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Announcements
• Exam 1 Mar 7

• In class
• One double-sided 8.5x11 notes page allowed
• Bring your calculator
• Covers through Lecture 6

• Homework 3 is due Mar 21

• Reading
• Sackinger Chapter 8
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• Light Amplification by Stimulated Emission of Radiation

• Light Oscillation by Stimulated Emission of Radiation
• Lasers are optical oscillators that emit coherent light through the 

process of stimulated emission
• 3 Elements in all lasers

• Amplifying Medium
• Pumping Process
• Optical Feedback (Cavity)

What is a Laser?
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[Fejer]



Semiconductor Diode Lasers
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• Can be made with simple p-n junction
• Based on transitions between bands

• Direct bandgap materials necessary
• Si isn’t  GaAs, InP

• Pumped electrically with current source
• Efficient device requires confinement of both carriers 

and photons
• Leads to the use of heterostructures

[Verdeyen]



Edge Emitters & VCSELs
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• Edge Emitters
• Advantage

• Historically easier to manufacture
• Disadvantages

• Emit light in an elliptical mode
• Higher testing and packaging costs

• VCSELs – Vertical Cavity Surface 
Emitting Lasers
• Advantages

• Can make 2-D arrays
• Emit light in a circular output mode
• Smaller device  Lower operating 

currents
• Lower testing and packaging costs

• Disadvantage
• Hard to manufacture due to growth of 

high reflective mirrors

[Verdeyen]



VCSEL Light-Current-Voltage (LIV) Curve
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VCSEL Model
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• Capture thermally-dependent electrical and optical dynamics
• Provide dc, small signal, and large-signal simulation capabilities



10Gbps VCSEL Electrical Model

 Models finite Q pad capacitance, mirror series resistance, 
and junction RC

 Frequency response dominated by current dependent RJCJ
 f3dB about 6.5GHz with I≥3mA

RJ Current



Laser Rate Equations

 Two coupled differential equations describe 
the electron density (N) and the photon 
density (Np) interaction
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VCSEL Rate Equation
Frequency Response
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10Gb/s VCSEL Frequency Response

THavg IIBW 

D. Bossert et al, "Production of high-speed oxide confined VCSEL arrays for datacom 
applications," Proceedings of SPIE, 2002.



VCSEL Reliability

 Mean Time to Failure (MTTF) 
is inversely proportional to 
current density squared

 Failure time modeled with 
lognormal distribution

 Higher mechanical stress 
reduces flip-chip bond 
reliability

 Trade-off between reliability 
and bandwidth

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M. Teitelbaum and K. Goossen, "Reliability of Direct Mesa Flip-Chip Bonded VCSEL’s," LEOS, 2004.
C. Helms et al, “Reliability of Oxide VCSELs at Emcore,” Proceedings of SPIE, 2004.



Laser Rate Equations – Transient 
Response

• Laser step response displays relaxation oscillations due to low 
damping

• Turn-on delay (td) occurs if the laser is biased below threshold
– Causes data-dependent jitter
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• VCSELs also have additional unwanted frequency modulation 
called chirp

• The linewidth in this case can be approximated as

Chirp
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• The  parameter relates the change in optical frequency to 
the change in optical power
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• Directly modulated lasers have positive  values, implying 
that for a rising edge the laser will blue-shift (higher 
frequency/shorter ) and red-shift for a falling edge



• VCSELs have occasional spontaneous emissions which add 
amplitude and phase noise to it’s coherent light output

• The resulting intensity fluctuations are known as relative 
intensity noise (RIN)

• At the receiver, this will get converted to an equivalent 
electrical noise component by the photodetector which is 
approximately proportional to the received signal power

Relative Intensity Noise (RIN)
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RIN Power Penalty
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• This SNR is fine for digital NRZ signaling, but may be an 
issue for analog optical links for applications such as cable 
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Temperature-Dependent Performance

• Optical power-current-voltage (L-I-V) response is temperature-
dependent
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23oC

80oC

25Gb/s

• Bandwidth is bias and temperature dependent
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Ib=6mA

Ib=5mA

Ib=4mA

Ts=23oC

Ib=6mA

Ib=5mA

Ib=4mA

Ts=80oC

Measured and Simulated 
25Gb/s Eye Diagrams



VCSEL Performance Issues
• Threshold Current

– Reduced with smaller devices, better electron/photon confinement 
(quantum wells)

• Bias Dependent Frequency Response
– Proportional to Sqrt(Ibias)
– Low damping factor causes relaxation oscillations in step response

• Turn-On Delay
– Leads to data-dependent jitter if biased below threshold

• Chirp
– Direct amplitude modulation also modulates the frequency of the 

optical carrier
– Leads to dispersion in optical fiber
– Reason why most long-haul systems use external modulation



Laser Drivers
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• Current-mode drivers are often used due to the laser’s linear 
L-I relationship

• In addition to the high-speed modulation current IM, laser 
drivers must also supply a bias current IB to ensure a 
minimum frequency response and/or eliminate turn-on delay

Current-Mode VCSEL Driver



Laser Drivers
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• The total laser current depends on whether the high-speed 
modulation current is DC- or AC-coupled

• DC-coupled case

Current-Mode VCSEL Driver
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Termination Strategies
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• The laser interface with the driver determines whether 
double or “back” termination is necessary

• Reflections from bondwires and any laser/transmission-line 
mismatch can degrade high-speed performace

• Driver on-die termination improves this at a power cost



Active Back Termination
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• While not a major issue for relatively low-power VCSELs, the 
lost current with on-die driver termination is a concern for 
high-power (long-haul) lasers

• This motivates the use of active back termination circuitry 
where the termination resistor is connected to an AC voltage 
generated by a replica stage

• Ideally, without reflections, no voltage drop is across RT



25Gb/s VCSEL Link
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• Current-mode output driver
• Bandwidth extension achieved with on-die shunt-peaking 

termination in the output stage and with Cherry-Hooper 
preamplifier stage

[Proesel ISSCC 2012]



Multiplexing FIR Output Driver
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• 4-tap FIR filter 
implemented in driver to 
compensate for VCSEL 
frequency response

S. Palermo and M. Horowitz, “High-Speed Transmitters in 90nm CMOS for High-Density Optical Interconnects," ESSCIRC, 2006.
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Tap Mux & Output Stage

 5:1 multiplexing predriver uses 5 pairs of complementary 
clock phases spaced by a bit time

 Tunable delay predriver compensates for static phase 
offsets and duty cycle error



VCSEL TX Optical Testing
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Wirebonded 
10Gb/s VCSEL



VCSEL 16Gb/s Optical Eye Diagrams
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Iavg=6.2mA, ER=3dB

w/ Equalization

IDC = 4.37mA
IMOD = 3.66mA

IDC = 3.48mA
I= -0.70mA
I0 = 4.36mA
I1 = -0.19mA
I2 = 0.19mA

Equalization increases 
vertical eye opening

45% at 16Gb/s

No Equalization



Equalization Performance
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ER=3dB ER=6dB

14Gb/s
35% less Iavg 

138% increase in MTTF
4Tap Eq

No Eq

• Maximum data rate vs Average current
• Min 80% eye opening & <40% overshoot

• Equalization allows lower average current for a given data rate

• Linear equalizer limited by VCSEL nonlinearity



PAM2 VCSEL Driver w/ 2-Tap Nonlinear FFE
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• VCSEL’s bias-dependent 
frequency response results in 
nonlinear transient pulse 
responses

• A 2-tap non-linear equalizer 
with different equalization taps 
for high and low pulses provides 
performance improvement

[Raj CICC 2015]



PAM4 VCSEL Driver w/ 2.5-Tap Nonlinear FFE

• A 2.5-tap nonlinear equalizer, with the first pre-cursor weight only 
dependent on the MSB, is a good compromise between complexity 
and performance 31
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Serializing VCSEL TX & Output Stage

• VCSEL transmitter serializes 16 bits or 8 PAM-4 symbols

• Output stage is a 5-bit non-uniform current-mode DAC
• MSB and MSB-1 set the main PAM-4 symbol levels
• 3 LSB currents implement the 2.5-tap equalizer with the symbol 

pattern selecting the weighting from the 32X3 LUT
32
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50Gb/s PAM4 Experimental Results

• Core transmitter 
area is 0.2mm2
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No Equalization 2-Tap Linear

2.5-Tap Linear 2.5-Tap Nonlinear

• 2.5 tap nonlinear equalizer improves eye height 
and timing alignment of the 3 PAM4 eyes

[Tyagi PTL 2018]



Next Time
• Mach-Zehnder Modulator (MZM) TX
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