Chapter 2

STABILITY OF A LINE
SEGMENT

In this chapter we develop some results on the stability of a line segment of poly-
nomials. A complete analysis of this problem for both the Hurwitz and Schur cases
is given and the results are summarized as the Segment Lemma. We also prove the
Vertex Lemma and the Real and Complex Convex Direction Lemmas which give
certain useful conditions under which the stability of a line segment of polynomials
can be ascertained from the stability of its endpoints. These results are based on
some fundamental properties of the phase of Hurwitz polynomials and segments
which are also proved.

2.1 INTRODUCTION

In the previous chapter, we discussed the stability of a fixed polynomial by using
the Boundary Crossing Theorem. In this chapter we focus on the problem of deter-
mining the stability of a line segment joining two fixed polynomials which we refer
to as the endpoints. This line segment of polynomials is a convex combination of
the two endpoints. This kind of problem arises in robust control problems contain-
ing a single uncertain parameter, such as a gain or a time constant, when stability
of the system must be ascertained for the entire interval of uncertainty. We give
some simple solutions to this problem for both the Hurwitz and Schur cases and
collectively call these results the Segment Lemma.

In general, the stability of the endpoints does not guarantee that of the en-
tire segment of polynomials. For example consider the segment joining the two
polynomials

Pi(s) =3s" +35% + 55" +2s+ 1 and Py(s) = s* + 5% + 5s” + 25 + 5.
It can be checked that both Pj(s) and Pa(s) are Hurwitz stable and yet the poly-
nomial at the midpoint
Pi(s) + Po(s)
2

has a root at s =j.
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However, if the polynomial representing the difference of the endpoints assumes
certain special forms, the stability of the endpoints does indeed guarantee stability
of the entire segment. These forms which are frequency independent are described
in the Vertex Lemma and again both Hurwitz and Schur versions of this lemma are
given. The conditions specified by the Vertex Lemma are useful for reducing robust
stability determinations over a continuum of polynomials to that of a discrete set of
points. A related notion, that of convez directions, requires that segment stability
hold for all stable endpoints and asks for conditions on the difference polynomial
that guarantee this. Conditions are established here for convex directions in the
real and complex cases. The proofs of the Vertex Lemma and the Convex Direction
Lemmas depend on certain phase relations for Hurwitz polynomials and segments
which are established here. These are also of independent interest.

2.2 BOUNDED PHASE CONDITIONS

Let & be an open set in the complex plane representing the stability region and let
08 denote its boundary. Suppose 8;(s) and 6-(s) are polynomials (real or complex)
of degree n. Let

8x(8) == A& (s) + (1 = X)85(s)

and consider the following one parameter family of polynomials:

[61(5), 82(s)] :={6x(s) : A € [0, 1]}.

This family will be referred to as a segment of polynomials. We shall say that the
segment is stable if and only if every polynomial on the segment is stable. This
property Is also referred to as strong stability of the pair (61(s), 82(s)).

We begin with a lemma which follows directly from the Boundary Crossing
Theorem (Chapter 1). Let ¢s,(so) denote the argument of the complex number

67;(80).

Lemma 2.1 (Bounded Phase Lemma)
Let &1 (s) and 05(s) be stable with respect to S and assume that the degree of 65(s) =
n for all X € [0,1]. Then the following are equivalent:

a) the segment [61(s), 65(s)] is stable with respect to S
b) 6x(s*)#£0, foral s*€0dS; Ael0,1]
¢) s, (s*) — ¢s,(s*)| # 7 radians for all s* € 38,

81 (s*)
82(s*)

d) The complex plane plot of , for s € 0S8 does not cut the negative real

aris.

Proof. The equivalence of a) and b) follows from the Boundary Crossing Theorem.
The equivalence of b) and ¢) is best illustrated geometrically in Figure 2.1. In words
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this simply states that whenever 6,(s*) = 0 for some A € [0, 1] the phasors 6;(s*)
and &5(s*) must line up with the origin with their endpoints on opposite sides of it.
This is expressed by the condition |¢s, (s*) — ¢s,(s*)| = 7 radians.

Imag 62 (5*) Imag
(52 (5*)
05,

— ¢s, 952 P65, A J 22
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Pt or(s*) —
61 (S*)
61 (5*)

¢5A 7£ T ¢6; =7

Figure 2.1. Tmage set of ,(s*) and ¢s,

The equivalence of b) and d) follows from the fact that if
Ab1(s")+ (1= XN)ba(s™) =0

61 (S*) _ 1—2A
62(5*) - A ’
As X varies from 0 to 1, the right hand side of the above equation generates the

61(57) is
8o (s*)

then

negative real axis. Hence 8,(s*) = 0 for some A € [0,1] if and only if

negative and real.

This Lemma essentially states that the entire segment is stable provided the end
points are, the degree remains invariant and the phase difference between the end-
points evaluated along the stability boundary is bounded by 7. This condition will
be referred to as the Bounded Phase Condition. We illustrate this result with some
examples.

Example 2.1. (Real Polynomials) Consider the following feedback system
shown in Figure 2.2. Suppose that we want to check the robust Hurwitz stabil-
ity of the closed loop system for o € [2,3]. We first examine the stability of the two
endpoints of the characteristic polynomial

8(s,a) = s7 4+ 2as” + (o + s+ (e —1).
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s+«
+ 3 +2as2 +as—1

D)

Figure 2.2. Feedback system (Example 2.1)

We let

81(8) = 6(s, @)|a=2 =2 +4s2 +3s+1
55(8) :=6(8,@)|a=3 = 8° + 652 + 45+ 2

Then 85(s) = Aé1(s) + (1 — A)8a(s). We check that the endpoints 8, (s) and é2(s)
are stable. Then we verify the bounded phase condition, namely that the phase
difference |¢s, (jw) — ¢s,(jw)| between these endpoints never reaches 180° as w runs
from 0 to co. Thus, the segment is robustly Hurwitz stable. This is shown in
Figure 2.3.
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Figure 2.3. Phase difference of the endpoints of a stable segment (Example 2.1)
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The condition d) of Lemma 2.1 can also be easily verified by drawing the polar plot
of 8 (jw)/6s(jw).

Example 2.2. (Complex Polynomials) Consider the Hurwitz stability of the
line segment joining the two complex polynomials:

s+ (8 — )8 + (28 — j5)s? + (50 — j3)s + (33 + j9)
s* 4+ (T4 j4)s® + (46 + j15)s® + (165 + j168)s + (—19 + j373).

We first verify that the two endpoints é;(s) and é5(s) are stable. Then we plot
¢s,(Jw) and ¢s,(jw) with respect to w (Figure 2.4). As we can see, the Bounded
Phase Condition is satisfied, that is the phase difference |¢s, (jw) — ¢5,(jw)| never
reaches 180°, so we conclude that the given segment [8(s), 62(s)] is stable.
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Figure 2.4. Phase difference vs w for a complex segment (Example 2.2)

We can also use the condition d) of Lemma 2.1. As shown in Figure 2.5, the
plot of & (jw)/8(jw) does not cut the negative real axis of the complex plane.
Therefore, the segment is stable.
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Figure 2.5. A Stable segment: hue) qR= = ¢ (Example 2.2)

f2(jw)

Example 2.3. (Schur Stability) Let us consider the Schur stability of the seg-
ment joining the two polynomials

51(2) = 2° +0.42" — 0.332° 4+ 0.05827 + 0.12662 + 0.059
2(2) = 2% — 2.592% 4+ 2.85652% — 1.47332% + 0.22362 — 0.0121.

First we verify that the roots of both 6;(2) and é5(z) lie inside the unit circle. In
order to check the stability of the given segment, we simply evaluate the phases
of 61(z) and 62(z) along the stability boundary, namely the unit circle. Figure 2.6
shows that the phase difference ¢4, (/%) — ¢s,(e/?) reaches 180° at around 6 = 0.81
radians. Therefore, we conclude that there exists an unstable polynomial along the

segment.
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Figure 2.6. An unstable segment (Example 2.3)

Lemma 2.1 can be extended to a more general class of segments. In particular,
let 81 (s), 82(s) be quasipolynomials of the form

81(s) = as™ + Z e_STlai(s)
8a(s) = bs" + Z e Hib;(s) (2.1)

where T;, H; > 0, a;(s), b;(s) have degrees less than n and a and b are arbitrary
but nonzero and of the same sign. The Hurwitz stability of 8 (s), §2(s) is then
equivalent to their roots being in the left half plane.

Lemma 2.2 Lemma 2.1 holds for Hurwilz stability of the quasipolynomaals of the
form specified in (2.1).

The proof of this lemma follows from the fact that Lemma 2.1 is equivalent to the
Boundary Crossing Theorem which applies to Hurwitz stability of quasipolynomials
8;(s) of the form given (see Theorem 1.14, Chapter 1).
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Example 2.4. (Quasi-polynomials) Let us consider the Hurwitz stability of the
line segment joining the following pair of quasi-polynomials:

S1(s) = (5" +3s+2) +e (s + 1) +e T2 (25 4+ 1)
62(s) = (s + 55+ 3) +e (s +2) + e T2(25 4 1)

where T} = 1 and 75 = 2. We first check the stability of the endpoints by examining
the frequency plots of
61 (_](.d) and 62(](.d)

(jow +1)? (jo+1)*
Using the Principle of the Argument (equivalently, the Nyquist stability criterion)
the condition for é;(s) (or é2(s)) having all its roots in the left half plane is simply
that the plot should not encircle the origin since the denominator term (s + 1)?

does not have right half plane roots. Figure 2.7 shows that both endpoints 61 (s)
and 8, (s) are stable.
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Figure 2.7. Stable quasi-polynomials (Example 2.4)

We generate the polar plot of & (jw)/8:(w) (Figure 2.8). As this plot does not
cut the negative real axis the stability of the segment [§:(s), 62(s)] is guaranteed by
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condition d) of Lemma 2.1.
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Figure 2.8. Stable segment of quasipolynomials (Example 2.4)

In the next section we focus specifically on the Hurwitz and Schur cases. We
show how the frequency sweeping involved in using these results can always be
avoided by isolating and checking only those frequencies where the phase difference
can potentially reach 180°.

2.3 SEGMENT LEMMA
2.3.1 Hurwitz Case

In this subsection we are interested in strong stability of a line segment of polyno-
mials joining two Hurwitz polynomials. We start by introducing a simple lemma
which deals with convex combinations of two real polynomials, and finds the con-
ditions under which one of these convex combinations can have a pure imaginary



80 STABILITY OF A LINE SEGMENT  Ch. 2

root. Recall the even-odd decomposition of a real polynomial é(s) and the notation

§(jw) = 6°(w) + jwd?(w) where 6°(w) and §°(w) are real polynomials in w?.

Lemma 2.3 Let 61(-) and é2(-) be two arbitrary real polynomials (not necessarily
stable). Then there exists A € [0,1] such that (1 — X)&;1(-) + Ad2(-) has a pure
imaginary root jw, with w > 0 of and only if

B5()0% () = 0
87 (w)
Proof. Suppose first that there exists some A € [0,1] and w > 0 such that
(1= X)é1(Jw) + Ads (jw) = 0. (2.2)
We can write,

6i(jw) = 87" (jw) + 67" (jw)
=65 (w) + jwél(w),  for i=1,2. (2.3)

Thus, taking (2.3) and the fact that w > 0 into account, (2.2) is equivalent to

{ (1—/\)6§(w)—|—/\6§(w) io (2.4)
(1= 2)7(w) + Aé5(w) = 0.
But if (2.4) holds then necessarily
65 ()65 (w) — 05 ()67 (w) = 0, (2.5)
and since A and 1 — X are both nonnegative, (2.4) also implies that
65 (w)5(w) <O and  67(w)8(w) < 0, (2.6)

and therefore this proves that the condition is necessary.
For the converse there are two cases:

cl) Suppose that
87 ()65 (w) — 05(w)oy(w) =0, 6f(w)o5(w) <0, 6f(w)b5(w) <0,
for some w > 0, but that we do not have 6¢(w) = é5(w) = 0, then

_ &w
5@~ 55)

satisfies (2.4), and one can check easily that A is in [0, 1].
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¢2) Suppose now that
85 (w)o5(w) — 85 (w)d7 (w) = 0, and éf(w) = 85(w) = 0. (2.7)

Then we are left with,
()52 () <0,

Here again, if we do not have 67(w) = 69(w) = 0, then the following value of
A satisfies (2.4)
8
67 (w) = &5(w)

If 69(w) = 65(w) = 0, then from (2.7) we conclude that both A = 0 and A = 1 satisfy
(2.4) and this completes the proof. )

Based on this we may now state the Segment Lemma for the Hurwitz case.

Lemma 2.4 (Segment Lemma: Hurwitz Case)

Let 61(s), 65(s) be real Hurwitz polynomials of degree n with leading coefficients of
the same sign. Then the line segment of polynomials [5,(s), 62(s)] is Hurwitz stable
if and only there exists no realw >0 such that

1) 6 (w)8(w) — 85(@)6(w) = 0
2) ()6 (w) < 0 (2.8)
3)  69(w)65(w) < 0.

Proof. The proof of this result again follows from the Boundary Crossing Theorem
of Chapter 1. We note that since the two polynomials 8, (s) and é2(s) are of degree
n with leading coefficients of the same sign, every polynomial on the segment is of
degree n. Moreover, no polynomial on the segment has a real root at s = 0 because
in such a case 6,(0)8,(0) < 0, and this along with the assumption on the sign of
the leading coefficients, contradicts the assumption that & (s) and é2(s) are both
Hurwitz. Therefore an unstable polynomial can occur on the segment if and only
if a segment polynomial has a root at s = jw with w > 0. By the previous lemma
this can occur if and only if the conditions (2.8) hold. &

If we consider the image of the segment [§;(s), 6+ (s)] evaluated at s = jw, we see that
the conditions (2.8) of the Segment Lemma are the necessary and sufficient condition
for the line segment [§; (jw), 62 (jw)] to pass through the origin of the complex plane.
This in turn is equivalent to the phase difference condition |¢s, (jw) — ¢, (Jw)| =
180°. We illustrate this in Figure 2.9.

Example 2.5. Consider the robust Hurwitz stability problem of the feedback sys-
tem treated in Example 2.1. The characteristic polynomial is:

8(s, o) = s34 2as” + (a4 1)s+ (o — 1).
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y 62(jW*)
65 (w*) [ ,
| Of (w* )5 (w*) <0
| 87 (W) (w*) <0
6f (w*) l (W) 85(w®)
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! 65 (w*) T
| 67 (w* )03 (w*) — 85 (w )7 (w*) = 0
-1 67(w)
61 (jw*) & ¢s, (Jw*) — és, (Jw™)| = 180°

Figure 2.9. Segment Lemma: geometric interpretation

We have already verified the stability of the endpoints
51(8) 1= 8(s,0)|ame = 8" + 45" + 35+ 1
82(s) :=0(s, &)|a=s3 = s+ 657 +4s5+ 2.
Robust stability of the system is equivalent to that of the segment
3(5) = 261 (5) + (1= M)
To apply the Segment Lemma we compute the real positive roots of the polynomial
67 ()03 () — 85 ()57 (w) =
(—4w? + 1)(—w? +4) — (—6w? + 2)(—w? +3) = 0.

This equation has no real root in w and thus there is no jw root on the line segment.
Thus, from the Segment Lemma, the segment [4(s), 62(s)] is stable and the closed
loop system is robustly stable. Although frequency sweeping is unnecessary we
have plotted in Figure 2.10 the image set of the line segment. As expected this plot
avoids the origin of the complex plane for all w.

2.3.2 Schur Case

Let us now consider the problem of checking the Schur stability of the line joining
two real polynomials P; (z) and P5(z). We wish to know whether every polynomial
of the form

AP (2) + (1= N)Py(2), A€ 0,1]
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Figure 2.10. Tmage set of a stable segment (Example 2.5)

is Schur stable. Assume that there is at least one stable polynomial along the
segment and that the degree remains constant along the segment. It follows then
from the Boundary Crossing Theorem that if there exists a polynomial on the
segment with an unstable root outside the unit circle, by continuity there must
exist a polynomial on the segment with a root located on the boundary of the
stability region, namely on the unit circle. In the following we give some simple
and systematic tests for checking this. We will assume that the leading coefficients
of the two extreme polynomials are of same sign. This is a necessary and sufficient
condition for every polynomial on the segment to be of the same degree.
We begin with the following result.

Lemma 2.5 (Schur Segment Lemma 1)

Let Pi(z) and Py(z) be two real Schur polynomials of degree n, with the leading
coefficients of the same sign. A polynomial on the line segment [Py(z), Po(2)] has a
root on the unit circle if and only if there exists zq with |z9| = 1 such that

Pi(z0)Pa(zy ") = Pa(z0)Pr(z5 ") = 0 (2.9)
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m | 2] 2.10
[Pz(ZO)] (210)
" Re [252;] <0 (2.11)
Proof.

Necessity  Suppose that there exists zo with 20| = 1 and A € [0, 1] such that
AP (z0) + (1 = A)Pa(20) =0 (2.12)
Since |zg| = 1 and (2.12) is real, we have
AP (25 ) + (1= Pa(25h) = 0. (2.13)
From (2.12) and (2.13) it follows that
Pi(z0)Pa(25") = Pi(25 ) Pa(z0) = 0. (2.14)

Separating (2.12) into real and imaginary parts and using the fact that A € [0, 1],
it follows that

Re[ Py (z0)Im[P>(z0)] — Im[P; (z0)]Re[Pa(20)] = 0 (2.15)

and
Re[Py(z0)]Re[Pa(20)] <0 and Im[P (z)]Im[Pa(z0)] < 0. (2.16)

This is equivalent to

Py (Zo)]
Im =0 2.17
[P2(ZO) (217)
and (20)
Py (zo ]
Re <0 2.18
[P2(ZO) B (2.18)
proving the necessity of the conditions.
Sufficiency  Suppose that
Pi(z0)Ps(zy ") — Pa(20)Pi(25 ") =0 (2.19)
Py (Zo)]
I =0 2.20
" [P2(ZO) (2:20)
and (z0)
P1 Z0 :|
Re <0. 2.21
[P2(ZO) - (221
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We note that P (z0) # P(z0), otherwise (2.19)-(2.21) would imply that Py(z) =
Ps(zy) = 0 which contradicts the assumption that P (z) and P»(z) are both Schur.
Then

PQ(Z())
= 2.22
PQ(ZQ)—Pl(ZQ) ( )
satisfies (2.12) and one can easily check that A € [0, 1]. L

In the above lemma, we need to compute the zeros of (2.9) which is not a polynomial.
Instead we can form the polynomial

Pi(z0)z Pa(z5") = Pal20)25 Pi(5 ') = 0
whose unit circle roots coincide with those of (2.9). Note that 2" P;(z7") is simply
the “reverse” polynomial of P;(z).

Symmetric-antisymmetric Decomposition

Recall the symmetric-antisymmetric decomposition introduced in Chapter 1. A
given real polynomial can be decomposed into a symmetric part A(z) and an anti-
symmetric part ¢(z) defined as follows:

P(z)=anz" +an_12"" 4+ a1z + a0 = h(z) + g(2) (2.23)

and

h(z) = (P(z) — Z"P(z_l)) )

N | =

(P(2)+2"P(TY), glz) =

N | —

We also have

h(z) =anz" +---+ay and g(z) =8.2"+ -+
where oo o
%, B = %J

This decomposition plays a role similar to the even-odd decomposition in the Hur-
witz case. We can enunciate the following lemma.

o =

i=0,---n. (2.24)

Lemma 2.6 (Schur Segment Lemma 2)
Let Py (z) and Py(z) be two real polynomials of degree n with the following symmetric-
antisymmetric decomposition:

Pi(z) =hi(z) +¢91(2) and Pa(z) = hao(z) + g2(2)
There exists A € [0,1] and zy with |zg| = 1 such that
AP (z0)+ (1 = A)P2(z0) =0
of and only if

hi(z0)g2(20) — g1 (20)ha(20) = 0, 25 "hi(z0)ha(20) <0, 25" ¢1(20)g2(20) > 0.
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Proof,

Necessity ~ Assume z, = €/? is a root of APy (2) + (1 — A)Py(2) = 0. Then
A(hi(z0) + 91(20)) + (1 = A)(h2(20) + g2(20)) = 0. (2.25)

Since |zg| = 1 this is equivalent to

Az Fha(z0) 4+ 55 1 (20) + (1= ) (55 Fhalzo) + 25 Fgalz0)) = 0. (2.26)

Now observe that

n

1 n r_ —_r
% hz0) =5 [(“” o)z + (ot Fan)zd - (a0 + an)zg 2]
1 n ...n n ...n
=3 [(an + ap) (cos §9+js1n§9) + -+ (a0 +an) (cos 59—]8111 59)]

n n
= (an+a0)cos§9—|—(an_1+a1)cos(§—1)9—|—~~

1s real and

_r 1 n r__ —_r
% Fgz0) = 5 [(an = @) + (@ =)z T b (0 — @)z ]

= % [(an —ap) (cos g@—l—jsin gﬁ) + o+ (ap — an) (cos gb’—jsin gﬁ)]

=3 {(an — ap)sin g@—l—(an_l + ay)sin (g - 1) 0+ ]

is imaginary. Thus, we rewrite (2.26) as follows:

A (zo_%hl(zo) +jz;%@) +(1-X) <z0‘%h2(z0) + z;%@) =0. (2.27)

Note that zo_%hl(zo) and zo_%hz (z9) are real parts, and zo_%““(]—.'z”) and zo_%““(]—zo)
are imaginary parts. Therefore, (2.27) is equivalent to:

A2y Fhi(z0) + (1= Nz Fhalz) = 0 (2.28)
and

g ) gy aeee) (2.29)

J J
As z5 # 0 and both A and (1 — A) are nonnegative we get

hy (2’0)92(2’0) — % (ZO)hQ(ZO) =0, Zo_n]h (ZO)hQ(ZO) <0, Zo_ng1 (20)92(750) >0

which proves the necessity of these conditions.
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Sufficiency  For the converse we have two cases:
a) Suppose
hi(z0)g2(20)—g1(20)h2(20) = 0, 25 "h1(20)h2(20) <0, 25" g1(20)g2(20) > 0
but we do not have hy(z) = ho(z) = 0. Then

_ hax)
A= hz(Zo) — hl(Zo)

satisfies (2.25) and one can verify that A € [0, 1].

(2.30)

b) Now assume that
25" (h1(20)g92(20) — g1 (20)ha(20)) = 0,

hi(z0) = ha(20) = 0, 25 "g1(20)92(20) > 0

but we do not have g1 (z) = g2(20) = 0. In this case

)= 92(20)

32(0) —gi(z0) €0 (2.31)

satisfies (2.25).

If g1(%0) = ga(2) = 0, then A = 0 or A = 1 satisfies (2.25), which concludes the
proof of the lemma. &

Example 2.6. Consider the segment joining the two polynomials
Pi(z) =2+ 15224 1.2: 405 and Po(z) =2 —1.2:2 4+ 1.12 - 0.4
The symmetric-antisymmetric decomposition

Pi(z) = hi(z) 4+ 91(z) and Pa(z) = ha(2) + g2(2)

where
hy(2) = 0.752% + 1.3522 + 1.352 + 0.75
g1(2) = 0.252° +0.152% — 0.152 — 0.25
ho(z) = 0.32° —0.052% — 0.052 4+ 0.3
g1(2) =0.72° = 1.1522 + 1.152 = 0.7

The polynomial
hi(2)g2(2) = g1(2)h2(2)

has four roots z; on the unit circle such that

2y "hi(z0)ha(20) <0 and 25 "¢1(20)g2(20) >0
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<0 zg "hi(z0)ha(20) 25" 91(%0)92(%0)
201 = —0.298 — 0.9546; —0.1136 0.5651
2ga = —0.298 + 0.95465 —0.1136 0.5651
203 = 0.2424 — 0.97025 —0.4898 0.0874
2ga = 0.2424 + 0.97025 —0.4898 0.0874

For both z5 = z51 and z5 = zp2 we find

h2 (Zo)

A= ha(z0) — h1(z0)

=0.7755
yielding
MP(z) + (1= A)Ps(2) = 2% +0.89392% + 117752 + 0.2979

and one can check that the above polynomial has a pair of complex conjugate roots
at zg1 and zps.

Imag
o
T
|

Real

Figure 2.11. Unit circle image of the polynomial corresponding to Ay = 0.7755
(Example 2.6)
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In Figure 2.11 we can check that the complex plane plot of A; P(e??) + (1 —
A1) Ps(e7?) contains the origin, which implies that the convex combination of P (z)
and Py(z) has roots on the unit circle for A = A;.

Similarly for zg = zg3 and zg = zp4

ho(z0)

/\2 - hz(Zo) — hl(Zo)

=0.1751

yielding
M Pr(2) + (1= X2)Po(z) = 2% —0.72722% + 111752 — 0.2424

which has roots at zp3 and zp4. The image set of AP (e/?) + (1 — X)Py(e’?) for
A = Ay in Figure 2.12 contains the origin, which means that Ay Py (2) + (1 — A2)Ps(2)
has a root on the unit circle for A = A,.

25

AAAAAAAAAAAAA

0.5

Imag
o
T
|

'''''''''''''

_2.5 L L L L L
4

Real
Figure 2.12. Unit circle image set of the polynomial corresponding to A, = 0.1751
(Example 2.6)

In order to find the stable-unstable regions on the line [P;(z), P»(2)], let us take
some test polynomials corresponding to different values of A.
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A=01:  AP(2)+(1=A)Pa(z) = 2% = 0932 + 1.112 — 0.31 stable.
A=05: AP (z) + (1= M) P2(2) = 22 +0.1522 + 1.152 + 0.05 unstable.
A=08: AP (2)+(1—=A)Pa(z) = 2 +0.962% + 1.182 4 0.32 stable.

The partitioning of the segment into stable and unstable pieces is shown in Fig-
ure 2.13.

stable unstable stable
0 0.175 0.775 1
P, P

Figure 2.13. Stability regions along the segment (Example 2.6)

Trigonometric Version

Let us again consider a real polynomial P(z) of degree n, and write

P(=) = h(=) + () (2.32)
P(Z) _ 2,2% 272 h(z) + Z- 2g(z) ' (2'33)
2 2
Note that
L -2h(s) = Yot O -(3-1) 4 %0 -3
5% h(z) = gt t57 (2.34)
1 -z _577, £ S —(%—1) Bo -z
7% g(z) = SRR +57 (2.35)
where «;, 3; are real with oy = o, _; and §; = —fB,_; fori =0, -+, n. When z = ¢/*
we get
e‘jg_eh(eje) = 1 (0)
5 =
eI % (el
7;( L= iy o)
where

Ay, €08 50 + o,y cos (% — 1) 6+ + oz;._l cos % if n odd (2.36)

W (0) :{ oy cos%@—i—oznq cos (%—1)9—1—~~~—|—0z£ if n even
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and
N (6” sin 50 + 3, _1 sin (%—1)9+~~~+6%+1 siné’) if n even
g7(0) = (Bosin 20+ B_ysin (2 —1)0+-+ Bayrsink) ifnodd (2.37)
n B n—1 2 §+1 5
We write
P(e") = 265 (h*(6) + jg" (9)) (2.38)
P(e7?) = 2675 6(0). (2.39)

We can then enunciate another version of the Segment Lemma.
Lemma 2.7 (Schur Segment Lemma 3)

Let P(z) and Py(z) be two polynomials of degree n, with

e’) = 2675 (1 (0) + g} (9))

%) = 2675 (15(0) + g5 (0))

On the segment joining Py(z) and Py(z) there exists a polynomial with a root on
the unit circle if and only if there exists 0 € [0,2m) such that

1(0)g3(0) — g1 (O)h3(6) = 0
hi(0)h5(0) <0
91 (0)g5(0) <0.

P
Py

(
(

[

iy
[5V)

*
*

The proof is omitted as it is similar to the previous cases.

2.4 SOME FUNDAMENTAL PHASE RELATIONS

In this section, we develop some auxiliary results that will aid us in establishing
the Convex Direction Lemma and the Vertex Lemma, which deal with conditions
under which vertex stability implies segment stability. The above results depend
heavily on some fundamental formulas for the rate of change of phase with respect
to frequency for fixed Hurwitz polynomials and for a segment of polynomials. These
are derived in this section.

2.4.1 Phase Properties of Hurwitz Polynomials

Let 8(s) be a real or complex polynomial and write
b(jw) = p(w) +jg(w) (2.40)

where p(w) and ¢(w) are real functions. Also let

X(w):= % (2.41)
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and
@s(w) := tan™" a(w) =tan"! X(w). (2.42)

Let Tm[z] and Re[z] denote the imaginary and real parts of the complex number z.

Lemma 2.8 If 6(s) is a real or complex Hurwitz polynomial

dX
% >0, forallw € [—o0,+o]. (2.43)
Equivalently
1 dé(jw)
Im [6(3'(.0) 4o ] >0 forallw € [—o0, +¢]. (2.44)

Proof. A Hurwitz polynomial satisfies the monotonic phase increase property

dos(w) 1 dX(w)

_ 0 forallwe [~
L T dw 0 ferallwelzoo 4o

and this implies

dX (w) >0 for all w € [—o0, 4]
dw
The formula 4 ( ) . d6( ] )
wslw) Jw
dw Im [6(jw) dw ] (2.45)

follows from the relations

1 dé(jw) 1 dp(w)  .dq(w)
) de ‘p(w>+jq<w>< do T d > (2.46)

[P 2 ) 2]+ [pw) ) — gw) 2]
- P*(w) + ¢ (w)

and

dpslw) _ [P — o) 22

dw P’ (W) + ¢*(w)

(2.47)

[ )

We shall see later that inequality (2.43) can be strengthened when 6(s) is a real
Hurwitz polynomial.
Now let 6(s) be a real polynomial of degree n. We write:

8(s) = 67" (s) + godd (s) = h(52) + 5g(52) (2.48)
where h and g are real polynomials in s?. Then

§(jw) = h(—w?) + jwg(—w?)
= ps(w)ed?s@), (2.49)
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We associate with the real polynomial §(s) the two auxiliary even degree complex
polynomials

8(s) = h(s®) + jg(s*) (2.50)
and
8(s) := h(s?) — js*g(s?) (2.51)

and write formulas analogous to (2.49) for §(jw) and é(jw). 6(s) is antiHurwitz if
and only if all its zeros lie in the open right half plane (Re[s] > 0). Let ¢t = s* be a
new complex variable.

Lemma 2.9 Consider
h(t)+ jgt) =0 (2.52)
and

h(t) — jtg(t) = 0 (2.53)

as equations in the complex variable t. If §(s) = h(s?)+sg(s?) ts Hurwitz and degree
8(s) > 2 each of these equations has all its roots in the lower-half of the complex
plane (Im[t] <0). When degree [6(s)] = 1 (2.53) has all its roots in Im[t] < 0.

Proof. The statement regarding the case when degree[§(s)] = 1 can be directly
checked. We therefore proceed with the assumption that degree[6(s)] > 1. Let

S(sy=ap+ars+---+aps". (2.54)

Since 6(5) is Hurwitz we can assume without loss of generality that a; > 0, i =

0,---,n. We have

h(—w?) = ag + as(—w?) + as(—w?)" + - -
wg(—w?) = w [Ch + az(—w?) + a5(—w2)2 +-- ] ) (2.55)

As s runs from 0 to +joo, —w? runs from 0 to —oo. We first recall the Hermite-

Biehler Theorem of Chapter 1. According to this Theorem if §(s) is Hurwitz stable,
all the roots of the two equations

h(t)=0 and ¢(t)=0 (2.56)

are distinct, real and negative. Furthermore the interlacing property holds and the
maximum of the roots is one of h(¢) = 0. For the rest of the proof we will assume
that é(s) is of odd degree. A similar proof will hold for the case that é(s) is of even
degree. Let degree[§(s)] = 2m + 1 with m > 1. Note that the solutions of

h(t)+jgt) =0 (2.57)
are 1dentical with the solutions of

90 _ (2.58)
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Let us denote the roots of A(t) = 0 by Ay, Ao, -+« Ay where Ay < Ao < -+ < Ay
The sign of h(t) changes alternately in each interval [A;, A q[, (1 =1, -+, m —1).

If % 1s expressed by partial fractions as

g(t) 1 Co Crm,
— . 2.
TR Y W (2:59)
then each ¢;,i =1, --, m should be positive. This is because when ¢ = —w? passes

increasingly (from left to right) through J;, the sign of % changes from — to +.

This follows from the fact that g(t) has just one root in each interval and aq > 0,
aq > 0
If we suppose

Tmlt] > 0, (2.60)

then

Im[ G ]<0 i=1,--m (2.61)

and consequently we obtain

Im [%} = Y Im [t _CA] <0. (2.62)

1<i<m ¢

Such a ¢ cannot satisfy the relation in (2.58). This implies that the equation
h(t)+jg(t)=0 (2.63)

in ¢t has all its roots in the lower-half of the complex plane Tm[t] < 0. We can treat
[A(t) — jtg(t)] similarly. &

This lemma leads to a key monotonic phase property.

Lemma 2.10 If é(s) is Hurwitz and of degree > 2 then

L (2:64)
and J

Y5

—2 . 2.

70 >0 (2.65)

Proof. From the previous lemma we have by factorizing h(—w?) + jg(—w?)
h(—w?) + jg(—w?) = an(—w? —ay) - (—w? — ap,) (2.66)

with some oy, as,- - -, &, Whose imaginary parts are negative. Now

m

arg [h(—w?) + jg(—w?)] = Z arg(—w? — a;). (2.67)

i=1
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When (—w?) runs from 0 to (—o0), each component of the form arg(—w? — ;) is
monotonically increasing. Consequently arg [h(—w?) + jg(—w?)] is monotonically
increasing as (—w?) runs from 0 to (—oo). In other words, arg [h(s?) + jg(s?)] is
monotonically increasing as s(= jw) runs from 0 to joo. This proves (2.64); (2.65)
is proved in like manner. &

The dual result is given without proof.

Lemma 2.11 If é(s) is antiHurwitz

dps

[— 2.

7o <0 (2.68)
and

dps

des (2.69)

We remark that in Lemma 2.10 §(s) and 6(s) are not Hurwitz even though they
enjoy the respective monotonic phase properties in (2.64) and (2.65). Similarly in
Lemma 2.11 §(s) and é(s) are not antiHurwitz even though they enjoy the mono-
tonic phase properties in (2.68) and (2.69), respectively.

The above results allow us to tighten the bound given in Lemma 2.8 on the rate
of change of phase of a real Hurwitz polynomial.

Theorem 2.1 For a real Hurwitz polynomial
8(s) = h(s*) + sg(s),
the rate of change of the argument of 8(jw) ts bounded below by:

dps(w) _ |sin(2¢s(w))

> ' '
o) 5 z ‘ for all w > 0 (2.70)
Fquivalently with
_wg (—w?)
=5y
we have
dX(@) ., ‘@ . forallw > 0. (2.71)
dw w

In (2.70) and (2.71) equality holds only when degree [6(s)] = 1.
Proof. The equivalence of the two conditions (2.70) and (2.71) follows from

dos(w) 1 dX(w)
dv 14+ X?(w) dw
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and
1 X(w)| 1 X(w)
1+ X2(w) | w | [1+X%(w) w
W (=) g (=)

W) 77 () R ()
= [cos? (ps(w)) }u tan (s (W))‘

— }dcos(@g(W))Siﬂ(Spé(w))‘

_[ntzten)
2w

We now prove (2.71). The fact that equality holds in (2.71) in the case where 8(s)
has degree equal to 1 can be easily verified directly. We therefore proceed with the
assumption that degree[6(s)] > 2. From Lemma 2.8, we know that

dX (w)
>0
so that
ax(w) _ ArCy (2) - OO () (02
dw h? (—w?)
_ g (=) h(=w?) fwj (=w?) b (—0?) —wh (—w?) g (-»°)
h? (—wzl)
_9(=?) g h (=) —h(=w?) g (—w?)
A ) =
X() a [ 9(=«2)
’ w (h<—w2>)

From Lemma 2.10 we have

d
3 >0 and
dw

where

6(s) = h(s*) +jg(s°) and &(s) =h(s?) —js’g(s?).

First consider
des _ 1 d (g(—w2)> 5 0.

B ()
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Since

we have

Thus, for w > 0 we have

2
Nl L am
Now consider
dys _ 1 4 (“29 <_“2)) > 0.
do (w;(gg;c;)z))z dw \ h(—w?)

Here, we have

d (wzg <_wz>> N [2g (—w?) @[k (=) g (=) =g (~w)h <—w2>]]

do \ h(—w?)

With w > 0, 1t follows that

X 4 (g <_“2>> >0

w dw \ h(—w?)

and therefore

4X(w)

dw

Combining (2.72) and (2.73), we have, when degree[é(s)] > 2,

), )

70 , forall w > 0.

A useful technical result can be derived from the above Theorem.
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Lemma 2.12 Let wg > 0 and the constraint

ps(wo) =0 (2.74)
be giwen. The infimum value of
dps(w)
2.
dw w=wo ( 75)

taken over all real Hurwitz polynomials 6(s) of a prescribed degree satisfying (2.74)
s given by

(2.76)

2(.00

sin (26) ‘ .

The infimum is actually attained only when 0 < 0 < % and 6(s) is of degree one,
by polynomuals of the form

8(s) = K(stanf 4 wy). (2.77)

For polynomials of degree (> 1) the infimum can be approximated to arbitrary ac-
curacy.

Proof. The lower bound on the infimum given in (2.76) is an immediate conse-
quence of (2.70) in Theorem 2.1. The fact that (2.77) attains the bound (2.76)
can be checked directly. To prove that the infimum can be approximated to arbi-
trary accuracy it suffices to construct a sequence of Hurwitz polynomials 65 (s) of
prescribed degree n each satisfying (2.74) and such that

. deps, (w) sin (26)
lim 22—~ =|—= :
ki»rgo dw w=wo 2wq (2.78)
For example when 0 < ¢ < % we can take
Sp(s) = K <5tan9+w0—|—%> (ers+ 1", k=1,2,.... (2.79)

where ¢, > 0 is adjusted to satisfy the constraint (2.74) for each &:

@s, (wo) = 0. (2.80)

It is easy to see that ¢, — 0 and (2.78) holds. A similar construction can be
carried out for other values of # provided that the degree n is large enough that the
the constraint (2.80) can be satisfied; in particular n > 4 is always sufficient for
arbitrary 6. &

Remark 2.1. In the case of complex Hurwitz polynomials the lower bound on the
rate of change of phase with respect to w 1s zero and the corresponding statement
is that

d@ék ((.d)

- (2.81)

w=wpo
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can be made as small as desired by choosing complex Hurwitz polynomials &(s)
satisfying the constraint (2.80).

These technical results are useful in certain constructions related to convex direc-
tions.

2.4.2 Phase Relations for a Segment

Consider now a line segment Aé;(s) + (1 — A)éa(s), A € [0, 1] generated by the two
real polynomials 8, (s) and 62(s) of degree n with leading coefficients and constant
coefficients of the same sign. The necessary and sufficient condition for a polynomial
in the interior of this segment to acquire a root at s = jwg is that

Aoéf(u}o) + (1 - /\0)65((.&0) =0
)\06?((.00) + (1 - Ao)(sg((.UQ) =0 (282)
for some Ag € (0,1). Since the segment is real and the constant coeflicients are of

the same sign it is sufficient to verify the above relations for wy > 0. Therefore the
above equations are equivalent to

X085 (wo) + (1 — Ag)é5(wg) =0 (2.83)
Agwo 07 (wo) + (1 — Ag)wods(wg) = 0. (2.84)
and also to
Aobf (wo) + (1 = Ag)b5(wo) =0
Aowd 62 (wo) + (1 = Ag)waés(wg) = 0 (2.85)
since wy > 0. Noting that
6, (juw) = 8 (w) + j6? (w) = ps, (w)e’ *2:)
b (jw) = 85 (w) + 65 (w) = ps, (w)e/ o) (2.86)
b1 (jw) = 8] (w) + jw’ 67 () = gy, (w)e? 5 ()
8y (jw) = 85 (w) + jw? 85 (w) = ps, (w)el ¥5=()
we can write (2.82), (2.84), and (2.85), respectively in the equivalent forms
Aady (Jwo) + (1= Ag)b2(jwo) = 0 (2.87)
Aoy (jwo) 4 (1 = Ao)ds (jwn) = 0 (2.88)
and B -
Ap81 (Jwo) + (1 — Ag)éa(jwe) = 0. (2.89)
Now let
61 (jw) = 85 (w) + jwé] (w) = ps, (w)el P
b ) = 85(00) + Jui8] () = s )T #52) (290)
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8o(s) :=61(s) — 85(s)

ISe
<
E
[l
=S

1 (Jw) = éz(j“)
1(j(.d) — 62(](.«))

>N

bo(jw) =

We now state a key technical lemma.

(2.91)

(2.92)

Lemma 2.13 Let §,(s),82(s) be real polynomials of degree n with leading coeffi-
cients of the same sign and assume that Ag € (0,1) and wy > 0 satisfy (2.85)-(2.89).

Then
d
;050 _ )\0 dzioéz + (1 Y )d:ioél
d w=wo « w=w « w=wg
dps dips des
2o _ 22 1=\ 21
dw w=wpo ’ dw w=w ( 0) dw w=wq
and
dpsz, _ s, (1- A )d%l
dw w=wq ’ dw w=wq ’ dw W=Wo

Proof. We prove only (2.93) in detail. If
6(w) = p(w) +Jg(w)

then

tan ps(w) = %

Let ¢(w) := % and differentiate (2.97) with respect to w to get

dps _ pw)i(w) — g(w)p(w)
dw PP(w)

(1 + tan? s (w))

and

des _ plw)d(w) — q(w)p(w)
dw P’ (w) + ¢*(w)
We apply the formula in (2.99) to

bo(jw) = (P1(w) = p2(@)) + H(01 (@) = 42(w))

to get . . . .
dps, _ (Pl —Pz)(fh - fI2) - (fh - Q2)(P1 —pz)

dw (pr —p2)? 4+ (1 — ¢2)?

Using (2.87
. ! Aopi (wo) + (1 — Ag)pa(wo) =0

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)
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and
Since & (s) and §2(s) are Hurwitz Ag # 0, and Ag # 1, so that
w W
p1 (wo)_pz(wo):_mz M (2.104)
Ao 1—Ag
- (w0) _ alen)
W w
¢1(wo) — g2(wp) = _fo) _ Do) (2.105)
Ao 1—XAg
Substituting these relations in (2.101) we have
des, _ ﬁpl% + ,\1—0]?2@2 - 1_1—“(]1]51 - ,\1—OQ2P2
dw |, (p1 —p2)? + (01 — ¢2)* w=we
. 1_1—)\0(191@1 —qp1) ,\1—0(]?29'2 — q2pP2)
- p2+q2 p2+43
(1—>\D)2 W=wo T W=wqp
P11 — @1p1 P2G2 — q2p2
=(1- X)) ——=— Ap——
L WA N

d
+ o )

- (2.106)

dps
=(1-X)—=
(1=A)—=

w=wp w=wp

This proves (2.93). The proofs of (2.94) and (2.95) are identical starting from (2.88)
and (2.89), respectively. &

The relation (2.93) holds for complex segments also. Suppose that §;(s),i = 1,2
are complex Hurwitz polynomials of degree n and consider the complex segment
62(5) + Abo(s), A € [0,1] with 6¢(s) = 61(s) — 62(s). The condition for a polynomial

in the interior of this segment to have a root at s = jwq is
62(j(.00) + Aoéo(j(.do) = 0, AO € (0, 1) (2107)
It is straightforward to derive from the above, just as in the real case that

d%o

_ d@éz
dw =2

0" duw

d
+ (1= o) ;021 . (2.108)

wW=wp wW=wy

wW=Wwyp
The relationship (2.108) can be stated in terms of

Xi(w) :==tan ¢s,(w), 1=0,1,2. (2.109)
Using the fact that

des,(w) 1 dX;(w)

= i =0,1,2 2.11
o T (11 X@) A 0 T 0b (2.110)
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(2.108) can be written in the equivalent form

1 dXo(W)
(1+ X2(w)) dw

W=wgq

1 dXz((.d) 1 Xm(W)
(1+X2(w) duw +(1_A0)(1—|—X12(w)) dw

W=wg

Ao (2.111)

W=wg

Geometric reasoning (the image set of the segment at s = jwy passes through the
origin) shows that

[Xo(@)]w=wo = [X1(W)lw=wo = [Xa(W)lo=w,- (2.112)
Using (2.112) in (2.111) we obtain the following result.

Lemma 2.14 Let [Adi (s) + (1 — A)8a(s)], A € [0,1] be a real or complex segment
of polynomzals. If a polynomial in the interior of this segment, corresponding to
A =Xy has a root at s = jwy then

dX() ((.d)
dw

_ dXz((.U) dX1 ((.d)
=X dw + (1= ) dw

w=wop w=wg w=wg

(2.113)

These auxiliary results will help us to establish the Convex Direction and Vertex
Lemmas in the following sections.

2.5 CONVEX DIRECTIONS

It turns out that it is possible to give necessary and sufficient conditions on & (s)
under which strong stability of the pair (85(s), o(s) +62(s)) will hold for every 82(s)
and &g(s) +62(s) that are Hurwitz. This is accomplished using the notion of conves
directions.

As before let §;(s) and 85(s) be polynomials of degree n. Write

8o(s) == 61(s) — ba(s)

and let
8x(s) = Ab1(s) + (1 — X)ba(s) = 62(s) + Ado(s) (2.114)

and let us assume that the degree of every polynomial on the segment {6,(s) : A €
[0,1]} is n. Now, the problem of interest is: Give necessary and sufficient conditions
on §;y(s) under which stability of the segment in (2.114) is guaranteed whenever the
endpoints are Hurwitz stable? A polynomial &4(s) satisfying the above property
is called a conver direction. There are two distinct results on convex directions
corresponding to the real and complex cases. We begin with the complex case.
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Complex Convex Directions

In the complex case we have the following result.

Lemma 2.15 (Complex Convex Direction Lemma)
Let 65(s) : A € [0,1] be a complex segment of polynomials of degree n defined as in
(2.114). The complex polynomial 6y(s) is a convex direction if and only if

dg050 (w)

dw

INA

0 (2.115)

for every frequency w € R such that by(jw) £ 0. Equivalently

dXo (w)
dw

INA

0 (2.116)

for every frequency w € R such that 6q(jw) #£ 0.

Proof. The equivalence of the two conditions (2.115) and (2.116) is obvious. Sup-
pose now that (2.116) is true. In the first place if wy is such that 6 (jwo) = 0, it
follows that b9 (jwq) 4+ Ao (jwy) # 0 for any real Ag € [0, 1] as this would contradict
the fact that 6,(s) is Hurwitz. Now from Lemma (2.14) we see that the segment
has a polynomial with a root at s = jwg only if

T w=wp B AO T w=wg * (1 - AO) dw w=wg (2117)
Since &1 (s) and 62(s) are Hurwitz it follows from Lemma 2.8 that
iiw)>m weR; i=1,2 (2.118)
w

and Ag € (0,1). Therefore the right hand side of (2.117) is strictly positive whereas
the left hand side is nonpositive by hypothesis. This proves that there cannot exist
any wg € IR for which (2.117) holds. The stability of the segment follows from the
Boundary Crossing Theorem (Chapter 1).

The proof of necessity is based on showing that if the condition (2.115) fails to
hold it is possible to construct a Hurwitz polynomial ps(s) such that the end point
p1(8) = pa(s) + &o(s) is Hurwitz stable and the segment joining them is of constant
degree but contains unstable polynomials. The proof is omitted as it is similar to
the real case which is proved in detail in the next lemma. It suffices to mention
that when w = w* is such that

dspéo (w)

0 2.119
N > (2.119)

we can take
pi(s) = (s — jw" )t(s) + pubo(s) (2.120)
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pa(8) = (s — jw* )t(s) — ubo(s) (2.121)
where t(s) is chosen to be a complex Hurwitz polynomial of degree greater than the
degree of é4(s), and satisfying the conditions:

| Xo(w")| = | X ()]

d%n ((.d) > dgpt ((.d)

dw . dw

> 0. (2.122)

*

wW=w w=w

The existence of such #(s) is clear from Remark 2.1 following Lemma 2.12. The
proof is completed by noting that p;(s) are Hurwitz, the segment joining p;(s)
and py(s) is of constant degree (for small enough |g|), but the segment polynomial
+(p1(s) + p2(s)) has s = jw* as a root. &

Real Convex Directions

The following Lemma gives the necessary and sufficient condition for &(s) to be a
convex direction in the real case.

Lemma 2.16 (Real Convex Direction Lemma)
Consider the real segment {6, (s) : A € [0,1]} of degree n. The real polynomial §,(s)
ts a convex direction if and only of

d%o (w)
dw

<
- 2w

sin (25, (w)) ‘ (2.123)

is satisfied for every frequency w > 0 such that & (jw) £ 0. Equivalently

dXo(w) < ‘ Xo(w)
do — w

(2.124)

for every frequency w > 0 such that 6y(jw) £ 0.

Proof. The equivalence of the conditions (2.124) and (2.123) has already been
shown (see the proof of Theorem 2.1) and so it suffices to prove (2.124). If degree
6;(s) = 1 for ¢ = 1,2, degree 6g(s) < 1 and (2.124) holds. TIn this case it is
straightforward to verify from the requirements that the degree along the segment
is 1 and &;(s), ¢ = 1,2 are Hurwitz, that no polynomial on the segment has a root
at s = 0. Hence such a segment is stable by the Boundary Crossing Theorem. We
assume henceforth that degree[8;(s)] > 2 for ¢ = 1,2. In general the assumption
of invariant degree along the segment (the leading coefficients of §;(s) are of the
same sign) along with the requirement that §;(s),i = 1,2 are Hurwitz imply that
the constant coefficients of §;(s),7 = 1,2 are also of the same sign. This rules out
the possibility of any polynomial in the segment having a root at s = 0.

Now if wg > 0 is such that éy(jwy) = 0, and é5(jwg) + Aoy (jwy) = 0 for some
real Ay € (0, 1) it follows that é9(jwy) = 0. However this would contradict the fact
that é2(s) is Hurwitz. Thus such a jwq also cannot be a root of any polynomial on
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the segment. To proceed let us first consider the case where &(s) = as + b with
b # 0. Here (2.124) is again seen to hold. From Lemma 2.13 it follows that s = jw,
is a root of a polynomial on the segment only if for some Aq € (0, 1)

ds | des, des,
dw w=wg ’ dw w=wo * (1 - AO) dw w=wg (2125)
In the present case we have
a
tan o5 (w) = 7 (2.126)
and therefore the left hand side of (2.125)
ngéO
L =" (2.127)

Since §;(s),i = 1,2 are Hurwitz and of degree > 2 we have from Lemma 2.10 that

ngQl

0 2.128
dw w=wq g ( )
so that the right hand side of (2.125)
dips dips
Ag——= 1-X = ) 2.12
’ dw w=wg * ( 0) dw ‘w:wo >0 ( 9)

This contradiction shows that such a jwy cannot be a root of any polynomial on
the segment, which must therefore be stable.

We now consider the general case where degree[8y(s)] > 2 or 6(s) = as. From
Lemma 2.14 we see that the segment has a polynomial with a root at s = jwy only

dX() (w)
dw

dX2 (w)
dw

dX1 (w)
dw

=X —1—(1—/\0)

W=wg

(2.130)

wW=Wwo wW=Wwo

Since 6;(s) and 65(s) are Hurwitz it follows from Theorem 2.1 that we have

dXiw) ‘Xi(“’) w0, i=1,2 (2.131)

dw w

and Ag € (0,1). Furthermore we have
|X0(w)|wzwu = |X1 (w)|w:w0 = |X2(W)|w:w0 (2132)

so that the right hand side of (2.130) satisfies

dX2 ((.d)
dw

+ (1= o) d)i;f")

wW=wgq wW=wgop

Ao (2.133)
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X X
> Ao ‘ﬂ +(1— Ao) ‘M _ | Xolwo) | (2.134)
w w=wp i w=wp “o
On the other hand the left hand side of (2.130) satisfies
dX, X
d¥o)| | Xolwn)| (2.135)
R R wo

This contradiction proves that there cannot exist any wy € R for which (2.130)
holds. Thus no polynomial on the segment has a root at s = jwgy, wg > 0 and
the stability of the entire segment follows from the Boundary Crossing Theorem of
Chapter 1. This completes the proof of sufficiency.

The proof of necessity requires us to show that if the condition (2.123) fails there
exists a Hurwitz polynomial ro(s) such that ri(s) = ra(s) + éo(s) is also Hurwitz
stable but the segment joining them is not. Suppose then that §,(s) is a given
polynomial of degree n and w* > 0 is such that & (jw*) # 0 but

ng;,‘D (w) > sin (29050 (w))
dw 2w

(2.136)

for some w* > 0. Tt is then possible to construct a real Hurwitz polynomial ¢(s) of
degree > n — 2 such that

ri(s) := (52 + w*Q)t(s) + pba(s) (2.137)
and .
ro(s) = (8% + w* )(s) — pubo(s) (2.138)

are Hurwitz and have leading coefficients of the same sign for sufficiently small |p|.
It suffices to choose (s) so that

sin 25, (w*)
2w*

dip
w=w* dw

nggD
dw

(2.139)

| sin 2¢4 (w*)
N 2w ’

w=w*

The fact that such t(s) exists is guaranteed by Lemma 2.12. Tt remains to prove
that r;(s), ¢ = 1,2 can be made Hurwitz stable by choice of p.

For sufficiently small ||, n — 2 of the zeros of r;(s),7 = 1,2 are close to those of
t(s), and hence in the open left half plane while the remaining two zeros are close
to +jw*. To prove that that the roots lying close to +jw* are in the open left half
plane we let s(u) denote the root close to jw* and analyse the behaviour of the real
part of s(p) for small values of p. We already know that

Re[s(p)]],—, = 0. (2.140)

We will establish the fact that Re[s(x)] has a local maximum at g4 = 0 and this
together with (2.140) will show that Re[s(u)] is negative in a neighbourhood of
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pu = 0, proving that r;(s), ¢ = 1,2 are stable. To prove that Re[s(y)] has a local
maximum at g = 0 it suffices to establish that

d
—DRe|s =0 2.141
el (241)
and e
—Re[s(p < 0. 2.142
he ] (2.142)
Now since s(j) is a root of r(s) we have
r1(s(p)) = (s(p) = jw") u(s(p)) + péo (s(p)) = 0 (2.143)
where
u(s) := (s + jw™)t(s). (2.144)
By differentiating (2.143) with respect to p we get
BT o)+ (o) — o) BT T
and hence . -
ds(/") :_60(]“’ ) - _ 60(]“ ) ) (2.146)
dp {,—p  u(Ger) 2jwrt(jw*)
From the fact that in 25, (") 0 201 ()
sin 25, (wW*) | [sin 2, (w*
e ‘ = e (2.147)

(see (2.139)) it follows that 8(jw*) and ¢(jw*) have arguments that are equal or
differ by = radians so that

60 (]W*)
- 2.148
1s purely real. Therefore we have
d
—Re[s(pu =0.
b

To complete the proof we need to establish that

d%Re [5(42)]

=0

By differentiating (2.145) once again with respect to p we can obtain the second
derivative. After some calculation we get:

P G (1
dp? 2w*)? 2 (jwr) \u(jw*) dw

o b(fur)  dw

pn=0 wW=w
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Using the fact that io((j];:‘):)) is purely real and the formulas (see (2.45))

1 du(jw) _depy
m e )= (2:149)
1 déy (jw) _dys,
Im [60(jw*) 7o T | (2.150)
we get
d? 1 82(jw*) [ des dyp
—R =— - - - = . (2151
dMQ e[S(ﬂ)] #=0 2(("}*)2 t2(]w*) ( dw w=w* dw w:w*> ( ’ )
Now y d
eu|  _ dge
s i (2.152)
and by construction
dos, et
dw w=w* dw w=w*
Once again using the fact that 6;)((;:‘)**)) is real we finally have from (2.151):
d2
WRG [s(z0)] ., < 0. (2.153)
u_

This proves that the real part of s(u) is negative for u in the neighbourhood of
tt = 0 and therefore 7 (s) must be stable as claimed. An identical argument shows
that r9(s) is stable. The proof is now completed by the fact that 7 (s), i = 1,2
are Hurwitz and the segment joining them is of constant degree but the segment
polynomial £(ri(s) + ra(s)) has s = jw* as a root. Thus & (s) is not a convex
direction. &

We illustrate the usefulness of convex directions by some examples.

Example 2.7. Consider the line segment joining the following two endpoints which
are Hurwitz:

81 (s) := s+ 1215 + 8.465” + 11.744s + 2.688
bo(s) := 2s* + 95 +12s* + 105 + 3.

We first verify the stability of the segment by using the Segment Lemma. The
positive real roots of the polynomial

65 ()65 () — 85 ()87 (w) = 0
that is

(W' — 8.46w” + 2.688)(—9w” + 10) — (2w* — 12w? + 3)(—12.1w” + 11.744) = 0



Sec. 2.56. CONVEX DIRECTIONS 109

are
2.1085,  0.9150,  0.3842.

However, none of these ws satisfy the conditions 2) and 3) of the Segment Lemma
(Lemma 2.4). Thus, we conclude that the entire line segment is Hurwitz.
Next we apply the Real Convex Direction Lemma to the difference polynomial

So(s) : = 85(s) — 61 (s)
=s* —3.15% + 3.54s* — 1.744s5 + 0.312

so that
So(jw) = (w4 — 3.54w? + 0.312) +j (3.1w3 — 1.744w)
s5(w) b4(w)
and the two functions that need to be evaluated are
L () - (242) ()
T Ps\W) = . 2
dw (@)™ + (6(w))
B (w? — 3.54w? 4+ 0.312)(9.3w? — 1.744) — (4w® — 7.08w)(3.1w?® — 1.744w)
o (w* — 3.54w? 4+ 0.312)? + (3.1w3 — 1.744w)?
and
sin (25, (w)) ‘ _ 65 ()85 («)
2w w [(85(w))? + (6} (w))?]

(w* — 3.54w? + 0.312)(3.1w? — 1.744)
(w? — 3.54w? + 0.312)2 + (3.1u® — 1.744w)2 |

These two functions are depicted in Figure 2.14. Since the second function dominates
the first for each w the plots show that &(s) is a convex direction. Consequently,
the line segment joining the given é;(s) and 65(s) is Hurwitz. Furthermore since
8y(s) is a convex direction, we know, in addition, that every line segment of the
form 6(s) 4 Adn(s) for A € [0,1] is Hurwitz for an arbitrary Hurwitz polynomial é(s)
of degree 4 with positive leading coefficient, provided §(s) + é¢(s) is stable. This
additional information is not furnished by the Segment Lemma.

Example 2.8. Consider the Hurwitz stability of the segment joining the following
two polynomials:

61(s) = 1.4s* +65° +2.2s* + 1.65+ 0.2
b2(s) = 0.4s* +1.65° + 25> + 1.65 + 0.4.

Since 61 (s) and 6(s) are stable, we can apply the Segment Lemma to check the sta-
bility of the line segment [&; (s), 82(s)]. First we compute the roots of the polynomial
equation:

87 (w)é3(w) — 5(w)é7 (w) =
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6

i il
sin(2@s,(w))
T w

| il

Figure 2.14. §,(s) is a convex direction (Example 2.8)

(14w* — 2.20° + 0.2)(=1.6w” + 1.6) — (0.4w* — 2w” + 0.4)(—6w” + 1.6) = 0.

There is one positive real root w &~ 6.53787. We proceed to check the conditions 2)
and 3) of the Segment Lemma (Lemma 2.4):

(1.4w4 — 22w + 02)(04(.04 — w4 0~4)|wz6.53787 >0
(=6w” + 1.6)(—1.6w” + 1.6)|yx6.53787 > 0.

Thus, we conclude that the segment [61(s), 82(s)] is stable.
Now let us apply the Real Convex Direction Lemma to the difference polynomial

bo(s) = b61(s) — b2(s)
=s*+4453+0.2s> —0.2.

We have

So(jw) = (W* = 0.20% — 0.2) +j (—4.4w%) .
N— —’
bg(w) bg(w)
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The two functions that need to be evaluated are
nggD(W) _

dw

(wh = 0.2w? — 0.2)(—13.20w?) — (4w® — 0.4w)(—4.4w?)
(w* —0.2w? = 0.2)% 4+ (—4.4w3)?

and
sin(2yps, (w)) (w* = 0.2w? — 0.2)(—4.4w?)

2w (Wt —0.20w? = 0.2)> + (—4.4w?)? |
These two functions are depicted in Figure 2.15. Since the second function does not
dominate the first at each w we conclude that 83(s) is not a convex direction.

4.5

35

%5050 (w)

L3p (25, (@)) :
2w

/
, \
, \
0.5 / \
D / AN .
’ N
/ \

Figure 2.15. éy(s) is a nonconvex direction (Example 2.9)

Remark 2.2. This example reinforces the fact that the segment joining 6;(s) and
82(s) can be stable even though 6(s) = 8;(s) — 6+(s) is not a convex direction. On
the other hand, even though this particular segment is stable, there exists at least
one Hurwitz polynomial §5(s) of degree 4 such that the segment [82(s), 62(s)+ 80 (s)]
is not Hurwitz even though é»(s) and é2(s) + 6o(s) are.
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2.6 THE VERTEX LEMMA

The conditions given by the Convex Direction Lemmas are frequency dependent. It
is possible to give frequency-independent conditions on éy(s) under which Hurwitz
stability of the vertices implies stability of every polynomial on the segment [é,(s),
82(s)]. In this section we first consider various special forms of the difference poly-
nomial &y (s) for which this is possible. In each case we use Lemma 2.13 and Hurwitz
stability of the vertices to contradict the hypothesis that the segment has unstable
polynomials. We then combine the special cases to obtain the general result. This
main result is presented as the Vertex Lemma.

We shall assume throughout this subsection that each polynomial on the segment
[61(s), 62(s)] is of degree n. This will be true if and only if 6,(s) and é2(s) are of
degree n and their leading coefficients are of the same sign. We shall assume this
without loss of generality.

We first consider real polynomials of the form

Sa(s) = st(as +b)P(s)

where t is a nonnegative integer and P(s) is odd or even. Suppose arbitrarily, that
t is even and P(s) = E(s) an even polynomial. Then

6o(s) = s"E(s)b+ s' T E(s)a . (2.154)
——— N’
ﬁgven(s) 5gdd(s)

Defining é,(jw) as before we see that

fan 8, (w) = % (2.155)
so that p
Ps
= = 0. 2.1
7 0 (2.156)
From Lemma 2.13 (i.e., (2.94)), we see that
dps, dips,
o PR O = (2.157)

and from Lemma 2.10 we see that if &, (s) and 6,(s) are Hurwitz, then

des
=2 >0 2.158
o (2.158)
and p
©Ls
< >0 2.159
ke (2.159)

so that (2.157) cannot be satisfied for A € [0,1]. An identical argument works
when ¢ is odd. The case when P(s) = O(s) is an odd polynomial can be handled
similarly by using (2.95) in Lemma 2.13. The details are left to the reader. Thus
we are led to the following result.
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Lemma 2.17 If §,(s) = s'(as + b)P(s) where t > 0 is an integer, a and b are
arbitrary real numbers and P(s) ts an even or odd polynomial, then stability of the
segment [81(s),62(s)] is implied by those of the endpoinis 61(s), 82(s).

We can now prove the following general result.
Lemma 2.18 (Vertex Lemma: Hurwitz Case)

a) Let §1(s) and 82(s) be real polynomials of degree n with leading coefficients of
the same sign and let

bo(s) = 61(s) — b2(s)
= A(s)s' (as + b)P(s) (2.160)
where A(s) is antiHurwitz, t > 0 is an integer, a, b are arbitrary real numbers,

and P(s) is even or odd. Then stability of the segment [61(s), 65(s)] is implied
by that of the endpoints 6,(s), é2(s).

b) When 6q(s) is not of the form specified in a), stability of the endpoints is not
sufficient to guarantee that of the segment.

Proof.
a) Write
A(s) = AT (s) 4+ A () (2.161)
and let B
A(s) 1= ATV (s) — A°%(s). (2.162)

Since A(s) is antiHurwitz, A(s) is Hurwitz. Now consider the segment

%4(5)61 (s), A(s)d2(s)] which is Hurwitz if and only if [61(s), 62(s)] is Hurwitz.
ut

A(s5)80(s) = A(5)61(s) — A(8)62(s)
(A7 (5))* = (A°"(s))?] 5" (as + ) P(s).  (2.163)

T(s)

Since T'(s) is an even polynomial we may use Lemma 2.17 to conclude that
the segment [A(s)61(s), A(s)d2(s)] is Hurwitz if and only if A(s)é;(s) and

A(s)82(s) are. Since A(s) is Hurwitz it follows that the segment [61(s), 82(s)]
is Hurwitz if and only if the endpoints é;(s) and é2(s) are.
b) We prove this part by means of the following example. Consider the segment
5x(s) = (24 14X)s? + (54 14X0)s® + (6 + 14X)s* + 45 + 3.5. (2.164)
Now set A = 0 and A = 1, then we have

Salazo = &i(s) = 25" + 55 + 652 + 45+ 3.5
Sxlazt = 6o(s) = 165" + 195" + 20s” + 4s + 3.5
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and consequently,

60 (5) = 62 (5) — 61 (S)
= 14s* + 145% + 145°
= 14s%(s* + s+ 1).

It can be verified that two endpoints é;(s) and é2(s) are Hurwitz. Notice that
since (s> + s+ 1) is Hurwitz with a pair of complex conjugate roots, &,(s)
cannot be partitioned into the form of (2.160). Therefore, we conclude that
when 6y (s) is not of the form specified in (2.160), stability of the endpoints is
not sufficient to guarantee that of the segment.

]

Remark 2.3. We remark that the form of §;(s) given in (2.160) is a real convex
direction.

Example 2.9. Suppose that the transfer function of a plant containing an uncer-
tain parameter is written in the form:

Py
P1 (S) + AP()(S)
where the uncertain parameter A varies in [0, 1], and the degree of P;(s) is greater
than those of Py(s) or Pa(s). Suppose that a unity feedback controller is to be

designed so that the plant output follows step and ramp inputs and rejects sinusoidal
disturbances of radian frequency wq. Let us denote the controller by

_ @(s)
Qi(s)

A possible choice of Q1 (s) which will meet the tracking and disturbance rejection
requirements is

P(s) =

C(s)

Q1(s) = s%(s* + wi)(as + b)
with Q2(s) being of degree 5 or less. The stability of the closed loop requires that
the segment

8x(5) = Q2(8)Pa(s) + Qu(s)(Pr(s) + APy (s),

be Hurwitz stable. The corresponding difference polynomial é¢(s) is
60(8) = Ql(S)Po(S).

With @, (s) of the form shown above, it follows that &,(s) is of the form specified
in the Vertex Lemma if Py(s) is anti-Hurwitz or even or odd or product thereof.
Thus, in such a case robust stability of the closed loop would be equivalent to the
stability of the two vertex polynomials

61(s) = Q2(s)Pa(s) + Qi (s)Pr (s)
02(s) = Q2(s)Pa(s) + Qi (s)Pr(s) + Qi (s) Pa(s).



Sec. 2.6. THE VERTEX LEMMA 115

Letwy=1,a=1,and b =1 and
Pi(s)=s+s+1, Po(s)=s(s—1), Pa(s)=s>+2s+1

Qs(s) = s° + 5s* +10s° + 105 + 5s + 1.

Since Py(s) = s(s— 1) is the product of an odd and an antiHurwitz polynomial, the
conditions of the Vertex Lemma are satisfied and robust stability is equivalent to
that of the two vertex polynomials

61(s) = 25" 4+ 95° + 2457 + 385" +375% + 225" + Ts + 1
b2(s) = 35" + 9s° 4 245° 4+ 38s? 4 365% + 2257 + Ts + 1.

Since & (s) and 85(s) are Hurwitz, the controller

_ Qa(s) 5455t + 1057 +10s* + 5s + 1

T EEES PR

robustly stabilizes the closed loop system and provides robust asymptotic tracking
and disturbance rejection.

C(s)

The Vertex Lemma can easily be extended to the case of Schur stability.
Lemma 2.19 (Vertex Lemma: Schur Case)

a) Let 61(z) and 85(%) be polynomials of degree n with 6, (1) and 65(1) nonzero and
of the same sign, and with leading coefficients of the same sign. Let

60(2) = 61 (Z) — 62(2)
= A(2)(z = )" (2 + 1)*(az + b) P(2) (2.165)
where A(z) is antiSchur, t1, t5 > 0 are integers, a, b are arbitrary real num-

bers, and P(z) is symmetric or antisymmetric. Then Schur stability of the
segment [61(2), 62(2)] is implied by that of the endpoints 61(z), §2(2).

b) When éq(2) is not of the form specified in a), Schur stability of the endpoints is
not sufficient to guarantee that of the segment.

Proof. The proof is based on applying the bilinear transformation and using the
corresponding results for the Hurwitz case. Let P(z) be any polynomial and let

P(s)i= (s — 1)"P (ii)

If P(z) is of degree n, so is P(s) provided P(1) # 0. Now apply the bilinear
transformation to the polynomials 8,(2), 61(2) and 62(z) to get dq(s), 61(s) and
82(s), where 6y(s) = 61(s) — 82(s). The proof consists of showing that under the
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assumption that 6o(z) is of the form given in (2.165), 6y(s), 61(s), and &s(s) satisfy
the conditions of the Vertex Lemma for the Hurwitz case. Since 8;(1) and 85(1)
are of the same sign, 6x(1) = A6 (1) + (1 — A)62(1) # 0 for A € [0,1]. This in turn
implies that 6,(s) is of degree n for all A € [0,1]. A straightforward calculation
shows that

bo(s) = A(5)2'1(25)"2(cs + d) P(s)

which 1s precisely the form required in the Vertex Lemma for the Hurwitz case.
Thus, the segment &, (s) cannot have a jw root and the segment 63 (z) cannot have
a root on the unit circle. Therefore, Schur stability of 6, (z) and 8,(z) guarantees
that of the segment. &

2.7 EXERCISES

2.1 Consider the standard unity feedback control system given in Figure 2.16

. o) = Gt ~
Figure 2.16. A unity feedback system
where ( )
s+ 1 s—1
Gls) = s%(s+p)’ (s) = s(s+3)(s? — 25 + 1.25)

and the parameter p varies in the interval [1, 5].

a) Verify the robust stability of the closed loop system. Is the Vertex Lemma
applicable to this problem?

b) Verify your answer by the s-plane root locus (or Routh-Hurwitz criteria).

2.2 Rework the problem in Exercise 2.1 by transforming via the bilinear trans-
formation to the z plane, and using the Schur version of the Segment or Vertex
Lemma. Verify your answer by the z-plane root locus (or Jury’s test).

2.3 The closed loop characteristic polynomial of a missile of mass M flying at
constant speed is:

1
8(s) = (—83, 2004 108, 110K — 9,909.6K M)
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1
+ (—3, 328 + 10, 208.2K + 167.6M> s

1 . 1 1N,
+ (—1, HAT.T9K i + 1,548 — 877.179K + 6.704M 2.52497K M> s

+ (64 —24.1048 K + 0.10475%> s34 st

where the nominal value of M, M° = 1. Find the range of K for robust stability if
L e [1,4].
Answer: K =[-0.8,1.2].

2.4 For the feedback system shown in Figure 2.17

. n(s, @)
+ K d(s, @) g

Figure 2.17. Feedback control system

where
n(s,a)=s*+ (B —a)s+1
d(s,a) = 85 + (4 + a)s® + 65+ 4 + .

Partition the (K, o) plane into stable and unstable regions. Show that the stable
region is bounded by

5+ K(3—a)>0

and

K+a+4>0.

2.5 Consider the feedback system shown in Figure 2.18.

—sT K P(s) -

Figure 2.18. Feedback control system
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Let
n(s) 653 + 185 4+ 305 + 25

T d(s) '+ 653+ 1852 1 30s + 25
Determine the robust stability of the system for T' = 0.1sec with 0 < K < 1.
Hint: Check that

P(s)

Py(s) =d(s) and Py(s) = d(s) +e " n(s)

Py(jw)

. Piw)
2.6 Consider the system given in Figure 2.19

are stable and the plot does not cut the negative real axis.

r e (7] n(z) Yy

T / d(z)

Figure 2.19. Feedback control system

(- () (o)
o-(3) (D25

Find the range of stabilizing K using the Schur Segment Lemma.
Answer: K < —1.53 and K > —0.59

and let

2.7 Show that éy(s) given in (2.160) is a convex direction.

2.8 Show that the following polynomials are convex directions.
a) bo(s) = (s =r)(s +ra)(s —rs)(s +ra)- (s + (=1)"1m)
where 0<ri <re<r3<:---<rp.
b) bo(s) = (s+m)(s —ra)(s +r3)(s = ra) -~ (5 = (=1)"rm)

where 0<r <ry <rz3 <<y

2.9 Is the following polynomial a convex direction?

Sa(s) = st — 267 — 1357 + 14s + 24
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2.10 Consider the two Schur polynomials:

Pi(z) = 2" +252° 42,562 + 1.312 + 0.28
Py(z) = 2* +0.22° +0.172% + 0.0522 + 0.0136

Check the Schur stability of the segment joining these two polynomials by using:

a) Schur Segment Lemma 1
b) Schur Segment Lemma 2
¢) Schur Segment Lemma 3

d) Bounded Phase Lemma

2.11 Consider the feedback control system shown in Figure 2.20

. n(s, )
+ K d(s, @) g

Figure 2.20. Feedback control system

where
n(s,a) = s+«
d(s,a) = s* + (20)s* + as — 1
and « € [2,3]. Partition the K axis into robustly stabilizing and nonstabilizing

regions.
Answer: Stabilizing for K € (—4.5,0.33) only.

2.12 Repeat Exercise 2.11 when there is a time delay of 1sec. in the feedback loop.

2.13 Consider a feedback system with plant transfer function G(s) and controller
transfer function C(s):

N(s)
D(s)
Show that if N(s) is a convex direction there exists at most one segment of stabilizing
gains K.

G(s) = C(s) = K. (2.166)

2.14 Prove that 6q(s) given in the Vertex Lemma (2.160) is a real convex direction.

2.15 Carry out the construction of the polynomial é(s) required in the proof of
Lemma 2.12 for the angle # lying in the second, third and fourth quadrants.
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2.8 NOTES AND REFERENCES

The Segment Lemma for the Hurwitz case was derived by Chapellat and Bhat-
tacharyya [57]. An alternative result on segment stability involving the Hurwitz
matrix has been given by Bialas [39]. Bose [46] has given analytical tests for the
Hurwitz and Schur stability of convex combinations of polynomials. The Con-
vex Direction Lemmas for the real and complex cases and Lemma 2.12 are due to
Rantzer [195]. The Schur Segment Lemma 1 (Lemma 2.5) is due to Zeheb [246] and
Schur Segment Lemma 2 (Lemma 2.6) and Schur Segment Lemma 3 (Lemma 2.7)
are due to Tin [224]. The results leading up to the Vertex Lemma were developed by
various researchers: the monotonic phase properties given in Lemmas 2.10 and 2.11
are due to Mansour and Kraus [173]. An alternative proof of Lemma 2.9 is given in
Mansour [169]. In Bose [47] monotonicity results for Hurwitz polynomials are de-
rived from the point of view of reactance functions and it is stated that Theorem 2.1
follows from Tellegen’s Theorem in network theory. The direct proof of Theorem 2.1
given here as well as the proofs of the auxiliary Lemmas in Section 4 are due to
Keel and Bhattacharyya [136]. Lemma 2.17 is due to Hollot and Yang [119] who
first proved the vertex property of first order compensators. Mansour and Kraus
gave an independent proof of the same lemma [173], and Peterson [189] dealt with
the antiHurwitz case. The unified proof of the Vertex Lemma given here, based
on Lemma 2.13 was first reported in Bhattacharyya [31] and Bhattacharyya and
Keel [32]. The vertex result given in Exercise 2.8 was proved by Kang [129] using
the alternating Hurwitz minor conditions. The polynomial used in Exercise 2.9 is
taken from Barmish [12]. Vertex results for quasipolynomials have been developed

by Kharitonov and Zhabko [147].



