0
Brick wall low pass	$1.00 \cdot BW_{3dB}$	$1.00 \cdot BW_{3dB}$	
Rectangular (impulse response) filter	$0.500 \cdot B$	∞	$BW_n BW_{n2} \rightarrow f$
NRZ to full raised-cosine filter	$0.564 \cdot B$	0.639 · B	
			A A

What if I Just Integrate Up To the 3dB Bandwidth?

What we should do is use the table data and calculate

$$\overline{i_n^2} = \alpha_0 B W_n + \frac{\alpha_2}{3} B W_{n2}^3$$

 But, what if we simply integrate up to the 3dB bandwidth, which is equivalent to using

$$\overline{i_n^2} = \alpha_0 B W_{3dB} + \frac{\alpha_2}{3} B W_{3dB}^3$$

- Referring to the table, this is only correct for a Brick Wall Low Pass response and can lead to significant error
- For example, with a 2nd-order Butterworth response, this underestimates the white noise component by 1.11x and the *f*² component by 3.33x

Personick Integrals

 Optical receiver literature often uses constants from Personick Integrals

$$\overline{i_n^2} = \alpha_0 B W_n + \frac{\alpha_2}{3} B W_{n2}^3 = \alpha_0 \cdot I_2 B + \alpha_2 \cdot I_3 B^3$$

where *B* is the bit rate

$$I_2 = \frac{BW_n}{B}$$
 and $I_3 = \frac{BW_{n2}^3}{3B^3}$

• The Personick Integrals I_2 and I_3 are normalized noise bandwidths

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Power Penalty

- So far we have primarily been considering random noise sources and assumed that we have had an ideal transmitter, receiver decision circuit, etc...
- The actual receiver sensitivity will be degraded by impairments throughout the optical link and is quantified by power penalties
- The power penalty *PP* is the increase in average transmit power necessary to maintain the desired BER, relative to an ideal case where we don't have the impairment
- This is quantified in dBs, 10log(*PP*)

Typical Impairments

- Transmitter
 - Extinction ratio
 - Relative intensity noise (RIN)
 - Output power variations
- Fiber
 - Dispersion
 - Nonlinear effects
- Detector
 - Dark current
- TIA
 - Distortions (ISI)
 - Offset

MA

- Distortions (ISI)
- Offset
- Noise figure
- Low-frequency cutoff
- CDR
 - Decision-threshold offset
 - Decision-threshold ambiguity
 - Sampling-time offset
 - Sampling-time jitter

Decision-Threshold Offset PP

• So far we have assumed that the decision threshold is in the ideal place

Assuming equal noise distributions and DC - balanced data

$$V_{DTH} = \frac{v_S^{pp}}{2}$$

• What if there is an offset?

$$V'_{DTH} = V_{DTH} + \delta v_S^{pp}$$

Depending on the polarity on the offset, we must increase the distance of one of the levels (high level) from the offset threshold. This implies a

new peak - to - peak signal level v'_S^{pp} with

$$\frac{v_S'^{pp}}{2} = \frac{v_S^{pp}}{2} + \delta v_S^{pp}$$
$$v_S'^{pp} = v_S^{pp} + 2\delta v_S^{pp} = v_S^{pp} (1 + 2\delta)$$

Decision-Threshold Offset PP

Thus the signal swing must be increased by

$$\frac{v_S'^{pp}}{v_S^{pp}} = 1 + 2\delta$$

and the power penalty is

$$PP = 1 + 2\delta$$

 Note that we are neglecting the improved BER on one of the levels (low level), but formally considering this has only a small impact on the resulting PP

Example 1: $v_n^{rms} = 1mV$ and the decision - threshold offset is 1mV

For a BER =
$$10^{-12} \Rightarrow v_S^{PP} = 14.07 mV$$

$$\delta = \frac{1mV}{14.07mV} = 0.071$$

 $PP = 1 + 2\delta = 1.142 = 0.577 dB$

Decision-Threshold Offset PP

1

Example 2: What should the offset be for only a 0.1dB power penalty?

$$\delta = \frac{PP-1}{2}$$
$$\delta = \frac{10^{\frac{0.1}{10}} - 1}{2} = 0.012$$

Thus the offset should be

$$\delta v_S^{pp} = 0.012 (14.07 mV) = 164 \mu V$$

 Good receiver offset control is necessary to minimize this power penalty! Dark current by itself isn't a major issue, as we generally assume that the receiver can somehow subtract it out

 However, a potential problem is the shot noise that it induces, which can be quantified as a power penalty

$$\overline{i_{n}^{2}}_{,DK} = 2qI_{DK}BW_{n}$$

Dark Current PP

- To keep things simple, let's assume that the receiver noise is dominated by the amplifier noise. Note, this will slightly overestimate the dark current PP.
- The dark current noise increases the total noise by

$$\frac{\overline{i_{n}^{2}}_{,amp} + \overline{i_{n}^{2}}_{,DK}}{\overline{i_{n}^{2}}_{,amp}} = 1 + \frac{2qI_{DK}BW_{n}}{\overline{i_{n}^{2}}_{,amp}}$$

As the sensitivity is proportional to i_n^{rms}

$$PP = \sqrt{1 + \frac{2qI_{DK}BW_n}{\overline{i_{n,amp}^2}}}$$

Dark Current PP

Example 1: Assume a 2.5Gb/s receiver with $i_{n,amp}^{rms} = 380nA$, $BW_n = 1.9GHz$, and $I_{DK} = 5nA$. $PP = \sqrt{1 + \frac{2(1.6 \times 10^{-19} C)(5nA)(1.9GHz)}{(380nA)^2}} = 1.0000105 = 4.6 \times 10^{-5} dB$

Example 2 : What if I have an APD RX with F = 6 and M = 10?

$$PP = \sqrt{1 + \frac{F \cdot M^2 2qI_{DK}BW_n}{i_{n,amp}^2}} = \sqrt{1 + \frac{6(10)^2(2)(1.6 \times 10^{-19} C)(5nA)(1.9GHz)}{(380nA)^2}}$$
$$= 1.0063 = 0.027 dB$$

Dark Current PP

Example 3: What must the dark current be for a 0.05dB power penalty?

$$I_{DK} < \left(PP^2 - 1\right) \frac{\overline{i_{n,amp}^2}}{2qBW_n}$$

Using the 2.5Gb/s receiver numbers

$$I_{DK} < \left(\left(10^{\frac{0.05}{10}} \right)^2 - 1 \right) \frac{(380nA)^2}{2(1.6 \times 10^{-19} C)(1.9GHz)} = 5.53 \,\mu A$$

• As long as the effective dark current is in the low μA or less, the power penalty is generally negligible

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Noise vs ISI Bandwidth Trade-Offs

- If we design our receiver to have a very wide bandwidth, then we will receive the signal with minimal distortion
- However, noise will grow as bandwidth increases
- From a basic sensitivity perspective, decreasing bandwidth results in ever-improving sensitivity
- However, this neglects the filtering of the high-frequency pulses (bits) which causes intersymbol interference (ISI)
- Thus, there is an optimum bandwidth from a sensitivity perspective to balance noise and ISI
- This optimum bandwidth is generally about (2/3)*B*

Eye Diagrams

Eye Diagrams vs Data Rate

Eye Diagrams vs Channel

Inter-Symbol Interference (ISI)

- Previous bits residual state can distort the current bit, resulting in inter-symbol interference (ISI)
- ISI is caused by
 - Reflections, Channel resonances, Channel loss (dispersion)

ISI Impact

- At channel input (TX output), eye diagram is wide open
- As data pulses propagate through channel, they experience dispersion and have significant ISI
 - Result is a closed eye at channel output (RX input)

[[]Meghelli (IBM) ISSCC 2006]

Eye Diagrams w/ a 2nd-Order Butterworth RX

$$BW_{3dB} = \frac{4}{3}B$$

$$BW_{adB} = \frac{2}{2}B$$

$$BW_{3dB} = \frac{1}{3}B$$

- No ISI present
- Assume that the noise (BER=10⁻¹²) is exactly equal to the eye height, and we have no margin
- Still minimal (no) ISI present
- Assuming white noise dominates, we have a sqrt(2) reduction in rms noise
- We could reduce our optical power by the same sqrt(2) factor and obtain the same BER!
- Severe ISI (~1/2 eye height)
- While the rms noise is reduced by 2x, the overall vertical margin is the same as the 4/3*B* RX
- Note that if we are off in time (horizontally), we won't achieve our desired BER!

ISI Power Penalty

 In order to get the same effective (vertical) eye opening, we have to increase our optical signal power to overcome the ISI

 Note, this power penalty is a bit conservative, as the worstcase data pattern, which produces the eye closure can occur at a low probability. This is a peak-distortion analysis power penalty.

Optimum Receiver Bandwidth

$$BW_{3dB} = \frac{4}{3}B$$

$$\overline{P}_{sens0} = 1.5 \text{ dB}$$

$$\overline{P}_{sens0} = 3.0 \text{ dB}$$

$$1/3 B 2/3 B 4/3 B BW_{3dB}$$

$$BW_{3dB} = \frac{2}{3}B$$

 $BW_{3dB} = \frac{1}{3}B$

- Assuming white noise dominates, the sensitivity improves by a sqrt factor as bandwidth decreases
- However, around (2/3)*B* the ISI power penalty increases rapidly
- Overall, the optimum bandwidth is near 60%-70% of the bit rate

Will a B/3 Bandwidth RX Work?

- If I am willing to live with a 1.5dB degradation in sensitivity, can I design my receiver with B/3 bandwidth?
 - 13.3GHz for a 40Gb/s RX!

- Maybe, there is much more sensitivity to timing noise (jitter)
- Note that while the (4/3)B receiver has theoretically the same sensitivity, it maintains the same effective eye height over a much wider time window

Bandwidth Allocation

- Note that the equivalent bandwidth of the entire receiver front-end must be close to (2/3)B
- Thus, each individual block must have a larger bandwidth

$$\frac{1}{BW^2} \approx \frac{1}{BW_1^2} + \frac{1}{BW_2^2} + \dots$$

Bandwidth Allocation Strategies

- Wide bandwidth circuits and a precise low-pass filter
 - Often a Bessel-Thompson filter is used to limit the noise
 - Applicable for low-speed receivers (<2.5Gb/s)
- TIA sets the receiver bandwidth
 - Allows for a higher TIA gain and better noise performance
 - This means that the subsequent MA stages need to have a much wider bandwidth
 - Higher bandwidth than a fixed filter, but also less controlled
- All blocks have similar bandwidths
 - If we are designing at the highest speeds, then we can't afford to overdesign any of the blocks
 - Applicable for higher-speed receivers (>10Gb/s)

Optimum Receiver Response

- While we have shown that a bandwidth of ~(2/3)B is optimum from a receiver-induced ISI and noise perspective, is this truly the optimal response when we consider other factors?
- Important factors
 - Received signal ISI
 - Input-referred noise spectrum
 - RX clock jitter
 - Bit estimation technique

Low ISI Input Optimal RX Response

- A matched filter receiver maximizes the sampled signal-to-noise ratio if the input ISI is minimal
- This has an impulse response h(t) which is proportional to a time-reversed copy of the received pulses x(t)
- For NRZ signals, this is a simple rectangular filter with an impulse response being a rectangular pulse with length of one bit period

Rectangular Filter

- If we convolve the NRZ input with the rectangular filter impulse response, we get a triangular output waveform
 - Not sampling exactly in the center of the eye will result in a power penalty
- In the frequency domain, the rectangular filter has

Noise Bandwidth : $BW_n = B/2$

3 - dB Bandwidth : $BW_{3dB} = 0.443B$

Integrating Receiver Block Diagram

Demultiplexing Receiver

- Demultiplexing with multiple clock phases allows higher data rate
 - Data Rate = #Clock Phases x Clock Frequency
 - Gives sense-amp time to resolve data
 - Allows continuous data resolution

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

What If We Have Significant ISI?

- If we have significant ISI in our system, then an integrating receiver is not optimal
- It is preferred to have a receiver with bandwidth ~(2/3)B to filter the noise, and then have circuitry which cancels the ISI
- A Viterbi decoder, which performs a maximumlikelihood sequence detection, is an optimum realization of an ISI canceller. However, this is generally too complex (power/area).
- Instead, an equalizer is often used to cancel ISI

Receiver with Equalization

- An FIR filter, also called a feed-forward equalizer (FFE), is used to (primarily) cancel pre-cursor ISI
- A decision feedback equalizer (DFE) cancels postcursor ISI

Pre- and Post-Cursor ISI

- With post-cursor ISI, the bits before our current bit induces some error in the detected level
- With pre-cursor ISI, the bits after our current bit induce the error
- ISI can span over multiple bit periods

RX FIR Equalization

- Delay analog input signal and multiply by equalization coefficients
- Pros
 - With sufficient dynamic range, can amplify high frequency content (rather than attenuate low frequencies)
 - Can cancel ISI in pre-cursor and beyond filter span
 - Filter tap coefficients can be adaptively tuned without any back-channel
- Cons
 - Amplifies noise/crosstalk
 - Implementation of analog delays
 - Tap precision

RX Equalization Noise Enhancement

- Linear RX equalizers don't discriminate between signal, noise, and cross-talk
 - While signal-to-distortion (ISI) ratio is improved, SNR remains unchanged

Analog RX FIR Equalization Example

• 5-tap equalizer with tap spacing of $T_b/2$

D. Hernandez-Garduno and J. Silva-Martinez, "A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells," ISSCC, 2007.

RX Decision Feedback Equalization (DFE)

- DFE is a non-linear equalizer
- Slicer makes a symbol decision, i.e. quantizes input
- ISI is then directly subtracted from the incoming signal via a feedback FIR filter

RX Decision Feedback Equalization (DFE)

Pros

- Can boost high frequency content without noise and crosstalk amplification
- Filter tap coefficients can be • adaptively tuned without any back-channel

FFE region of influence

Cons

- Cannot cancel pre-cursor ISI
- Chance for error propagation •
 - Low in practical links (BER=10⁻¹²)
- Critical feedback timing path
- Timing of ISI subtraction complicates CDR phase detection

DFE Example

- If only DFE equalization, DFE tap coefficients should equal the unequalized channel pulse response values [a₁ a₂ ... a_n]
- With other equalization, DFE tap coefficients should equal the pre-DFE pulse response values
 - DFE provides flexibility in the optimization of other equalizer circuits
 - i.e., you can optimize a TX equalizer without caring about the ISI terms that the DFE will take care of

 $[w_1 w_2] = [a_1 a_2]$

6Gb/s Eye - Refined BP Channel w/ RX DFE Eq

300

250

Direct Feedback DFE Example (TI)

- 6.25Gb/s 4-tap DFE
 - 1/2 rate architecture
 - Adaptive tap algorithm
 - Closes timing on 1st tap in ¹/₂ UI for convergence of both adaptive equalization tap values and CDR

R. Payne *et al,* "A 6.25-Gb/s Binary Transceiver in 0.13-um CMOS for Serial Data Transmission Across High Loss Legacy Backplane Channels," *JSSC*, vol. 40, no. 12, Dec. 2005, pp. 2646-2657

Setting Equalizer Values

- Simplest approach to setting equalizer values (tap weights, poles, zeros) is to fix them for a specific system
 - Choose optimal values based on lab measurements
 - Sensitive to manufacturing and environment variations
- An adaptive tuning approach allows the optimization of the equalizers for varying channels, environmental conditions, and data rates
- Important issues with adaptive equalization
 - Extracting equalization correction (error) signals
 - Adaptation algorithm and hardware overhead
 - Communicating the correction information to the equalizer circuit

FIR Adaptation Error Extraction

- In order to adapting the FIR filter, we need to measure the response at the receiver input
- Equalizer adaptation (error) information is often obtained by comparing the receiver input versus the desired symbol levels, dLev
- This necessitates additional samplers at the receiver with programmable threshold levels

[Stojanovic JSSC 2005]

FIR Adaptation Algorithm

 The sign-sign LMS algorithm is often used to adapt equalization taps due to implementation simplicity

 $w_{n+1}^k = w_n^k + \Delta_w \operatorname{sign}(d_{n-k}) \operatorname{sign}(e_n)$

w =tap coefficients, n = time instant, k = tap index, $d_n =$ received data,

 e_n = error with respect to desired data level, dLev

 As the desired data level is a function of the transmitter swing and channel loss, the desired data level is not necessarily known and should also be adapted

$$dLev_{n+1} = dLev_n - \Delta_{dLev} \operatorname{sign}(e_n)$$

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Eye Diagram and Spec Mask

- Links must have margin in both the voltage AND timing domain for proper operation
- For independent design (interoperability) of TX and RX, a spec eye mask is used

Jitter Histogram

- Used to extract the jitter PDF
- Consists of both deterministic and random components
 - Need to decompose these components to accurately estimate jitter at a given BER

Jitter Categories

Total Jitter (TJ)

 The total jitter PDF is produced by convolving the random and deterministic jitter PDFs

 $PDF_{JT}(t) = PDF_{RJ}(t) * PDF_{DJ}(t)$ where $PDF_{DJ}(t) = PDF_{SJ}(t) * PDF_{DCD}(t) * PDF_{ISI}(t) * PDF_{BUJ}(t)$

Jitter and Bit Error Rate

- Jitter consists of both deterministic and random components
- Total jitter must be quoted at a given BER
 - At BER=10⁻¹², jitter ~1675ps and eye width margin ~200ps
 - System can potentially achieve BER=10⁻¹⁸ before being jitter limited

System Jitter Budget

- For a system to achieve a minimum BER performance $UI \ge DJ_{\delta\delta}(sys) + 2Q\sigma_{RMS}(sys)$
- The convolution of the individual deterministic jitter components is approximated by linear addition of the terms

$$DJ_{\delta\delta}(sys) = \sum_{i} DJ_{\delta\delta}(i)$$

• The convolution of the individual random jitter components results in a root-sum-of-squares system rms value

$$\sigma_{RMS}(sys) = \sqrt{\sum_{i} \sigma_{RMS}^2(i)}$$

Jitter Budget Example – PCI Express System

Jitter Frequency Content

System Jitter Filtering

• Jitter sources get shaped/filtered differently depending where they are in the clocking system

CDR (Embedded Clocking) System

 Reference clock jitter gets low-pass filtered by the TX PLL and high-pass filtered by the RX PLL/CDR when we consider the phase error between the sample clock and incoming data

Filtered RMS Jitter = $\sqrt{2\int_{f_1}^{f_2} |F\{TIE\}|^2 \cdot |H(f)|^2} df$

Jitter Budget Example – PCI Express System

$$DJ_{\delta\delta}(sys) = DJ_{\delta\delta}(TX) + DJ_{\delta\delta}(channel) + DJ_{\delta\delta}(RX) + DJ_{\delta\delta}(clock)$$

$$\sigma_{RMS}(sys) = \sqrt{\sigma_{RMS}^2(TX) + \sigma_{RMS}^2(channel) + \sigma_{RMS}^2(RX) + \sigma_{RMS}^2(clock)}$$

Component	Term	$\sigma_{\rm RJ}~({\rm ps})$	$DJ_{\delta\delta}$ (ps)	TJ (ps)
Reference clock	TJ _{clock}	4.7	41.9	108
Transmitter	TJ $_{\rm TX}$	2.8	60.6	100
Channel	TJ _{channel}	0	90	90
Receiver	TJ _{Rx}	2.8	120.6	-147> 160
Linear TJ				458
RSS TJ	6.15 * 14.07	= 86.5	313.1	399.6

TABLE 13-2.PCI Express 2.5-Gb/s Jitter Budget at 10⁻¹² BER

Q	BER	Q	BER
0.0	1/2	5.998	10 ⁻⁹
3.090	10^{-3}	6.361	10^{-10}
3.719	10^{-4}	6.706	10-11
4.265	10^{-5}	7.035	10-12
4.753	10^{-6}	7.349	10^{-13}
5.199	10^{-7}	7.651	10^{-14}
5.612	10^{-8}	7.942	10^{-15}

Agenda

- Receiver Model
- Bit-Error Rate
- Sensitivity
- Personick Integrals
- Power Penalties
- Bandwidth
- Equalization
- Jitter
- Forward Error Correction

Forward Error Correction

- From previous analysis, we found that we need a certain SNR for a given BER
 - w/ NRZ it is Q² or ~17dB for BER=10⁻¹² (equal noise statistics)
- Can we do better?
- Yes, if we add some redundancy in the bits that we transmit and use this to correct errors at the receiver
- This is called forward error correction (FEC)
- Common codes are Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH)

Shannon's Channel Capacity Theorem

• If sufficient coding is employed, error-free transmission over a channel with additive white Gaussian noise is possible for

 $B \le BW \log_2(1 + SNR)$

Here *B* is the information bit rate, which is lower than the channel bit rate with coding. If we assume ideal Nyquist signaling, we need a minimum channel bandwidth

$$BW = \frac{B}{2r}$$

where r is the code rate and $\frac{B}{r}$ is the channel bit rate. Thus, with coding

$$B \le \frac{B}{2r} \log_2(1 + SNR)$$
$$SNR = 2^{2r} - 1$$

For example, if we have r = 0.8 (which is a 25% data rate overhead) then $SNR = 2^{2(0.8)} - 1 = 2.03 = 3.08 dB \implies$ Much smaller than 17dB!!

Reed-Solomon Code Example

- Reed-Solomon codes are often used in the Synchronous Optical Networking (SONET) standard
- An important parameter in any error-correcting code is it's overhead or redundancy, with a RS(255,239) code having n=255 symbols/codeword, but only k=239 information symbols (although 1 is used for framing and isn't considered in the data payload)
 - The overhead is 255/(239-1)=1.071 or 7.1%
 - This is equivalent to r=238/255=0.933
- A RS(n,k) code can correct for (n-k)/2 symbol errors in a codeword
 - RS(255,239) can correct for 8 symbols/codeword

Coding Gain

BER vs SNR for R-S 255 Code (t = 8)

Soft-Decision Decoding

- So far we have talked about codes which use binary "harddecisions"
- Superior performance (~2dB) occurs if we use more "analog" information in the form of "soft-decisions"
- Soft decisions are utilized in turbo codes and low-density parity check codes (LDPC)
- In an NRZ system, soft decisions can be realized with 2 additional comparators with some △ offset or with an ADC front-end
- An AGC loop may be necessary to maintain required linearity

Next Time

• Transimpedance Amplifier (TIA) Circuits