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Announcements

e Exam 1 Mar 7/
 In class
* One double-sided 8.5x11 notes page allowed
 Bring your calculator
 Covers through Lecture 6

e Homework 3 is due Mar 21

e Reading
 Sackinger Chapter 8



What is a Laser?

Amplifying medium [Fejer]
IG’lutput

T T T T T\ Pumping process

® Light Amplification by Stimulated Emission of Radiation

optical feedback (cavity)

o Light Oxscillation by Stimulated Emission of Radiation

e Lasers are optical oscillators that emit coherent light through the
process of stimulated emission
e 3 Elements in all lasers
«  Amplifying Medium
* Pumping Process
« Optical Feedback (Cavity)



Semiconductor Diode Lasers
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e Can be made with simple p-n junction
e Based on transitions between bands
 Direct bandgap materials necessary
« Siisnt = GaAs, InP
e Pumped electrically with current source
o Efficient device requires confinement of both carriers

and photons
« Leads to the use of heterostructures



Edge Emitters & VCSELSs

e Edge Emitters
« Advantage
« Historically easier to manufacture
« Disadvantages

« Emit light in an elliptical mode
» Higher testing and packaging costs

e VCSELs — Vertical Cavity Surface
Emitting Lasers

« Advantages
« Can make 2-D arrays
« Emit light in a circular output mode

» Smaller device = Lower operating
currents

« Lower testing and packaging costs
- Disadvantage

« Hard to manufacture due to growth of
high reflective mirrors




VCSEL Light-Current-Voltage (LIV) Curve
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VCSEL Model
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o Capture thermally-dependent electrical and optical dynamics
e Provide dc, small signal, and large-signal simulation capabilities



10Gbps VCSEL Electrical Model
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= Models finite Q pad capacitance, mirror series resistance,
and junction RC

= Frequency response dominated by current dependent R,C,
= f345 about 6.5GHz with I=3mA



Laser Rate Equations

= Two coupled differential equations describe

the electron density (N) and the photon
density (N,) interaction

I Stimulated
Electron Density Rate Equation : dN = N GNN , —> emission

I =injected current
Sp recombination j _ vty volume
Rate of electron « G = stimulated emission coefficient
density change
y 9 Non radiative & spontaneous

B,, = spontaneous emission coefficient
Injected electrons

emission recombination 7, = photon lifetime
generation
Photons loss due
to optical
GNN " 'B > absorption and

scatterin

Rate of photon 4/ / \ g

density change Stimulated

o Spontaneous emission
emission



VCSEL Rate Equation
Frequency Response
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10Gb/s VCSEL Frequency Response
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D. Bossert et al/, "Production of high-speed oxide confined VCSEL arrays for datacom
applications," Proceedings of SPIE, 2002.



VCSEL Reliability

E1_1
= Mean Time to Failure (MTTF) MTTFE = ie( k j[Tj 373j
is inversely proportional to j2
current density squared o

[ — Wire-Bond - A=671 |
— FCB - A=125

= Failure time modeled with
lognormal distribution

= Higher mechanical stress
reduces flip-chip bond
reliability

= Trade-off between reliability
and bandwidth

" MTTF oo 10
B

Time to 1% Failure (Hours)
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M. Teitelbaum and K. Goossen, "Reliability of Direct Mesa Flip-Chip Bonded VCSEL’s," LEOS, 2004.
C. Helms et a/, “Reliability of Oxide VCSELs at Emcore,” Proceedings of SPIE, 2004.



Laser Rate Equations — Transient
- Response

R [Honeywell ]

« Laser step response displays relaxation oscillations due to low

damping
Turn-on delay (t;) occurs if the laser 1s biased below threshold

— Causes data-dependent jitter

11 _10 }
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Chirp

o VCSELs also have additional unwanted frequency modulation
called chirp

e The linewidth in this case can be approximated as

2

AﬂziB a’ +1
C

where « 1s the chirp parameter or linewidth enhancement factor.

e The o parameter relates the change in optical frequency to
the change in optical power

a d
Aflt)=— —InP._.(t
f() 472_ dtn out()

e Directly modulated lasers have positive a values, implying
that for a rising edge the laser will blue-shift (higher
frequency/shorter 1) and red-shift for a falling edge

14



Relative Intensity Noise (RIN)

e VCSELs have occasional spontaneous emissions which add
amplitude and phase noise to it's coherent light output

e The resulting intensity fluctuations are known as relative
intensity noise (RIN)

o At the receiver, this will get converted to an equivalent
electrical noise component by the photodetector which is
approximately proportional to the received signal power

2
Ly RIN = RIN - IPIN -BW,

Here RIN is a parameter characterizing the laser RIN noise measured
in dB/Hz. The resulting SNR 1s

I3 1
SNR = =PIV
;2 RIN - BW,

n ,RIN

Can't improve SNR by increasing the laser power!
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RIN Power Penalty

Assuming a laser with RIN =—135dB/ Hz and a l0GHz receiver
noise bandwidth, the SNR 1is

2
SNR:éPIN = _1350,3/:12 =3.16x10° =35dB

RN 10 10 (10GHz)
e This SNR is fine for digital NRZ signaling, but may be an

issue for analog optical links for applications such as cable
TV

e RIN noise does introduce an additional power penalty
1
1-Q* - RIN - BW,
For the above example, the BER = 1072 power penalty 1s

PP = : =1.016=0.069dB

1—(7.035)2( 1 j

3.16x10°

PP =

16



Temperature-Dependent Performance
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e Optical power-current-voltage (L-I-V) response is temperature-

dependent

e Bandwidth is bias and temperature dependent
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Measured and Simulated

ilagrams

25Gb/s Eye D
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VCSEL Performance Issues

Threshold Current

— Reduced with smaller devices, better electron/photon confinement
(quantum wells)
Bias Dependent Frequency Response
— Proportional to Sqrt(Ibias)
— Low damping factor causes relaxation oscillations in step response

Turn-On Delay
— Leads to data-dependent jitter if biased below threshold
Chirp
— Direct amplitude modulation also modulates the frequency of the
optical carrier
— Leads to dispersion in optical fiber
— Reason why most long-haul systems use external modulation



Laser Drivers

Current-Mode VCSEL Driver
LvVdd

Laser
Load

RAERA
O
~

e Current-mode drivers are often used due to the laser’s linear
L-I relationship

e In addition to the high-speed modulation current I, laser
drivers must also supply a bias current I; to ensure a
minimum frequency response and/or eliminate turn-on delay

20



Laser Drivers

7 Fout } Current-Mode VCSEL Driver
LvVdd
Laser } —
Load : Dummy
o—i D - ) Load
(v s CK + | I L
O Vo i D+ |> |
[
e | |
- Ll o o
Ilge Iy

e The total laser current depends on whether the high-speed
modulation current is DC- or AC-coupled

e DC-cou pl@d case The bias current is the 0 - level current
Ipo=1p I =1p+iy
e AC-cou pled case The bias current is the average current

1 1
Ir0=1p _7M Iy 1=1p +7M
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Termination Strategies

é R RoE Ehr é R,

Rp =
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e The laser interface with the driver determines whether
double or “back” termination is nhecessary

o Reflections from bondwires and any laser/transmission-line
mismatch can degrade high-speed performace

e Driver on-die termination improves this at a power cost
22



Active Back Termination

é ; Buffers é P
D Laser or ; R
D_'-M'_" Modulator L
R .

L V — -.-=L -
b
v
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e While not a majo_r ISsue tor relétively low-power VCSELs, the
lost current with on-die driver termination is a concern for
high-power (long-haul) lasers

e This motivates the use of active back termination circuitry
where the termination resistor is connected to an AC voltage
generated by a replica stage

e Ideally, without reflections, no voltage drop is across R+
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25Gb/s VCSEL Link

'LDD TX Chip Boundary | [Proesel ISSCC 2012]
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e Current-mode output driver

e Bandwidth extension achieved with on-die shunt-peaking
termination in the output stage and with Cherry-Hooper

preamplifier stage .



Multiplexing FIR Output Driver

Ipc + D.4l.4 + Dolo
+ D4l + D2l

e 4-tap FIR filter
implemented in driver to
compensate for VCSEL
frequency response
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S. Palermo and M. Horowitz, “High-Speed Transmitters in 90nm CMQOS for High-Density Optical Interconnects," ESSCIRC, 2006.
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Tap Mux & Output Stage

( Mux Waveforms

dclk[n] / \

~

qclk[n]

dclk[n]

D[n] -
®[n+1] -D |

thick
oxide
devices

LVdd = 2.8V

—

vdd I_l ll+ vdd

XZ ;Pout

4 ET Predriver )
—
<«lc <| mid
| D
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\ = _J
qclk[n] ﬁ T

—O[n]
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= 5:1 multiplexing predriver uses 5 pairs of complementary

clock phases spaced by a bit time

= Tunable delay predriver compensates for static phase
offsets and duty cycle error

26



VCSEL TX Optical Testing
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10Gb/s VCSEL
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VCSEL 16Gb/s Optical Eye Diagrams

I =6.2mA, ER=3dB

avg

No Equalization —— [ oo
Ioc = 4.37mA e e o 1.4mw
IMOD = 3.66mA )

w/ Equalization B e s O
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Equalization Performance

ER=3dB ER=6dB
[ [
& 10} & 10t
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e Maximum data rate vs Average current
« Min 80% eye opening & <40% overshoot

e Equalization allows lower average current for a given data rate

e Linear equalizer limited by VCSEL nonlinearity
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PAM2 VCSEL Driver w/ 2-Tap Nonlinear FFE

Pulse Response 1
\ High hea P Low e, [Raj CICC 2015] D
y I veseL - ! VCSEL VCSEL
§‘ 14 9ImA = | 1 4.5mA Data.
Es 4mA_'T|_ lo E 3 ; 2mA_]TI_ Io ) " I\
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1] teq edge I i
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; —— . — edge
Fig. 2. VCSEL pulse responses for (a) high and (b) low IvcseL. detector

Equalizer

o VCSEL’s bias-dependent
frequency response results in
nonlinear transient pulse
responses

e A 2-tap non-linear equalizer
with different equalization taps g
for high and low pulses provides e codimm s o fic

Fig. 8 Measured optical eye-diagram for PRBS-15 data at

pe rfo rm a n Ce i m p rove m e nt ZOEL)-";. (a) Unequalized ('b) quialized.

VCSEL Modulation
Response
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PAM4 VCSEL Driver w/ 2.5-Tap Nonlinear FFE

100=4mA, 111=9mA

3-tap equalizer
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e A 2.5-tap nonlinear equalizer, with the first pre-cursor weight only
dependent on the MSB, is a good compromise between complexity

and performance
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Serializing VCSEL TX & Output Stage

Serializing VCSEL TX 5-b Non-Uniform Current DAC Driver

PRBS-15 vDD VCS_EL
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o VCSEL transmitter serializes 16 bits or 8 PAM-4 symbols
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Uniform DAC

e Output stage is a 5-bit non-uniform current-mode DAC
« MSB and MSB-1 set the main PAM-4 symbol levels

« 3 LSB currents implement the 2.5-tap equalizer with the symbol
pattern selecting the weighting from the 32X3 LUT
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50Gb/s PAM4 Experimental Results

2-Tap Linear

[Tyagi PTL 2018] No Equalizatin

2.5-Tap Linear

8:1 Serializer BUF
& Clocking

e Core transmitter
area is 0.2mm?

e 2.5 tap nonlinear equalizer improves eye height
and timing alignment of the 3 PAM4 eyes
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Next Time

e Mach-Zehnder Modulator (MZM) TX
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