Chapter 4

THE PARAMETRIC
STABILITY MARGIN

In this chapter we extend the stability ball calculation developed in Chapter 3 to ac-
commodate interdependent perturbations among the polynomial coefficients. This
is the usual situation that one encounters in control systems containing uncertain
parameters. We calculate the radius of the largest stability ball in the space of
real parameters under the assumption that these uncertain parameters enter the
characteristic polynomial coefficients linearly or affinely. This radius serves as a
quantitative measure of the real parametric stability margin for control systems.
Both ellipsoidal and polytopic uncertainty regions are considered. Examples are in-
cluded to illustrate the calculation of the parametric stability margin for continuous
time and discrete time control systems and also those containing time delay. In the
polytopic case we establish the stability testing property of the ezposed edges and
some extremal properties of edges and vertices. These are useful for calculating the
worst case stability margin over an given uncertainty set which in turn is a measure
of the robust performance of the system. The graphical Tsypkin-Polyak plot for
stability margin calculation (parameter space version) and the theory of linear disc
polynomials are described.

4.1 INTRODUCTION

In Chapter 3 we calculated the radius of the stability ball for a family of real poly-
nomials in the space of the polynomial coefficients. The underlying assumption
was that these coefficients could perturb independently. This assumption is rather
restrictive. In control problems, the characteristic polynomial coefficients do not
in general perturb independently. At the first level of detail every feedback system
is composed of at least two subsystems, namely controller and plant connected in
a feedback loop. The characteristic polynomial coefficients of such a system is a
function of plant parameters and controller parameters. Although both parameters
influence the coefficients, the nature of the two sets of parameters are quite dif-
ferent. The plant contains parameters that are subject to uncontrolled variations
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depending on the physical operating conditions, disturbances, modeling errors, etc.
The controller parameters on the other hand, are often fixed during the operation
of the system. However, at the design stage, they are also uncertain parameters to
be chosen.

Consider the standard feedback system shown in Figure 4.1.

(O > G(S,p) >

C(s,x)

Figure 4.1. Standard feedback system with parameters

Suppose that the plant transfer function contains the real parameter vector p
and the controller is characterized by the real vector x. Let these transfer functions
be respectively

G(s) = G(s,p), C(s) = C(s,x).

The parameter vector p specifies the plant completely and the choice of the vector
x likewise uniquely determines the controller C'(s).

The Parametric Stability Margin

Suppose that p” denotes the nominal value of the plant parameter vector p. Con-
sider a fized controller C?(s), with parameter x°, which stabilizes the nominal plant
G(s,p°). Now let Ap = p—p" denote a perturbation of the plant parameter vector
from the nominal p®. A natural question that occurs now is: How large can the
perturbation Ap be, without destroying closed loop stability? A bound on the size
of Ap for which closed loop stability is guaranteed is useful as it provides us with
a ball in parameter space within which the parameters can freely vary without de-
stroying closed loop stability. An even more useful quantity to know is the mazimal
size of such a stability ball. Besides providing us with a nonconservative evaluation
of the size of the stability region, this would also also serve as a bona fide measure
of the performance of the controller C°(s). Accordingly the parametric stability
margin is defined as the length of the smallest perturbation Ap which destabilizes
the closed loop. This margin serves as a quantitative measure of the robustness of
the closed system with respect to parametric uncertainty evaluated at the nominal
point p®. It is useful in controller design as a means of comparing the performance
of proposed controllers.



166 THE PARAMETRIC STABILITY MARGIN  Ch. 4

The determination of the parametric stability margin is the problem that one
faces in robustness analysis. This problem can be solved with p fixed at the nominal
point p® or with p lying in a prescribed uncertainty set €. In the latter case it is
desirable to find the worst case stability margin over the uncertainty set. This worst
case margin is a measure of the worst case performance of the controller x° over (.
This is regarded also as a measure of the robust performance of the controller and
can also be the basis of comparison of two proposed controllers.

In synthesis or design problems one is faced with the task of choosing the con-
troller parameter x to increase or mazimize these margins. In addition control
design involves several other issues such as tolerance of unstructured uncertainty
and nonlinearities, quality of transient response, integrity against loop failures, and
boundedness of various signal levels in the closed loop system. Because of the com-
plexity and interrelatedness of these issues it is probably tempting to treat the entire
design exercise as an optimization problem with various mathematical constraints
reflecting the physical requirements. In the control literature this approach has
been developed in recent years, to a high level of sophistication, with the aid of
the Youla parametrization of all stabilizing controllers. The latter parametrization
allowed for the systematic search over the set of all stabilizing controllers to achieve
performance objectives such as H., norm or ¢; norm optimization. However rel-
atively little progress has been made with this approach in the sphere of control
problems involving real parametric stability margins and also in problems where
the controller has a fixed number of adjustable parameters.

In this chapter we deal only with the real parametric stability margin. Even in
this apparently simple case the analysis and synthesis problems mentioned above
are unsolved problems in general. In the special case where the parameters enter
the characteristic polynomial coefficients in an affine linear or multilinear fashion
the problem of calculating the real parametric stability margin now has neat solu-
tions. Fortunately, both these cases fit nicely into the framework of control system
problems. In the present chapter, we deal with the linear (including affine) case
where an exact calculation of the parametric stability margin can be given. The
multilinear case will be dealt with in Chapters 10 and 11. The calculation of stabil-
ity margins for systems subject to both parametric and unstructured perturbations
will be treated in Chapter 9.

The Linear Case

The characteristic polynomial of the standard closed loop system in Figure 4.1 can
be expressed as

5(s,x,p) = Z 8(x,p)s’.
i=0

As an example suppose that the plant and controller transfer functions, denoted
respectively by G(s,p) and C(s,x) are:
T3

x15—|—x2'

— b3 —
G(s,p) = o —— C(s,x) =
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Then the characteristic polynomial of the closed loop system is

6(s,x,p) = \ﬁi_/ 53+(P11‘1+$2)52+(P2$1 + pras) s+ (pato + pszs) .

63(X’p) 62(X7p) 61(X7p) 60(X7p)

For fixed values of the plant parameter p, we see that the coefficients of the
characteristic polynomial are linear functions of the controller parameter x:

1 0 0 65 (%)
10 il | bs(x)
p2 p1 O xz | ai(x)

0 p2 p3 3 bo(x)

Similarly, for fixed values of the controller parameter x, the coefficients of the char-
acteristic polynomial are linear functions of the plant parameter p as follows:

0 0 0 x 83(p)
xy 0 0 b1 n 22 | _ | b2(p)
zy @ 0 bz 0 |~ | &)
0 Lo I3 ps 0 60 (p)

The characteristic polynomial can also be written in the following forms:

8(s,p) = (xlsz +xo8)pr + (15 + 22)p2 + 3 ps+ (x153 + azzsz)
N~ N——— —
a1(s) az(s) as(s) b(s)
=(x1s+x s2 +p1s+ + =z .
( 1 2)( P pz) \E’-/ Ps

Fi(s) Pi(s) Fa(s) Pa(s)

Motivated by this we will consider in this chapter the case where the controller x
is fixed and therefore é;(x,p) are linear functions of the parameters p. We will
sometimes refer to this simply as the linear case. Therefore, we will consider the
characteristic polynomial of the form

8(s,p) = ai(s)p1 +az(s)pa + -+ ar(s)pr + b(s) (4.1)

where a;(s), ¢ = 1,2,---,{ and b(s) are fixed polynomials and py, pa, ---, p are
the uncertain parameters. We will also develop results for the following form of the
characteristic polynomial:

8(s,p) = F1(s)Pi(s) + Fa(s)Pa(s) + - - -+ Fy(5) Py () (4.2)

wherein the Fj(s) are fixed and the coefficients of P;(s) are the uncertain parameters.
The uncertain parameters will be allowed to lie in a set £ which could be ellipsoidal
or box-like.

The problems of interest will be: Are all characteristic polynomials correspond-
ing to the parameter set 2, stable? How large can the set £ be without losing
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stability? What is the smallest value (worst case) of the stability margin over a
given uncertainty set Q7 How do we determine the stability margin if time delays
are also present in the system of Figure 4.17 We shall provide constructive solutions
to these questions in this chapter. We start in the next section with a character-
ization of the stability ball in parameter space based on the Boundary Crossing
Theorem.

4.2 THE STABILITY BALL IN PARAMETER SPACE

In this section we give a useful characterization of the parametric stability margin in
the general case. This can be done by finding the largest stability ball in parameter
space, centered at a “stable” nominal parameter value p°. Let & C C denote as
usual an open set which is symmetric with respect to the real axis. & denotes the
stability region of interest. In continuous-time systems & may be the open left half
plane or subsets thereof. For discrete-time systems & is the open unit circle or a
subset of it. Now let p be a vector of real parameters,

P= [plap2a' : 'Jpl]T

The characteristic polynomial of the system is denoted by
8(s,p) = 6n(P)s” +én_1(P)s" ™" + -+ &o(p).

The polynomial é(s,p) is a real polynomial with coefficients that depend continu-
ously on the real parameter vector p. We suppose that for the nominal parameter
p=p°, 6(s,p") := 6°(s) is stable with respect to S (has its roots in §). Write

Ap:=p-p" = =), p2— 15, -, o — pf]

to denote the perturbation in the parameter p from its nominal value p°. Now let
us introduce a norm || - || in the space of the parameters p and introduce the open
ball of radius p

Blp,p") ={p:[lp—p°l <p}. (4.3)
The hypersphere of radius p is defined by
S(p.p’) ={p:[lp—p°l = p} (4.4)

With the ball B(p, p°) we associate the family of uncertain polynomials:
Ay(s) = {é(s,p" + Ap) : ||Ap|| < p}. (4.5)

Definition 4.1. The real parametric stability margin in parameter space is defined
as the radius, denoted p*(p"), of the largest ball centered at p° for which é(s, p)
remains stable whenever p € B(p*(p"), p”).
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This stability margin then tells us how much we can perturb the original parameter
p° and yet remain stable. Our first result is a characterization of this maximal
stability ball. To simplify notation we write p* instead of p*(p?).

Theorem 4.1 With the assumptions as above the parametric stabilily margin p* s
characterized by:

a) There exists a largest stability ball B(p*,p°) centered at p°, with the property
that:

al) For every p' within the ball, the characteristic polynomial 6(s,p’) is
stable and of degree n.

a2) At least one point p” on the hypersphere S(p*,p°) itself is such that
8(s,p”) is unstable or of degree less than n.

b) Moreover if p” is any point on the hypersphere S(p*,p°) such that é(s,p”)
is unstable, then the unstable roots of 6(s,p”) can only be on the stability
boundary.

The proof of this theorem is 1dentical to that of Theorem 3.1 of Chapter 3 and is
omitted. It is based on continuity of the roots on the parameter p. This theorem
gives the first simplification for the calculation of the parametric stability margin
p*. It states that to determine p* it suffices to calculate the minimum “distance” of
p° from the set of those points p which endow the characteristic polynomial with a
root on the stability boundary, or which cause loss of degree. This last calculation
can be carried out using the complex plane image of the family of polynomials A ,(s)
evaluated along the stability boundary. We will describe this in the next section.
The parametric stability margin or distance to instability is measured in the

norm || - ||, and therefore the numerical value of p* will depend on the specific norm
chosen. We will consider, in particular, the weighted £, norms. These are defined
as follows: Let w = [wy, wa, - - -, wy] with w; > 0 be a set of positive weights.
!
¢4 mnorm :  ||ApllY = ZwZ|AP7|
i=1
£, norm :  ||Ap]ly =
i 7
£, norm :  [|Apl]y := lZW&:APiV}
i=1
Lo norm @ ||Ap||Y = max w;|Ap;].
2

We will write || Ap|| to refer to a generic weighted norm when the weight and type
of norm are unimportant.
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4.3 THE IMAGE SET APPROACH

The parametric stability margin may be calculated by using the complex plane
image of the polynomial family A (s) evaluated at each point on the stability
boundary dS. This is based on the following idea. Suppose that the family has
constant degree n and 8(s,p?) is stable but A,(s) contains an unstable polynomial.
Then the continuous dependence of the roots on p and the Boundary Crossing
Theorem imply that there must also exist a polynomial in A ,(s) such that it has
a root, at a point, s*, on the stability boundary dS. In this case the complex plane
image set A,(s*) must contain the origin of the complex plane. This suggests that
to detect the presence of instability in a family of polynomials of constant degree,
we generate the image set of the family at each point of the stability boundary and
determine if the origin is included in or excluded from this set. This fact was stated
in Chapter 1 as the Zero Exclusion Principle, and we repeat it here for convenience.

Theorem 4.2 (Zero Exclusion Principle)

For given p > 0 and p°, suppose that the family of polynomials A ,(s) is of constant
degree and 8(s,p°) is stable. Then every polynomial in the family A,(s) is stable
with respect to S if and only if the complex plane image set A,(s*) excludes the
origin for every s* € 0S.

Proof. Asstated earlier this is simply a consequence of the continuity of the roots
of 6(s,p) on p and the Boundary Crossing Theorem (Chapter 1). &

In fact, the above can be used as a computational tool to determine the maximum
value p* of p for which the family is stable. If 8(s,p®) is stable, it follows that
there always exists an open stability ball around p°® since the stability region & is
itself open. Therefore, for small values of p the image set A,(s*) will exclude the
origin for every point s* € 0S. As p is increased from zero, a limiting value py may
be reached where some polynomial in the corresponding family A, (s) loses degree
or a polynomial in the family acquires a root s* on the stability boundary. From
Theorem 4.1 it is clear that this value py is equal to p*, the stability margin. In
case the limiting value pg is never achieved, the stability margin p* is infinity.

An alternative way to determine p* is as follows: Fixing s* at a point in the
boundary of S, let py(s*) denote the limiting value of p such that 0 € A,(s*):

po(s*) =inf{p:0€ A,(s7)}.
Then, we define

= )

In other words, p; is the limiting value of p for which some polynomial in the family
A, (s) acquires a root on the stability boundary 0S. Also let the limiting value of p
for which some polynomial in A, (s) loses degree be denoted by py:

pa = inf {p:6,(p" +Ap) =0, [|Ap||<p}.
We have established the following theorem.
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Theorem 4.3 The parametric stability margin

p* = min {py, pa} .

Remark 4.1. We note that this theorem remains valid even when the stability
region § is not connected. For instance, one may construct the stability region as a
union of disconnected regions &; surrounding each root of the nominal polynomial.
In this case the stability boundary must also consist of the union of the individual
boundary components 9S;. The functional dependence of the coefficients é; on
the parameters p is also not restricted in any way except for the assumption of
continuity.

The above theorem shows that the problem of determining p* can be reduced
to the following steps:

A) determine the “local” stability margin p(s*) at each point s* on the boundary
of the stability region,

B) minimize the function p(s*) over the entire stability boundary and thus deter-
mine py

C) calculate pg, and set

D) p* = min{ps, pa}-

In general the determination of p* is a difficult nonlinear oplimization problem.
However, the breakdown of the problem into the steps described above, exploits
the structure of the problem and has the advantage that the local stability margin
calculation p(s*) with s* frozen, can be simple. In particular, when the parameters
enter linearly into the characteristic polynomial coefficients, this calculation can
be done in closed form. It reduces to a least square problem for the /5 case, and
equally simple linear programming or vertex problems for the ¢,, or ¢; cases. The
dependence of p; on s* is in general highly nonlinear but this part of the mini-
mization can be easily performed computationally because sweeping the boundary
08 1s a one-dimensional search. In the next section, we describe and develop this
calculation in greater detail.

4.4 STABILITY MARGIN COMPUTATION IN THE LINEAR
CASE

We develop explicit formulas for the parametric stability margin in the case in
which the characteristic polynomial coefficients depend linearly on the uncertain
parameters. In such cases we may write without loss of generality that

8(s,p) = a1(s)p1 + -+ ai(s)pr + b(s) (4.6)
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where a;(s) and b(s) are real polynomials and the parameters p; are real. As before,
we write p for the vector of uncertain parameters, p® denotes the nominal parameter
vector and Ap the perturbation vector. In other words

p=[p,po,p] PO =00, 0]
Ap: [pl _p?ap2_pgaapl_p?]
= [AplaAPZa"'aApl]'

Then the characteristic polynomial can be written as

8(s,p” + Ap) = 6(5,p°) + a1 (8)Ap1 + - -+ ai(s)Ap; . (4.7)
SN— —
59(s) Ab(s,AP)

Now let s* denote a point on the stability boundary 0S. For s* € d8§ to be a root
of §(s,p” + Ap) we must have

§(s*,p%) + a1 (s)Ap1 + - + ay(s*)Apr = 0. (4.8)
We rewrite this equation introducing the weights w; > 0.
8(s*,p°) + #th 4ot #wm = 0. (4.9)
1 !

W

Obviously, the minimum ||Ap|[* norm solution of this equation gives us p(s*), the
calculation involved in step A in the last section.

ploty =it {1l = 8067 %)+ L apy ot M <o
1 [

Similarly, corresponding to loss of degree we have the equation

6,(p" + Ap) = 0. (4.10)
Letting a;, denote the coefficient of the n'" degree term in the polynomial a;(s),
t=1,2,---,1 the above equation becomes
a1 P! + @2aph + -+ Wnpl a1, Apr + as, Aps + -+ a4, App = 0. (4.11)
5.(P°)

We can rewrite this after introducing the weight w; > 0

A1n Aop Qi
a1 + aonpd + - - -+ anm py +w1—1w1Ap1+wi2szpz+~ : '+wl—lwlAPl =0. (4.12)
5u(P°)

W

The minimum norm ||Ap|[" solution of this equation gives us py.
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We consider the above equations in some more detail. Recall that the polyno-
mials are assumed to be real. The equation (4.12) is real and can be rewritten in
the form

a a w1 Apy
[ o Zin ] :_52. (4.13)
un wy ’
o wi Ap by
k3 A g
tn

In (4.9), two cases may occur depending on whether s* is real or complex. If
s* = s, where s, 1s real, we have the single equation

w Apy
Cll(Sr) o Cll(Sr) : — _60(57') . (414)
w1 wy ) Y
w,Apl b(sr)
A(sy)

t(sr)
Let #, and @; denote the real and imaginary parts of a complex number z, i.e.
=, +jz; with z,, z; real.
Using this notation, we will write
ar (s") = ar,(57) + jari(s")

and

8%(s") = 6,(5") + 6] (57).
If s* = s. where s, is complex, (4.9) is equivalent to two equations which can be
written as follows:

arr(se)  ar(se) wy Ay o
w wy . _ —0,(S¢

ali(lSc) o ali(Sc) : - |: _620(50) :| . (415)
wq wy wlApl

(se

Alse) (se)

These equations completely determine the parametric stability margin in any
norm. Let t*(s.), t*(s,), and ¢} denote the minimum norm solutions of (4.15),
(4.14), and (4.13), respectively. Thus,

[ (s )l = plse) (4.16)
1" ()l = plsr) (4.17)
131l = pa- (4.18)

If any of the above equations (4.13)-(4.15) do not have a solution, the corresponding
value of p(-) is set equal to infinity.
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Let 08, and 0S8, denote the real and complex subsets of 0S:

d§ = 98, U dS..

pr = inf p(s,)

s,€E08,
pe = inf p(se),
Therefore,
py = inf{p., p. }. (4.19)

We now consider the specific case of the £5 norm.

4.5 (, STABILITY MARGIN

In this section we suppose that the length of the perturbation vector Ap is measured
by a weighted ¢, norm. That is, the minimum ¢ norm solution of the equations
(4.13), (4.14) and (4.15) are desired. Consider first (4.15). Assuming that A(s.)
has full row rank=2, the minimum norm solution vector ¢*(s.) can be calculated as
follows:

t*(50) = AT (5,) [A(s.) A" (5,)] ' b(s,). (4.20)

Similarly if (4.14) and (4.13) are consistent (i.e., A(s,) and A,, are nonzero vectors),
we can calculate the solution as

t*(s0) = AT (5,) [A(5,:)AT (5:)] " b(s,) (4.21)
= AT [A, AT] ', (4.22)
If A(s.) has less than full rank the following two cases can occur.

Case 1: Rank A(s.) =10 In this case the equation is inconsistent since b(s.) # 0
(otherwise 6°(s.) = 0 and 6°(s) would not be stable with respect to & since s, lies
on JS). In this case (4.15) has no solution and we set

p(s.) = .

Case 2: Rank A(s.) =1 In this case the equation is consistent if and only if
rank [A(s.), b(s.)] = 1.

If the above rank condition for consistency is satisfied, we replace the two equa-
tions (4.15) by a single equation and determine the minimum norm solution of this
latter equation. If the rank condition for consistency does not hold, equation (4.15)
cannot be satisfied and we again set p(s.) = co.
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Example 4.1. (¢, Schur stability margin) Consider the discrete time control
system with the controller and plant specified respectively by their transfer func-
tions:

z+1 (—0.5 = 2pg)z + (0.1 4 po)

()= CCP) = T 0am): + 06+ 10p + 200)

The characteristic polynomial of the closed loop system is:
§(z,p) = 2* = (14 0.4p2)z® + (0.1 + 10py )z% — (0.4 4 po)z + (0.1 + po).

The nominal value of p® = [p§ p{ p3] = [0, 0.1, 1]. The perturbation is denoted as
usual by the vector

Ap=[ Apy Api Aps |.

The polynomial is Schur stable for the nominal parameter p°. We compute the /5
stability margin of the polynomial with weights w; = ws = w3 = 1. Rewrite

§(z,p’+Ap) = (—z+1)Apy+1022Ap; —0.42° Aps + (2* = 1.423 +1.12% = 0.42+0.1)

and note that the degree remains invariant (=4) for all perturbations so that p; =
oo. The stability region is the unit circle. For z = 1 to be a root of 6(z,p° + Ap)

(see (4.14)), we have
Ap()
A =—04.
P1

Ap: b(1)
(1)

[0 10 —04 ]
—————
A1)

Thus,
p(1) = [l (W)l = [ A7 (1) [a@) AT (0] " ()| = 0.0

Similarly, for the case of z = —1 (see (4.14)), we have

Apyg
[2 10 0.4] Ap :\—é/.

A(1) Aps

t(=1)

and p(—1) = ||[t*(—=1)|]2 = 0.3919 . Thus p, = 0.04 .
For the case in which 6(z,p® + Ap) has a root at z = ¢/* 8 # 7, 6 # 0, using
(4.15), we have

—cosf+1 10cos260 —0.4cos30 ﬁpo
—sin @ 10sin28 —0.4sin 36 P
Apo

A(8) ——
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_ | cos40 —1.4cos30 + 1.1cos20 — 0.4 cost + 0.1
o sin40 —1.4sin30 +1.1sin20 — 0.4sin 0

b(8)
Thus,
p(e) = 1 @)l = [ A7 (0) [40)AT ©)] " b(6)]|

Figure 4.2 shows the plot of p(e’?).

1.2

Figure 4.2. p(6) (Example 4.1)

Therefore, the 5 parametric stability margin is
p. = 0.032 = p, = p*.
Example 4.2. Consider the continuous time control system with the plant

25+3—ip1 — 5P

G(s,p) =
(5:p) = 3 +(4=ps)s? + (=2 =2p1)s + (=9 + Zp) + Epy)
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and the proportional integral (PI) controller

Cls) =5+ 2.
S

The characteristic polynomial of the closed loop system 1s
8(s,p) = 5" + (4 = p2)s” + (8 = 2p1)s” + (12— 3p2)s + (9 — p1 — 5pa).

We see that the degree remains invariant under the given set of parameter variations
and therefore p; = co. The nominal values of the parameters are

p’ =0, pl=1[0, 0.

Then
Ap=[Ap Aps |=[m p2 |-

The polynomial is stable for the nominal parameter p. Now we want to compute
the /5 stability margin of this polynomial with weights w; = ws; = 1. We first
evaluate 6(s,p) at s = jw:

§(jw,p’ + Ap) = (2w? — D)Ap; + (jw? = 3jw —5)Aps +w? —4jw® —8w? + 125w +9.

For the case of a root at s = 0 (see (4.14)), we have

D) P RS

A(0) " W0
#(0)

Thus,
9v26

p(0) = [[£(0)]l, = ||A47(0) [ A0)AT (0) ] 0(0)|, = =5~

For a root at s = jw, w > 0, using the formula given in (4.15), we have with
W) = Wy = 1

0 (w? —3) Aps 4w? — 12
e —
A(jw) t(jw) b(jw)

[(%2—1) =5 ][Apl]:[—“4+8“2_9]. (4.23)

Here, we need to determine if there exists any w for which the rank of the matrix
A(jw) drops. Tt is easy to see from the matrix A(jw), that the rank drops when

w= % and w = /3.
rank A(jw) =1: Forw = %, we haverank A(jw) = 1 and rank [A(jw), b(jw)] = 2,
and so there is no solution to (4.23). Thus

(o)
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For w = /3, rank A(jw) = rank [A(jw), b(jw)], and we do have a solution to (4.23).

Therefore
5 ][ ]=w
2
A3 T~ bGVE)
c (5 V3)
Consequently,
.\/_ * \/‘ T \/— . T/ 1 \/— 3\/§
PV = e GV3, = |47 6VE [V 1T Ve, = ==

rank A(jw) = 2: In this case (4.23) has a solution (which happens to be unique)
and the length of the least square solution is found by

i) = |16 o)l = [| AT (o) [AGw)AT ()] b) |

wh —8w? —11\?

14

10+

= p(iV3)

0 1 2 3 4 5 6

oY)

Figure 4.3. p(jw), (Example 4.2)
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Figure 4.3 shows the plot of p(jw) for w > 0. The values of p(0) and p(jV/3) are

also shown in Figure 4.3. Therefore,

p(IV3) = py = 35£ =p"

is the stability margin.

4.5.1 Discontinuity of the Stability Margin

In the last example we notice that the function p(jw) has a discontinuity at w =
w* = /3. The reason for this discontinuity is that in the neighborhood of w*, the
minimum norm solution of (4.15) is given by the formula for the rank 2 case. On
the other hand, at w = w*, the minimum norm solution is given by the formula for
the rank 1 case. Thus the discontinuity of the function p(jw) is due to the drop of
rank from 2 to 1 of the coefficient matrix A(jw) at w*. Furthermore, we have seen
that if the rank of A(jw*) drops from 2 to 1 but the rank of [A(jw*), b(jw* )] does
not also drop, then the equation is inconsistent at w* and p(jw*) is infinity. In this
case, this discontinuity in p(jw) does not cause any problem in finding the global
minimum of p(jw). Therefore, the only values of w* that can cause a problem are
those for which the rank of [A(jw*), b(jw*)] drops to 1. Given the problem data,
the occurrence of such a situation can be predicted by setting all 2 x 2 minors of the
matrix [A(jw), b(jw)] equal to zero and solving for the common real roots if any.
These frequencies can then be treated separately in the calculation. Therefore, such
discontinuities do not pose any problem from the computational point of view. Since
the parameters for which rank dropping occurs lie on a proper algebraic variety, any
slight and arbitrary perturbation of the parameters will dislodge them from this
variety and restore the rank of the matrix. If the parameters correspond to physical
quantities such arbitrary perturbations are natural and hence such discontinuities
should not cause any problem from a physical point of view either.

4.5.2 /[, Stability Margin for Time-delay Systems

The results given above for determining the largest stability ellipsoid in parameter
space for polynomials can be extended to quasipolynomials. This extension is use-
ful when parameter uncertainty is present in systems containing time delays. As
before, we deal with the case where the uncertain parameters appear linearly in the
coefficients of the quasipolynomial.

Let us consider real quasipolynomials

6(,p) = p1 Qi () +p2Q@a(s) + -+ piQi(s) + Qo(s) (4.24)

where

n; m

Qi(s) =s" + D3 al s Tre Y i=0,1,0 1 (4.25)

k=1j5=1
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and we assume that ng > n;, ¢ = 1,2,---,{ and that all parameters occurring in
the equations (4.24) and (4.25) are real. Control systems containing time delays
often have characteristic equations of this form (see Example 4.3).

The uncertain parameter vector is denoted p = [p1,p2,- -+, pr]. The nominal
value of the parameter vector is p = p®, the nominal quasipolynomial 8(s,p°) =
6%(s) and p — p’ = Ap denotes the deviation or perturbation from the nominal.
The parameter vector is assumed to lie in the ball of radius p centered at p°:

B(p,p’)={p : [p— 1"l <p}. (4.26)
The corresponding set of quasipolynomials is:
A,(s) = {5(s,p° + Ap) : [[Ap]l: < p}. (4.27)

Recall the discussion in Chapter 1 regarding the Boundary Crossing Theorem ap-
plied to this class of quasipolynomials. From this discussion and the fact that in
the family (4.24) the e™* terms are associated only with the lower degree terms
it follows that it is legitimate to say that each quasipolynomial defined above is
Hurwitz stable if all its roots lie inside the left half of the complex plane. As be-
fore we shall say that the family is Hurwitz stable if each quasipolynomial in the
family is Hurwitz. We observe that the “degree” of each quasipolynomial in A ,(s)
is the same since ng > n;, and therefore by the Theorem 1.14 (Boundary Crossing
Theorem applied to quasipolynomials), stability can be lost only by a root crossing
the jw axis. Accordingly, for every —oo < w < oo we can introduce a set in the
parameter space
H(w) ={p : 6(jw,p) =0}

This set corresponds to quasipolynomials that have jw as a root. Of course for
some particular w this set may be empty. If II(w) is nonempty we can define the
distance between IT(w) and the nominal point p°:

plw) = inf {llp—p°l}.
pelliw)

If II(w) is empty for some w we set the corresponding p(w) := co. We also note that
since all coefficients in (4.24) and (4.25) are assumed to be real, II(w) = II(—w)
and accordingly p(w) = p(—w)

Theorem 4.4 The family of quasipolynomials A ,(s) 1s Hurwitz stable if and only
if the quasipolynomial §°(s) is stable and
* = inf .

pp= ot plw)
The proof of this theorem follows from the fact that the Boundary Crossing Theorem
of Chapter 1 applies to the special class of degree invariant quasipolynomials A, (s).
The problem of calculating p(w), the 5 norm of the smallest length perturbation
vector Ap for which §(s, p® + Ap) has a root at jw, can be solved exactly as in
Section 4.5 where we dealt explicitly with the polynomial case. We illustrate this
with an example.
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Example 4.3. (¢, stability margin for time delay system) The model of a
satellite attitude control system, Figure 4.4, containing a time delay in the loop, is
shown.

2 +ds+k

—sT > >

=+ s2(s? + 2ds + 2k)

Figure 4.4. A satellite attitude control system with time-delay (Example 4.3)

The characteristic equation of the system is the quasipolynomial
8(s,p) = s* +2ds® + (7T +2k)s* + e Tds + e Tk,
The nominal parameters are
p’ =[k° d°]=1[0.245 0.0218973] and T =0.1.

The Hurwitz stability of the nominal system may be easily verified by applying the
interlacing property. To compute the ¢, real parametric stability margin around
the nominal values of parameters, let

Ap = [Ak Ad].
We have

§(jw,p’ + Ap) = w* — w? coswT — 2k°%w? — 2Akw? + d°wsinwT
+AdwsinwT + k° coswT + Ak coswT
+j(—2d°w? — 2Adw® + w? sinwT + d°w coswT
+AdwcoswT — k” sinwT — Ak sin wT)

or
—2w? + coswT wsinwT Ak |
—sinwT —2w3 + wecoswT Ad | —
N —
A(Jw) t(jw)

—w* +w? coswT + 2k%? — dPwsinwT — k° coswT
2d°%3 — w2 sinwT — d°w cos wT + kY sinwT ’

b(jw)
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Therefore

o) = 1€ Gl
= (A7 G [At)AT )] )

From Figure 4.5, the minimum value of p, = 0.0146 .

0 L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 4.5. {5 stability margin for a quasipolynomial (Example 4.3)

The additional condition from the constant coefficient, corresponding to a root at
s=01s

|Ak| < k° = 0.245.

Therefore, the ¢5 stability margin is 0.0146 .

Remark 4.2. In any specific example, the minimum of p(w) needs to be searched
only over a finite range of w rather than over [0,00). This is because the func-
tion p(w) will be increasing for higher frequencies w. This fact follows from the
assumption regarding degrees (ng > n;) and Theorem 1.14 (Chapter 1).
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4.6 (., AND /¢, STABILITY MARGINS

If Ap is measured in the £, or ¢; norm, we face the problem of determining the
corresponding minimum norm solution of a linear equation of the type At = b at
each point on the stability boundary. Problems of this type can always be converted
to a suitable linear programming problem. For instance, in the ., case, this problem
is equivalent to the following optimization problem:
Minimize 3
subject to the constraints:
At =1
-0 <t <g, 1=1,2,--- L (4.28)

This is a standard linear programming (LP) problem and can therefore be solved
by existing, efficient algorithms.

For the ¢, case, we can similarly formulate a linear programming problem by
introducing the variables,

|ti|::yz+_y'_a i:1a2a"'al

3

Then we have the LP problem:

]
Minimize Z{yj’ -y} (4.29)

i=1

subject to
At =1

v =yt <t <yb -y i=1,2,,1

We do not elaborate further on this approach. The reason is that £, and £
cases are special cases of polytopic families of perturbations. We deal with this
general class next.

4.7 POLYTOPIC FAMILIES

In this section we deal with the case where each component p; of the real parameter
vector p := [p1,ps, -, pi]’ can vary independently of the other components. In
other words, we assume that p lies in an uncertainty set which is box-like:

Represent, the system characteristic polynomial

8(s) ==& 481546587+ 46,5 (4.31)
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by the vector § := [6,61,- -+, 6,]". We assume that each component & of §, is a
linear function of p. To be explicit,

&(s,p) := 60(p) + 81(p)s + 82(p)s” + - - + 8a(p)s”
=p1@Qi(s) +p2Qa(s) + -+ piQi(s) + Quls).

By equating coefficients of like powers of s we can write this as
6 =Tp+b,
where 6, p and b are column vectors, and
T:R — R

is a linear map. In other words, & is a linear (or affine) transformation of p. Now
introduce the coefficient set

A:=1{6:6=Tp+b, pell} (4.32)
of the set of polynomials
A(s) ;= {8(s,p) : p € IT}. (4.33)

4.7.1 Exposed Edges and Vertices

To describe the geometry of the set A (equivalently A(s)) we introduce some basic
facts regarding polytopes. Note that the set IT is in fact an example of a special kind
of polytope. In general, a polytope in n-dimensional space is the convex hull of a set
of points called generatorsin this space. A set of generators is minimalif removal of
any point from the set alters the convex hull. A minimal set of generators is unique
and constitutes the vertex set of the polytope. Consider the special polytope II,
which we call a bor. The vertices V of II are obtained by setting each p; to pf or
pi:

Vi={p:pi=p; orpi=pf, i=1,2--,1}. (4.34)

The ezposed edges E of the box IT are defined as follows. For fixed ¢,
E, ={p:p; <pi <pl, p =pj orp;', for all j # ¢} (4.35)

then
E :=U_E;. (4.36)

We use the notational convention
A=TII+b (4.37)

as an alternative to (4.32).
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Lemma 4.1 Let II be a box and 1T a linear map, then A s a polytope. If A, and
Ag denote the vertices and exposed edges of A and E and 'V denote the exposed
edges and vertices of I1, we have

Ay CIV+b

Ag CTE + 0.

This lemma shows us that the polynomial set A(s) is a polytopic family and
that the vertices and exposed edges of A can be obtained by mapping the vertices
and exposed edges of II. Since II is an axis parallel box its vertices and exposed
edges are easy to identify. For an arbitrary polytope in n dimensions, it is difficult
to distinguish the “exposed edges” computationally. This lemma is therefore useful
even though the mapped edges and vertices of IT contain more elements than only
the vertices and exposed edges of A. These facts are now used to characterize the
image set of the family A(s). Fixing s = s*, we let A(s*) denote the image set of
the points §(s*,p) in the complex plane obtained by letting p range over II:

A(s"):={é(s",p) : p € IT}. (4.38)
Introduce the vertez polynomials:
Av(s):={6(s,p):p€ V}
and the edge polynomueals:
Ag(s) = {é(s,p) : p € E}
Their respective images at s = s* are
Ay(s") :={6(s",p):p € V} (4.39)

and
Ag(s*) :={6(s*,p) :p € E}. (4.40)

The set A(s*) is a convex polygon in the complex plane whose vertices and exposed
edges originate from the vertices and edges of II. More precisely, we have the
following lemma which describes the geometry of the image set in this polytopic
case. Let co () denote the convex hull of the set ().

Lemma 4.2
1) AG") = co (Av(s)),
2) The vertices of A(s*) are contained in Av(s*),
3) The exposed edges of A(s*) are contained in Ap(s*).
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This lemma states that the vertices and exposed edges of the complex plane
polygon A(s*) are contained in the images at s* of the mapped vertices and edges
of the box II. We illustrate this in the Figure 4.6.

Ps 62

Polytope A
; A=TII+5b ° '
— 22
P, 5
P do
Parameter Space ) Coefficient Space
Imag

A(s*) Image set (Polygon)

Real

Figure 4.6. Vertices and edges of IT, A and A(s*)

The above results will be useful in determining the robust stability of the fam-
ily A(s) with respect to an open stability region . In fact they are the key to
establishing the important result that the stability of a polytopic family can be
determined from its edges.
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Assumption 4.1, Assume the family of polynomials A(s) is of
1) constant degree, and

2) there exists at least one point s° € 8 such that 0 ¢ A(s).

Theorem 4.5 Under the above assumptions A(s) is stable with respect to S if and
only if Ag(s) is stable with respect to S.

Proof. Following the image set approach described in Section 4.3, it is clear that
under the assumption of constant degree and the existence of at least one stable
polynomial in the family, the stability of A(s) is guaranteed if the image set A(s*)
excludes the origin for every s* € 9S. Since A(s%) excludes the origin it follows
that A(s5*) excludes the origin for every s* € 98 if and only if the edges of A(s*)
exclude the origin. Here we have implicitly used the assumption that the image
set moves continuously with respect to s*. From Lemma 4.2, this is equivalent to
the condition that Ag(s*) excludes the origin for every s* € dS§. This condition is
finally equivalent to the stability of the set Ag(s). &

Theorem 4.5 has established that to determine the stability of A(s), it suffices to
check the stability of the exposed edges. The stability verification of a multiparam-
eter family is therefore reduced to that of a set of one parameter families. In fact
this 1s precisely the kind of problem that was solved in Chapter 2 by the Segment
Lemma and the Bounded Phase Lemma. In the next subsection we elaborate on
the latter approach.

4.7.2 Bounded Phase Conditions for Checking Robust Stability
of Polytopes

From a computational point of view it is desirable to introduce some further sim-
plification into the problem of verifying the stability of a polytope of polynomials.
Note that from Theorem 4.2 (Zero Exclusion Principle), to verify robust stability
we need to determine whether or not the image set A(s*) excludes the origin for
every point s* € dS. This computation is particularly easy since A(s*) is a conves
polygon. In fact, a convex polygon in the complex plane excludes the origin if and
only if the angle subtended at the origin by its vertices is less than 7 radians (180°).

Consider the convex polygon P in the complex plane with vertices [vy,vq, -] :=
V. Let py be an arbitrary point in P and define

by, = arg (“_> . (4.41)

Po

We adopt the convention that every angle lies between —7 and +7. Now define

¢+ = Sup ¢7)17 0§¢+ S/n-
7),€V
¢~ = inf ¢,,, —T< ¢ <0

Vi€
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The angle subtended at the origin by P is given by
Gp =T — 9. (4.42)

P excludes the origin if and only if ®p < w. Applying this fact to the convex
polygon A(s*), we can easily conclude the following.

Theorem 4.6 (Bounded Phase Theorem)
Under the assumptions

a) every polynomial in A(s) is of the same degree (6,(p) # 0,p € IT),
b) at least one polynomial in A(s) is stable with respect to S,

the set of polynomials A(s) is stable with respect to the open stability region S if
and only if

QA (s7) <, for all s* € 0S. (4.43)

The computational burden imposed by this theorem is that we need to evaluate the
maximal phase difference across the vertex of II. The condition (4.43) will be re-
ferred to conveniently as the Bounded Phase Condition. We illustrate Theorems 4.5
and 4.6 in the example below.

Example 4.4. Consider the standard feedback control system with the plant

s+ a

G(S):52+b5—|—c

where the parameters vary within the ranges:
ac(l,2] =[a",at],
bel9,11]=[b",b7],
c €[15,18] = [¢7,ct]

The controller 1s
3s+2
C(s) = P

We want to examine whether this controller robustly stabilizes the plant. The closed
loop characteristic polynomial 1s:

6(s) = a(3s 4+ 2) + b(s* 4+ 5s) + c(s + 5) + (s* + 8s” + 2s).
The polytope of polynomials whose stability is to be checked is:

A(s)={6(s) : a€la",a"], beb™,b%], c€lc,ct]}
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We see that the degree is invariant over the uncertainty set. From Theorem 4.5 this
polytope is stable if and only if the exposed edges are. Here, we write the 12 edge

polynomials Ag(s):

6p(8) = (Aa™ + (1= A)a™) (3s +2) + b7 (s +5s) + ¢~ (s +5) + (s° + 857 + 23)
8e.(8) = (Aa™ + (1= A)a™) (3s +2) + b7 (s +5s) + ¢t (s +5) + (s* + 85 + 2s)
6e,(8) = (Aa™ + (1 = A)a™) (3s +2) + bT(s? +5s) + ¢ (s +5) + (s° + 85 + 2s)
6e,(8) = (Aa™ + (1 = A)a™) (3s +2) + bT(s? +5s) + cT (s +5) + (s° + 857 + 25)
6E5(8) =a” (354 2) + (Ab™ 4+ (1 = A)bT) (57 +5s) + ¢ (s +5) + (s* + 8s% + 25)
6ps(8) =a~ (354 2) + (Ab™ 4+ (1 = A)bT) (57 + 5s) + T (s + 5) + (s + 857 + 25)
6p.(8) =at(3s+2) + (Ab™ + (1 = A)bT) (s +5s) + ¢~ (s + 5) + (s + 857 + 25)
6e5(5) = at(3s+2) + (A~ + (1 = A)bT) (s +5s) + cF (s +5) + (s* + 857 + 2s)
0po(s) =a=(35+2) + b7 (s +55) + (Ac™ + (1= A)eT) (s +5) + (5° 4 857 + 25)
6B (s) =a” (354 2) + b7 (s> +5s) + (Ac™ + (1 = A)et) (s +5) + (s° + 85% + 2s)
6By, () =at(3s+2) + b7 (s> +5s) + (Ae™ + (1 = A)et) (s + 5) + (s° + 85” + 2s)
8., (8) (35 4+2) +bT(s* +5s) (Ac™ + (L = A)e™) (s +5) + (s° + 85 + 2s).

The robust stability of A(s) is equivalent to the stability of the above 12 edges.
From Theorem 4.6, it is also equivalent to the condition that A(s) has at least one
stable polynomial, that 0 € A(jw) for at least one w and that the mazimum phase
difference over the vertex set is less than 180° for any frequency w (bounded phase

condition). At w = 0 we have

0 ¢ A(j0) = 2a + 5¢ = 2[1, 2] + 5[15, 18],

Also it may be verified that the center point of the box is stable. Thus we examine
the maximum phase difference evaluated at each frequency, over the following eight

vertex polynomials:

o, (s) =a~ (35 +2)+ b7 (s> +5s) + ¢ (s +5) + (s° + 857 + 2s)
8u,(8) =a” (35 +2) + b7 (s> +55) + T (s +5) 4 (s° + 85 + 25)
8u,(8) =a™ (35 +2) +bT(s? +55) + ¢ (s +5) + (57 + 85 + 25)
8u,(8) =a” (35 +2) + b7 (s? +55) 4+ ¢ (s +5) + (s* + 85 + 25)
Su.(8) =at(3s +2) + b7 (s* +55) + ¢ (s+5) + (s° + 85 + 2s)
bug(s) =at (35 +2)+ b (5 +5s) + ¢t (5—|—5)—|—(5 + 852 + 2s)
6ur(s) = at (35 +2) + bT(s* +5s) + ¢ (s +5) + (s° + 857 + 25)
Sug(8) = at (35 +2) +bT(s? +5s) +cT (s +5) + (s + 857 +25).

Figure 4.7 shows that the maximum phase difference over all vertices does not reach
180° at any w. Therefore, we conclude that the controller C(s) robustly stabilizes
the plant G(s).
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12

DEGREE

Figure 4.7. Maximum phase differences of vertices (Example 4.4)

In the next example we show how the maximal stability box can be found using the
Bounded Phase Condition.

Example 4.5. Continuing with the previous example (Example 4.4), suppose that
we now want to expand the range of parameter perturbations and determine the
largest size box of parameters stabilized by the controller given. We define a variable
sized parameter box as follows:

a€la —eat +e, be[b™ —ebt+e], c€lc” —¢€ ™+

We can easily determine the maximum value of € for which robust stability is pre-
served by simply applying the Bounded Phase Condition while increasing the value
of €. Figure 4.8 shows that the maximum phase difference over the vertex set (at-
tained at some frequency) plotted as a function of e. We find that at € = 6.5121,
the phase difference over the vertex set reaches 180° at w = 1.3537. Therefore, we
conclude that the maximum value of € i1s 6.5120. This means that the controller
C(s) can robustly stabilize the family of plants G(s,p) where the ranges of the
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parameters are

a € [-5.512,8.512], be[2488,17.512], c € [8.488,24.512).

180

160 - a

140 - 4

120 - :

100 - :

80 :

DEGREE

60

40 ]

20+ :

Figure 4.8. Maximum phase differences of vertices vs. ¢ (Example 4.5)

The purpose of the next example is to draw the reader’s attention to the importance
of the Assumptions 4.1 under which Theorem 4.5 is valid. The example illustrates
that a polytopic family can have exposed edges that are stable even though the
family is unstable, when the second item in Assumptions 4.1 fails to hold. In
particular 1t cautions the reader that it is important to verify that the image set
excludes the origin at least at one point on the stability boundary.

Example 4.6. Consider the family of polynomials

A(s,p) == s+pi —jpe
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where p; € [1,2] and ps € [0, 1]. Suppose that the stability region is the outside of
the shaded circle in Figure 4.9:

S:={s€C : |s+(=15+;0.25)] > 0.2}
The vertex polynomials are
Av(s):={s+ 1 s+1—js+2s+2—j}

The root loci of the elements of Ag(s) is shown in Figure 4.9 along with the in-
stability region (shaded region). Figure 4.9 shows that all elements of Ag(s) are
stable with respect to the stability region &. One might conclude from this, in view
of the theorem, that the set A(s) is stable.

Imag
Root locus of edge polynomials
L 1
i
e
-2 | -1 Real ~

Instability Region

Figure 4.9. Instability region and edges (Example 4.6)

However, this is not true as §(s, p) is unstable at p; = 1.5, ps = 0.25. The apparent
contradiction with the conclusion of the theorem is because the theorem attempts
to ascertain the presence of unstable elements in the family by detecting Boundary
Crossing. In this particular example, no Boundary Crossing occurs as we can see
from the plots of the image sets of the exposed edges evaluated along the boundary
of § (see Figure 4.10). However, we can easily see that item 2) of Assumptions 4.1
is violated since there is no frequency at which the origin is excluded from the image
set. Therefore, there is no contradiction with the theorem:.
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1.5

05r- :

_15 L L L L
-1.5 -1 -0.5 0 0.5 1 1.5

Real

Figure 4.10. Tmage sets of edges evaluated along 08 include the origin (Exam-
ple 4.6)

The next example deals with the determination of robust Schur stability.

Example 4.7. Consider the discrete time control system, in the standard feedback
configuration with controller and plant transfer functions given as

Pr—piz
22— (p1+0.23)2—0.37

C(z) = ziz and G(z,p) =

The characteristic polynomial of the closed loop system is
§(z,p) = z* — (p1 +0.23)2% — 0.372% — p12 + po.

The nominal values of parameters are p{ = 0.17 and p§ = 0.265. It is verified that
the polynomial 8(z, p{, p3) is Schur stable. We want now to determine the maximum
perturbation that the parameters can undergo without losing stability. One way to
estimate this is to determine the maximum value of ¢ (stability margin) such that
8(z,p) remains stable for all

P G[P?_€,P?+€], sz[pg—G,pg+€]~
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This can be accomplished by checking the Schur stability of the exposed edges
for each fixed value of €. It can also be done by computing the maximum phase
difference over the 4 vertices at each point on the stability boundary, namely the unit
circle. The smallest value of € that makes an edge unstable is the stability margin.
Figure 4.11 shows that at ¢ = 0.1084 the Bounded Phase Condition is violated and
the maximum phase difference of the vertices reaches 180°. This implies that an
edge becomes unstable for € = 0.1084. Therefore, the stability margin is < 0.1084.

180

160+ a

140 - a

120 - :

100 - :

DEGREE

0 0.02 0.04 0.06 0.08 0.1 0.12
€

Figure 4.11. Maximum phase difference vs. € (Example 4.7)

The next example deals with a control system where each root is required to remain
confined in a stability region. It also shows how the controller can be chosen to
maximize the stability margin.

Example 4.8. 1In a digital tape transport system, the open loop transfer function
between tape position and driving motor supply voltage is

g+ s

- d() + d] S + d252 + d353 + d454 + d555 )

G(s)
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The coeflicients n; and d; depend linearly on two uncertain physical parameters, K
(elastic constant of the tape) and D (friction coefficient). The parameter vector is

p=[D K"
with the nominal parameter values
p’ = [D° K% =[20,4 x 10]".
Considering a proportional controller
C(s) =K,
the closed loop characteristic polynomial is written as

6(5):60—1—6]5—1—"'—1—6555.

The equation connecting § = [é5,- -+, 6]7 and p is

s 0 0 1

04 0.025 0 2.25
63 | _ | 0.035 0.25 x 10~ D 1.5225
6, | = | 0.01045 0.35x 1074 [ K ] 0.2725
o1 0.03K, 0.1045 x 10—4 \-\1’_/ 0

o 0 0.3 x 10_4Kp ’ 0

5 A b

In the following, we choose as the “stability” region & the union of two regions in
the complex plane (s = o + jw):

1) a disc D centered on the negative real axis at ¢ = —0.20 and with radius
R = 0.15 (containing closed loop dominant poles);

2) a half plane H : ¢ < —0.50.

The boundary 0S5 of the “stability region” is the union of two curves which are
described (in the upper half plane) by the following maps Bp and By:

0D : s = Bp(v) = (—0.20 + 0.15cosy) + j(0.15sin ), 0<y<7
OH : s = By (w) = —0.50 + juw, 0<w< ™

Our objective is to obtain the parameter K, of the maximally robust controller,
in the sense that it guarantees “stability” with respect to the above region while
maximizing the size of a perturbation box centered at p”. In other words we seek to
maximize the perturbation range tolerated by the system subject to the requirement
that the closed loop poles remain in the prescribed region §.
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To do this we first determine the range of controller parameter values which
ensure that the nominal system has roots in §. This can be found by a root
locus plot of the system with respect to the controller parameter K, with the plant
parameters held at their nominal values. This root locus plot is given in Figure 4.12.
The range 1s found to be

K, €10.0177,0.0397].

0.8

0.4 :

-0.6+ :

-

_08 I I I I I I I
-1.6  -14  -12 -1 -0.8 -06 -04 -02 0

Real

Figure 4.12. Root locus of the nominal closed system with respect to K, (Exam-
ple 4.8)

Then for each setting of the controller parameter in this range we determine the
£+, margin by determining the maximal phase difference over the vertex set evalu-
ated over the stability boundary defined above. In this manner we sweep over the
controller parameter range. The maximally robust controller is found to be

C(s) = K, =~ 0.0397.
The maximal £, stability margin obtained is

p* ~ 14.76.
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Figure 4.13 shows that the optimal parameter A7 which produces the largest
p (p* ~ 14.76) locates the closed loop poles, evaluated at the nominal point, on
the stability boundary. As the plant parameters perturb away from the nominal the
roots move inward into the stability region. However this is true only under the
assumption that the controller parameter K, is not subject to perturbation. In fact
a slight perturbation of the controller parameter set at K, = K sends the roots
out of the “stability” region as the root locus plot has shown. This highlights the
fact that robustification with respect to the plant parameters has been obtained at
the expense of enhanced sensitivity with respect to the controller parameters. This
could have been avoided by including the controller parameter K, as an additional
uncertain parameter and searching for a nominal point in the augmented parameter
space where the stability margin is large enough.

0.8

0.6+ .

02r :

&
(&)
T
|

o
~
T
|

-0.6+ :

_08 I I I I I I I
-1.6  -14 -12 -1 -0.8 -06 -04 -02 0

Real

Figure 4.13. Root locations of the closed loop system at K; (Example 4.8)

In the next example we again consider the problem of adjusting a controller gain
to enhance the robustness with respect to plant parameters.
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Example 4.9. Consider the plant and feedback controller

1 K
- C(s) = =
52 4+ p15s+po (s) 8

G(s) =
where the nominal parameters are
p'=[p =0 1]

We find that 0 < K < 5 stabilizes the nominal plant G(s). In this example we want
to find the optimum value of K such that the ¢ stability margin p* with respect to
the parameters py, p» is the largest possible We first evaluate the £ stability margin
in terms of K. The characteristic polynomial is

6(s,p, K) = 5% + p1s” + pos + K.

Thus we have

§(jw,p, K) = —jwt —prw? F i+ K =0

and
—w? 0 Apr | [ =K + plw?
R IR}
—_— —— ——
Aw) 4 b(w,P%,K)
Therefore,

p(K) = min HA(W)T (Aw)AW)™) ™" b(w,p°, K)

2

and the optimum value K™* corresponds to
* — I/ .
pr = maxp(K)

Figure 4.14 shows that the maximum value of the stability margin p* is achieved
as K tends to 0.

Again, it is interesting to observe that as K tends to 0 the system has a real
root that tends to the imaginary axis. Therefore, at the same time that the real
parametric stability margin is increasing to its mazimal value, the robustness with
respect to the parameter K is decreasing drastically. In fact as K tends to 0 the
“optimum” value with respect to perturbations in p = [p1, p2], it will also be true
that the slightest perturbation of the parameter K itself will destabilize the system.
This is similar to what was observed in the previous example. It suggests the
general precautionary guideline, that robustness with respect to plant parameters
is often obtained at the expense of enhanced sensitivity with respect to the controller
parameters.
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Figure 4.14. p(K) vs. K (Example 4.9)

4.7.3 Polytopes of Complex Polynomials

The edge and vertex results developed above for a real polytope A(s) carry over
to a polytope of complex polynomials. This is because in either case the image set
A(s*) is a polygon in the complex plane whose edges are contained in the set of
images of the exposed edges of A(s). Therefore when the degree remains invariant,
stability of the exposed edges implies that of the entire polytope. Thus the stability
of a complex polytopic family

a1 Q1 (s) + a2Qa(s) + - -+ am Qm(s)
with a; = o +]67 for ai_ S «; S O‘?—J 6'_ S 67 S 6@4—; i = 1;"'Jm and Q7(5)

13
being complex polynomials can be tested by considering the parameter vector
p:=la1, B, -, &m, Bm] and testing the exposed edges of the complex polynomials

corresponding to the exposed edges of this box.

Example 4.10. Consider the parametrized polynomial

8(s,p) ="+ (4 — ja)s* + (B —j3)s + (v — j(2+ @)
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where the parameters vary as:

€[-0.7,0.7, 3 €[6.3,7.7], v € [5.3,6.7].

We verify that polynomial is Hurwitz stable for (a”, 8%,9%) =

(0,7,6). In order to

check the robust stability of this polynomial we need to verify the stability of the
set of edges connecting the following eight vertex polynomials:

by (s) =" +
by,(s) =" + (
by (s) ="+ (
by.i(s) =" + (
by (s) ="+ (
byy(s) ="+ (
By (s) =5 +(
by(s) ="+ (

4+370.7)s” + (6.3 — j3)s + (5.3 — j1.3)
4 +350.7)s* + (6.3 — j3)s + (6.7 — j1.3)
4+4350.7)s* + (7.7 — j3)s + (5.3 — j1.3)
4+ 350.7)s* + (7.7 — j3)s + (6.7 — j1.3)
—j0.7)s* + (6.3 — j3)s + (5.3 — j2.7)
—j0.7)s* + (6.3 — j3)s + (6.7 — j2.7)
—j0.7)s* + (7.7 — j3)s + (5.3 — j2.7)
—j0.7)s% 4+ (7.7 — j3)s + (6.7 — j2.7)

DEGREE

Figure 4.15. Maximum phase differences of vertices (checking the stability of

edges) (Example 4.10)
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The stability of these edges may be checked by verifying the Bounded Phase Con-
dition. We examine whether at any frequency w the maximum phase difference of
the vertices reaches 180°. Figure 4.15 shows that the maximum phase difference
over this vertex set never reaches 180° for any w. Thus, we conclude that all edges
are Hurwitz stable, and so is the given polynomial family.

4.7.4 Polytopes of Quasipolynomials

In fact the above idea can also be extended to determining the robust stability of
time-delay systems containing parameter uncertainty. Consider the quasipolyno-
mial family

P(S) = ansn + an—le_STn_IPn—l(S) + an—2€_STn_2Pn—2(5) + -4 CLQG_STOPO(S)
where each polynomial P;(s) is of degree less than n, may be real or complex,
0<To<Ty <--<Th_y

are real and a; € [a] ,a]] are real parameters varying in the box

A={a:a <a<af, i=0,1,-,n}.

This corresponds to a polytope of quasipolynomials. The image of this polytope
at s = s*, is a polygon whose exposed edges originate from the exposed edges of
A. Under the assumption that the “degree” of the family remains invariant (a,
does not pass through zero) the Boundary Crossing Theorem applies to this family
and we conclude from image set arguments that the stability of the exposed edges
implies stability of the entire polytope. This is illustrated in the example below.

Example 4.11. Consider the feedback system with time delay as shown in Fig-
ure 4.16.

_r . as+1 .

4 s +bs+ 2

Figure 4.16. A time-delay system (Example 4.11)

The characteristic equation of the closed loop system is

8(s) = (52 +bs+2)+ e“T(as +1)
=5 +bs+24aeTs+e 7.
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Suppose that the parameters a and b are bounded by @ € [a™,a™] and b € [b™, b*].
We have the following four vertex quasipolynomials

po(s) =s?+b s+2+a e Tste7
pi(s) =s?+b s+ 24+ate s e 7
pa(s) =s? +bts+2+a e Ts4e7
pa(s) =s? +bts+2+ate  Ts 47T,

and four edges as follows:

[po(s), p1(s)], [po(s), pa ()], [pr(s), pa ()], [pa(s), pa(s)]-

Let us first take the edge joining po(s) and pi(s). The stability of po(s) can be
easily checked by examining the frequency plot of

po(jw)
(jw + 1)
where n is the degree of po(s). Using the Principle of the Argument (Chapter 1),
the condition for pg(s) to have all left half plane roots is simply that the plot should
not encircle the origin since the denominator term (s 4 1)* does not have right half
plane roots. Once we verify the stability of the vertex polynomials py(s), we need
to check the stability of the edge Api(s) + (1 — A)po(s). For the stability of this
edge, it is necessary that

Apr(jw) + (1= Npo(jw) #0, for 0< A <1 and forall weR.

This 1s also equivalent to
1-X  p(jw)

e 7
Since (1 — A)/A takes values in [0,00) when A varies in (0,1], it is necessary
that p;(jw)/po(jw) should not take values in [0, —o0). Equivalently, the plot of
p1(jw)/po(jw) should not cross the negative real axis of the complex plane.

For the choice of a € [0.5,1.5], b € [1.5,2.5], and T' = 0.5, Figure 4.17 shows the
frequency plots required to determine the stability of the remaining segments and
thus the robust stability of the entife f;unily of systems. From these figures we see
pilgw

Pr(jw)

we conclude that the system is robustly stable.

that each of the frequency plots does not cut the negative real axis. Thus

The Bounded Phase Condition described earlier can also be applied to polytopes of
complex polynomials and quasipolynomials. Essentially, we need to check that one
member of the family is stable, the “degree” does not drop, and that the image set
evaluated along the stability boundary excludes the origin. Since the image set is a
convex polygon, the bounded phase condition

@AV<7T
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1r 8 1+ :
0 0 s SN
ul(jw)
b s po(jw) |
0 0 1 2 3
1r 8 1+ :
- o
po(jw p1(jw
o——— 0
1k 4 1k i
0 1 2 3 0 1 2 3
1- i
pa(jw)
pa(jw)
0 U Imag
1
ol | Real
0 1 2 3

Figure 4.17. All frequency plots do not cut negative real axis (Example 4.11)
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can be used to check robust stability. To illustrate this we now repeat Example 4.11
by using the Bounded Phase Condition.

Example 4.12. Consider the previous example. After verifying the stability of
one member of the family and the degree invariance, we need to compute the max-
imum phase difference over the vertices at each frequency w as follows. Let

¢(w) = ¢max (w) - ¢>min(w)

bt = s (20 ) o (45 o (51}
@min(w) = min {0 e (po (JW)) e (po 83) 8 @383) }

where

40

35

30+ :

25+ :

DEGREE
)
S
T
|

15 a

10+ :

0 L L L L L L L L L
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

Figure 4.18. Maximum phase differences of vertices (Example 4.12)

Figure 4.18 shows the maximum phase difference ¢(w) for w > 0. Since ¢(w) never
reaches 180°, at least one polynomial in the family is Hurwitz stable and the image
set excludes the origin at some frequency, we conclude that the family is robustly
stable.
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4.8 EXTREMAL PROPERTIES OF EDGES AND VERTICES

In this section we deal with the problem of finding the worst case stabiity margin
over a polytope of stable polynomials. This value of the worst case stability margin
18 a measure of the robust performance of the system or associated controller. As
mentioned earlier this is a formidably difficult problem in the general case. In
the linear case that is being treated in this chapter, it is feasible to determine
robust performance by exploiting the image set boundary generating property of
the exposed edges. Indeed for such families it is shown below that the worst case
stability margins occur in general over the exposed edges. In special cases it can
occur over certain vertices.
Consider the polytopic family of polynomials

6(5,p) = p1Qi(5) +p2@a(s) + -+ piQi(s) + Qo(s) (4.44)

with associated uncertainty set IT as defined in (4.30) and the exposed edges E.
Specifically, let

E :={p:p; <pi <pf, pj=p; orp}, foralli#j} (4.45)

then

E:=U_E;. (4.46)
As before, we assume that the degree of the polynomial family remains invariant as
p varies over II. Suppose that the stability of the family with respect to a stability
region & has been proved. Then, with each point p € IT we can associate a stability
ball of radius p(p) in some norm ||p||. A natural question to ask at this point is:

What is the minimum value of p(p) as p ranges over II? Tt turns out that the
minimum value of p(p) is attained over the exposed edge set E.

Theorem 4.7

inf p(p) = inf p(p). 4.47
inf p(p) = int p(p) (447

Proof. From the property that the edge set generates the boundary of the image
set A(s*), we have

in{_I p(p) = inf {||Ap||: é(s,p + Ap) unstable for p € II}
pe

= inf{||Ap||: é(s", p+ Ap) =0, s" €9S, pell}
= inf{||Ap||: 8(s",p+Ap) =0, s" €0S, p€E}
= inf p(p)-

peE ®)
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This theorem is useful for determining the worst case parametric stability margin
over an uncertainty box. Essentially it again reduces a multiparameter optimization
problem to a set of one parameter optimization problems.

Further simplification can be obtained when the stability of the polytope can be
guaranteed from the vertices. In this case we can find the worst case stability margin
by evaluating p(p) over the vertex set. For example, for the case of Hurwitz stability
we have the following result which depends on the Vertex Lemma of Chapter 2.

Theorem 4.8 Let §(s) be a polytope of real Hurwitz stable polynomials of degree n
of the form (4.44) with Q;(s) of the form

Qi(s) = sf(a;s + b;)A;(s) Pi(s) (4.48)

where t; > 0 are integers, a; and b; are arbitrary real numbers, A;(s) are antiHur-
witz, and P;(s) are even or odd polynomials. Then

inf p(p) = inf p(p). 4.49
inf o) = it pip) (1.49)

The proof utilizes the Vertex Lemma of Chapter 2 but is otherwise identical to the
argument used in the previous case and is therefore omitted. A similar result holds
for the Schur case and can be derived using the corresponding Vertex Lemma from
Chapter 2. We illustrate the usefulness of this result in determining the worst case
performance evaluation and optimization of controllers in the examples below.

Example 4.13. Consider the plant

1
G(S :ﬂ
P15+ po

where the parameters p = [po p1 p2] vary in
I = {pO € [2:4]7 P € [4a6]a P2 € [10, 15]}

This plant is robustly stabilized by the controller

. s+5
C(s):[xm

when 0.5 < K < 2. The characteristic polynomial is
8(s,p, K)=5*(s — 1)p1 +s(s — L)po + Ks(s + 5)pa + K(s + 5)
and
§(jw,p, K) = —jw’pi —w?(po — p1 — p2 K) + jw(5Kps — po + K) + 5K.
This leads to

—w?  Ww? —WiK Apo wipy — w?pr + w?Kpy — bR

3 - Apr | = 3 - -

—w  —w w K Ap wpy +w’p; —bwKpy, —wk
2

Alw,K) \_\1’_/ b(w, P, K)
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and the {5 stability margin around p° is
¢ (", K) = min p(w,p", K)
= min HAT(W, K) (Alw, K)AT (w, K)) ™" b(w, p°, K)H2 .
To determine the worst case ¢5 stability margin over II for fixed K = Ky we apply

Theorem 4.7. This tells us that the worst case stability margin occurs on one of the
edges IIg of IT. The characteristic polynomial of the closed loop system is

8(s,p) = 52(5 —Dpi +s(s—1)po+ Kos(s 4+ 5) pa + Ko(s + 5)
Q1(s) Q2(s) Qs(s)

which shows that the vertex condition of Theorem 4.8 is satisfied so that the worst
case stability margin occurs on one of the vertices of II. Therefore, the worst case
£y stability margin for K = Ky is

p(Ko) = min p"(p, Ko).
Pe II,
Suppose that we wish to determine the value of K € [0.5,2] that possesses the
mazimum value of the worst case £y stability margin. This problem can be solved
by repeating the procedure of determining p* (K) for each K in [0.5, 2] and selecting
the value of K whose corresponding p* (K') is maximum:

P = max p"(K)

From Figure 4.19, we find that the maximum worst case £» stability margin is 5.8878
when K =2 .

4.9 THE TSYPKIN-POLYAK PLOT

In this section we deal with stability margin calculations for characteristic polyno-
mials of the form:

8(s,p) = Fi(s)Pi(s) + Fa(s)Pa(s) + - - -+ Fy(5) Py ()

where F;(s) are fixed real or complex polynomials and the coefficients of the real
polynomials P;(s), are the uncertain parameters. The uncertain real parameter
vector p = [py,ps -] represents these coefficients. An elegant graphical solution
to this problem has been given by Tsypkin and Polyak based on evaluation of the
image set. This method is described below.

We begin by considering the polynomial family

Q(s)z{A(sHpZmBi(s): ] <1, i:1,~~,1} (4.50)
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— p*([{) = mianHv p* (p, [\7)

0 L L L L L L L
0.6 0.8 1 1.2 1.4 1.6 1.8 2

K

Figure 4.19. K vs. p*(K) (Example 4.13)

where A(s) is a given real or complex polynomial of degree n and Bj(s), - - -, Bi(s)
are given real or complex polynomials of degree < n, r; are uncertain real param-
eters and the real parameter p is a common margin of perturbations or a dilation
parameter. If we evaluate the above polynomial family at a point s = s* in the
complex plane we obtain the image set of the family at that point. Because of the
interval nature of the uncertain parameters, r;, this set is a polygon. This polygon
is determined by the complex numbers A(s*), By(s*), - -, Bi(s*). As discussed in
the previous section, robust stability of a control system of which the polynomial
above is the characteristic polynomial, requires that the family Q(s) be of constant
degree. Under this assumption, the family Q(s) is stable if it contains at least
one stable polynomial and the image set evaluated at each point of the stability
boundary excludes the origin. The lemma given below gives an explicit geometric
characterization of this condition.
Let us consider fixed nonzero complex numbers A, By, - -+, By, and let

By, = |Bple?®™ k=1,2,---1
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and A = |Ale’®. Introduce the set
!
BI {ZT7B7 . |7“Z| S 1},
i=1

which is a polygon in the complex plane with 2/ or fewer vertices and opposite
edges parallel to B;,i = 1,--- 1. Consider the complex plane set A + pB. This set
is depicted in Figures 4.20 and 4.21.

Imag

pB> B

¢9 By
?1

0 Real

Figure 4.20. The set A+ pB

Lemma 4.3 The zero exclusion condition
0¢ A+ pB, p>0
15 equivalent to

Al|sin(f —
max - — 4] Sm(. 23 > p, if sin(¢; — ¢r) # 0 for some ¢,k (4.51)
skl 5oy [Billsin(¢i — ¢)|

4]

max ———
kst S 1B

> p, if sin(¢;, — ¢x) =0 and sin(f — ¢x) =0, Vi, k. (4.52)

Proof. The origin is excluded from the convex set A + pB if and only if there
exists a line L/ which separates the set from the origin. Consider the projection of
the set A + pB onto the orthogonal complement L’ of the line L in the complex
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M
Imag £
L, BBy
s 4B I
S ) b 31/1
e R
. L
v
Real

Figure 4.21. Projection of A + pl5 onto L/

plane passing through the origin at an angle ¢ with the real axis (see Figure 4.21).
This projection is of length

20(|1B || sin(¢1 = )| + - - -+ | Bl sin(ér — ¥)])

and 1s shown in the Figure 4.21 as 7V. On the other hand the projection of the
vector A on to L' is of length |A||sin(6 — ¢)| and is shown as the line CU in
Figure 4.21. A line separating the origin from the set exists if and only if there
exists some ¢ € [0, 27) for which

[Allsin(0 — )| > p(|By|[sin(¢r — &) + -+ - + | B[ sin(ér — ¥)]).

Since the set B is a polygon it suffices to choose L to be parallel to one of its sides.
This can be visualized as sliding the set along lines parallel to its sides and checking
if the origin enters the set at any position. Thus it is enough to test that the
above inequality holds at one of the values ¢ = ¢,;, ¢ = 1,2,---, 1. This 1s precisely
what is expressed by the formula (4.51) above. The formula (4.52) deals with the
degenerate case when the set collapses to a line even though { # 1. &
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The expressions (4.51) and (4.52) can also be written in the alternative form:
A
Im | —
‘ . (Bk>
B:
I =
" (Bk> ‘

|A| B; A )
if 1 = — | = . .
> p, if Im B =0 and B 0, Vik (4.54)

max ————
kst > |Bil B

max
1<E<I :

i=1

B;
> p, if Im (B ) # 0 for some ¢, k (4.53)

We now apply this result to the special form of the characteristic polynomial (4.2).

Linear Interval Family

We consider the Hurwitz stability of the family of constant degree polynomials

8(s,p) = Fi(s)Pi(s) + - -+ Fp(5) P (5),
Pi(s) =pin +pas+ -, lpix — Pyl < pais, (4.55)
(s) = fio+ firs+---.

Here p?, are the coefficients of the nominal polynomials
P(s) = pio +piis+ -

a;p > 0 are given and p > 0 is a common margin of perturbations. Everywhere
below stable means Hurwitz stable. Denote

A(s) = Fl(S)Plo(S) oot Fm(S)Pr?@(S)a
=w(ayy + aw’ + 1), (4.56)

1/)77("'} = arg E(]w)a izla"'ama
where 0 <w < co. The image set of the family has the form
A(jw) + pQ(w)

where

{Z w) + jli(@)] Fi(Go) = si(@)] < Si(w), |tz'(W)|§Ti(W)}

This set may be rewritten as

Q(w) = (4.57)

{er _](.d +rm+7ﬂ( )_]E(_](.d)], |7“7|§1, |rm+7',|§1J z:l,,m}

i=1
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We apply Lemma 4.3 (see (451)) to the above set by setting { = 2m, B; =
Si(w)Fi(jw), i = 1,2,--- ;m and B; = T;(w)jF;(jw), i=m+1,---,2m. Since

arg F; (jw) = i(w),
arg Fi(jw) = Ymri(w) = V() + 2,

for i =1,2,---,m, we can rewrite (4.51) as the maximum of two terms:
AGellsn @) — ) | AG)]sin (0w) b ()|
8 T [Billsin (0 @) — vel)) | 1 HE (o)
o IAGlsin @) ~ @) JAGe)l eos (0(e) — ()|
mH1<k<am 5T | By||sin (¢i(w) — dr(w)) | 1SESm e ()

where u; (w) and vy (w) are defined as

m

= SIS e s (bu(e) — ()|
T REIRGlln () — e, k=12m
154) ol s (1) — ()|

ST E G cos (i) — x|, k=12 m.

v (w) -

l

i=1

Let T be defined as:

I':={w:cos (¢;(w) — ¢y (w )) sin (v (w) — ¥p(w)) =
we0,00), i,k=1,---,m}.

We note that ugp(w) = 0 if and only if w € T'. Likewise v (w) = 0 if and only if
w € I'. Now define

() o= A2 C“jfff)) ~ )| o
[AGe)]

) = S ORI  T@EGe) Y€ @Y

fork=1,2,---,mand

(@) = | A(jw)]| sin v(j((;u)) — @) et
[AGw)]

) S B TR 25
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for k=1,2,---,m. Finally let

pw) =  nax max {zp (W), yp (W)}, 0<w < 0. (4.60)
Notice that p(w) is well defined for all w € [0, ]. However the frequencies 0, oo
and the points w € T may be points of discontinuity of the function p(w). For
w =0, it is easy to see that

| > iz1 Pofiol
0) = max {xz(0)} = === = Uo. 4.61
#0) 1SkSm{ +(0)} > izt @iolfiol o ( )
We also have
I Yz Pl S (4.62)

fhy, = , )
"’ > ity Zk-l—l:n i | fial

To state the equivalent nontrignometric expressions for z; and y; let

E(]w) =U(w Ve (w
(o) = U (w) + jVir (w)
A(jw) )

Fole) Ui (w) + jVor (w)

As before let w € I' denote the set of common roots of the equations

Uin(w) = Virw) =0, i=1,---,m. (4.63)
We have
_ |Uor (W) y
St T8 10 5 T 1 06 A A

o |Vor
yr(w) = ST (@) [Vik (@

e~ |~

2)
EE AR

and for w € T', z(w), yr(w) are defined as before in (4.58) and (4.59). Now let

min ‘= inf 4.66
T o ) (4.66)
and

p* = min{g, ftn, fhmin }- (4.67)

Theorem 4.9 The family (4.55) is stable if and only if A(s) 1s Hurwitz and

*

P> p (4.68)
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Proof. The theorem can be proved by evaluating the image set {6(jw,p)} for the
family (4.55) and applying Lemma 4.3 to it. Recall the image set of the family has
the form
A(jw) + pQ(w)

where Q(w) is of the form in (4.57). We again apply Lemma 4.3 to the above
set by setting | = 2m, B; = S;(w)F;(jw), i = 1,2,---;m and B; = T;(w)jF;(jw),
i=m+1,--- 2m. Then the condition that the polygon A(jw)+ pQ(w) exclude the
origin for 0 < w < oo corresponds to the condition p;, > p. The condition that
A(0) 4+ pQ(0) excludes the origin corresponds to pg > p and the condition that all
polynomials in the family be of degree n corresponds to u, > p. &

The requirement that A(s) be Hurwitz can be combined with the robustness con-
dition, namely verification of the inequality (4.68). This leads us to the following
criterion.

Theorem 4.10 The family (4.55) is stable if and only if A(jw) # 0, p < po,
p < i, and the complex plane plot

A(jw
z(w) = (] )
[A(jw)]
goes through n quadrants as w runs from 0 to oo and does not inlersect the circle
of radius p, centered at the origin.

u(w) (4.69)

The plot of z(w) is known as the Tsypkin-Polyak plot. The maximal value of p

in (4.55) which preserves robust stability is equal to the radius p* of the largest

circle, enclosed in the z(w) plot, subject of course to the conditions p < g, p < py.
We illustrate these results with an example.

Example 4.14. Consider the family of polynomials

6(s,p) = (5" + 25+ 2) (p115+ pio) + (57 + 25 + 257 + 5) (pa2s® + pa1s + pao)

F1(s) Pi(s) Fa(s) Pa(s)

where the nominal values of parameters p in P;(s) and Ps(s) are
p" =% Pl p% 0, pl] = [0.287 0.265 0.215 2.06 2.735].
We first verify that the nominal polynomial

Als) = Fa(s) P (s) + Fa(s)P3 (5)
= 0.2155° + 2.495° 4 7.2855" + 10.0925° + 8.3695 + 3.839s + 0.53

is Hurwitz. We want to find the stability margin p such that the family remains
Hurwitz for all parameter excursions satisfying

lpir — ik < povi
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with a;, = 1 for ¢k = 10,11,20, 21, 22. Here we use the nontrignometric expressions
given in (4.64) and (4.65). We first compute

o) =140 =Un(w) +jVii(w)
Fy(jw)  —wb —2w? N —w? 4+ 2w
Fiew)  w2+d4 et ta
Fi(jw) —wt=-2 w?-2
Fy(jw)
Fay(jw)

= Upn (w) + jVar (W)

” = Ua(w) + jVia(w)

and

A(jw) 0.215w8 — 2.735w°8 + 2.755w? — 9.59w? + 1.06
Fi(jw) w?+4
—2.06w7 4 0.502w® — 7.285w" + 6.618w
+7 5
w? 44

= Upi(w) + jVo1(w)
A(jw) —0.215w% 4+ 2.735w8 — 0.265w? — 0.502w? + 2.779
Fy(jw) w4+ 1
.2.06w® — 0.287w8 + 1.751w3 — 0.53
+7 =
w' 4w

= Upa(w) + jVo2(w).
With the given choice of «y, we also have
Si(w) =1, So(w) = 1+w?, Ti(w) =w, Th(w) =w.

From these we construct the function

= M W) = M max maxy gl lw W
) = (3G = faiay et h )]

where 2 (w) and y;, (w) are given as follows:

0.215w°% — 2.735w% + 2.755w* — 9.59%w2 + 1.06
(W) = w? 44
1 - — 6 _ o 2 _ 3
14 (14uw?) w 2w w”® + 2w
w? +4 w? +4
—0.215w® 4+ 2.735w5 — 0.265w* — 0.502w? + 2.779
wh +1
W) = 2 ol —2
= it 1—w?
w6—|—1‘+w w7—|—w‘+( w?)
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y1(w)

Y2 (w) =

‘ —2.06w" + 0.502w® — 7.285w* + 6.618w

po and p, are given by

w? 44
- —w® 4 2w —t — 27
2
2.06w® — 0.287w% + 1.751w3 — 0.53
_ Wit w
w? =2 —wt—2 n
— | Fw
Wit w wb+1
)
Ei:l p?ofio |(0.265)(2)|
Ho = =2 = = 0.265
> izt il fiol (DI(2)]
Yot Ykgimn Pl S
2iza Pt j0215) ()] _

Hn =

Y Y anlful - DI

2
1.5r 7
#(w)
1F ! i
05+ a
Ho
2 (N
= AN
Hn
-0.5F a
-1+ 4
-1.5+ a
_2 L L L L L L
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 4.22

Real
. Tsypkin-Polyak locus for a polytopic family (Example 4.14)
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Figure 4.22 displays the Tsypkin-Polyak plot #(w) along with z19 and p,,. The radius
of the smallest circle which touches this plot is p*. From the figure we find

g = 0.215.

4.10 ROBUST STABILITY OF LINEAR DISC POLYNOMIALS

In the last chapter we considered the robust stability of a family of disc polynomials.

The main result derived there considered the coefficients themselves to be subject

to independent perturbations. Here we consider interdependent perturbations by

letting the coefficients depend linearly on a primary set of parameters é;.
Consider n + 1 complex polynomials Py(s), - - -, P, (s), such that

deg(Po(s)) > iE{Ill,’IZE?%,n} deg(Pi(s)). (4.70)

Let also Dy -+, D,, be n arbitrary discs in the complex plane, where I); 1s centered
at the complex number d; and has radius r;.
Now consider the set P of all polynomials of the form:

8(s) = Py(s) + ZéiPi(s), where §; € D;, 1=1,2,--- n. (4.71)
i=1
We refer to such a family as a linear disc polynomial. If we define 3(s) by

Bs) = Pols) + Y diFi(s) (4.72)

then it is clear that Lemma 3.2 (Chapter 3) can be readily extended to the following
result.

Lemma 4.4 The family of complex polynomial P contains only Hurwitz polynomi-
als if and only if the following conditions hold:

a) B(s) is Hurwitz
b) for any complex numbers zg,- - -z, of modulus less than or equal to one we have:

H PR 10
B(s)

The proof of this Lemma follows from Rouché’s Theorem in a manner identical
to that of Lemma 3.2 in Chapter 3. Observe now, that for any complex numbers z;
of modulus less than or equal to one, we have the following inequality:

‘ > ke 2Tk Pr(jw)
B(jw)

<1

‘ (o)

< f(w) (4.73)
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where

o TR Pe(Jw
o < Dhzr el Pelis)] i
|8(jw)l
On the other hand, since f(w) is a continuous function of w which goes to 0 as w
goes to infinity, then f(w) reaches its maximum for some finite value wy. At this
point wq it 1s always possible to write

Py (jwo) :ej€k|Pk(jw0)|, with 0, € [0,27) for k=1,2,---,n

so we see that 1t 1s always possible to find a set of complex numbers zg,- - -,z, such
that (4.73) becomes an equality at the point where f(w) reaches its maximum. As
a result we have the following generalization of the result on disc polynomials given
in Chapter 3.

Theorem 4.11 The family of complex polynomials P contains only Hurwitz poly-
nomials if and only if the following conditions hold:

a) B(s) is Hurwitz

b) for allw € R,
Do T Pe(jw)|
1B3(jw)l

A similar result holds also for the Schur case.

< 1.

4.11 EXERCISES

4.1 In astandard unity feedback control system, the plant is

_ a|s — 1
G(S)_SQ—F[MS—I—I)O.
The parameters a1, by and b; have nominal values a? = 1, Y = —1, b3 = 2 and are

subject to perturbation. Consider the constant controller C(s) = K. Determine
the range of values Sy of K for which the nominal system remains Hurwitz stable.
For each value of K € S find the £; stability margin p(K) in the space of the three
parameters subject to perturbation. Determine the optimally robust compensator
value K € 5},.

4.2 Repeat Exercise 4.1 using the £, stability margin.

4.3 Consider the polynomial

s+ 53124+ pi + pa) + s7(47 + 10.75p; + 0.75ps + Tps + 0.25p,)
+5(32.5p1 + 7.5ps + 12ps + 0.5ps) + 18.75py + 18.75p, + 10ps + 0.5pa.
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Determine the £5 Hurwitz stability margin in the parameter space [p1, pa, p3, pal-

4.4 The nominal polynomial (i.e. with Ap; = 0) in Exercise 4.3 has roots —5,
—b, =1 —j, =1+ j. Let the stability boundary consist of two circles of radii 0.25
centered at —1 + 5 and —1 — j respectively and a circle of radius 1 centered at -5.
Determine the maximal £, stability ball for this case.

4.5 Repeat Exercise 4.4 with the ¢, stability margin.

4.6 The transfer function of a plant in a unity feedback control system is given by

1
§3 4+ ds(p)s? + d1(p)s + do(p)

G(s) =

where
pP= [Pl y P2, Ps]

and
do(p) = p1 +p2, di(p)=2p1 —ps, do(p)=1—p2+2ps.
The nominal parameter vector is p® = [3,3,1] and the controller proposed is

_ 140.667s
Cls) = Ko 150667

with the nominal value of the gain being K, = 15. Compute the weighted /.,
Hurwitz stability margin with weights [wy, ws, ws] = [1,1,0.1].

4.7 In Exercise 4.6 assume that K is the only adjustable design parameter and let
p(K.) denote the weighted £, Hurwitz stability margin with weights as in Problem
4.6. Determine the range of values of K, for which all perturbations within the unit
weighted (., ball are stabilized, i.e. for which p(K,) > 1.

4.8 Repeat Exercises 4.6 and 4.7 with the weighted /5 stability margin.

4.9 In Exercises 4.7 and 4.8 determine the optimally robust controllers in the
weighted ¢5 or weighted ¢, stability margins, over the range of values of K, which
stabilizes the nominal plant.

4.10 Consider a complex plane polygon P with consecutive vertices zq, 29, 2N
with N > 2. Show that a point z is excluded from (does not belong to) P if and
only if

. R
min < Im—2— % < 0.
1<n<N Zigpl — 2

Use this result to develop a test for stability of a polytopic family.
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4,11 In a discrete time control system the transfer function of the plant is:
z—2
(z+1)(z+2)

Determine the transfer function of a first order controller

G(z) =

g + 1 2
4+ o

which results in a closed loop system that is deadbeat, i.e. the characteristic roots
are all at the origin. Determine the largest ¢» and £, stability balls centered at
this controller in the space of controller parameters «g, e, Gy for which closed loop
Schur stability is preserved.

C(z) =

4.12 Consider the Hurwitz stability of the family

P(s) = {PO(S) +pY miPi(s):|n| < 1}
i=1
Pi(s) =ajo+ans+- -+ ams”, an#0 (4.75)
Let w; denote a real root of the equations

m[ﬂ(jw)] _

Py(jw)

and define

_ o ()] sin(th () — ¥ ()
1 S (@) sin (6 (@) — Ve @)

w # wy,

and

| Py(jwn)]
A = = 1B )

|a0nr|

m
i=1 |ain |

p(0) = 5

Show that the family (4.75) is stable if and only if Py(s) is stable and p(w) > p, 0 <
w < oo.

4.13 Consider now the £,-analog of the above family:

P(s) = Fu(s) +72m:riﬂ(5); [i In:IP] <1 (4.76)

i=1
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where 1 < p < oo. This set of polynomials is not a polytope when p # 1 or p # oo.
Write

%—1—%:17 Pi(jw):ui(w)ejwl(w)’ i:0,~~~,m
(@)= max ug(w) sin(¢o(w) — @)

0SOL2T [y (w) sin(y (w) — 6)[7]7

For p = 2 (ellipsoidal constraints) show that the condition for robust stability can
be written in the form p(w) > p by introducing:

Pz(]w) = U7((.LJ)—|-_]V7((.<J)J i=0,---,m

m m m 2
A::ZU%ZV;E— ZUka
i=1 i=1 i=1

o =A"" Vinka —Uozmjv,f
i=1 i=1

gi=A"" Uinka —Vin,?
7=1 7=1

Pw) = o’ Y UL+ 200 UV +5° ) Vi
i=1 i=1 i=1

4.14 Consider the family of polynomials
ag+arz+ a2 + -+ a,2", ag — al| < pay,

and denote the nominal polynomial as Ag(z). Show that all polynomials in this
family have their roots inside the unit circle if and only if the plot

Ao(eje)
0= Tty
|50, alsin(k — )0
0) = = b
() i Soo o |sin(k — )0 VoS
_ il

1(0) = S

#m ZZLI O

makes n turns around the origin as ¢ runs from 0 to 27 and does not intersect the

circle of radius p.
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4.15 Consider the Hurwitz stability of the family of polynomials
8(s,p) = p15(s+9.5)(s — 1) — p2(6.5s + 0.5)(s — 2)

where p; € [1,1.1] and ps € [1.2,1.25]. Show that the family is robustly stable.
Determine the worst case stability margins over the given uncertainty set using the
£y and then the ¢, norm.

4.12 NOTES AND REFERENCES

The problem of calculating the €5 stability margin in parameter space for Hurwitz
stability in the linear case was solved in Biernacki, Hwang and Bhattacharyya [40],
Chapellat, Bhattacharyya and Keel [62], Chapellat and Bhattachar-yya [59]. The
problem of computing the real stability margin has been dealt with by Hinrich-
sen and Pritchard [114, 112, 111], Tesi and Vicino [220, 218], Vicino, Tesi and
Milanese [230], DeGaston and Safonov [80], and Sideris and Sinches Pena [210].
Real parametric stability margins for discrete time control systems were calculated
in Aguirre, Chapellat, and Bhattacharyya [4]. The calculation of the {5 stability
margin in time delay systems (Theorem 4.4) is due to Kharitonov [145]. The type
of pitfall pointed out in Example 4.6 is due to Soh and Foo [216]. The stability
detecting property of exposed edges was generalized by Soh and Foo [215] to arbi-
trary analytic functions. The reduction of the ¢, problem to a linear programming
problem was pointed out by Tesi and Vicino in [220]. The Tsypkin-Polyak plot,
Theorems 4.9 and 4.10, and the results described in Exercises 4.12-4.14 were devel-
oped in [225, 226]. The problem of discontinuity of the parametric stability margin
was highlighted by Barmish, Khargonekar, Shi, and Tempo [16], and Example 4.2
is adapted from [16]. A thorough analysis of the problem of discontinuity of the
parametric stability margin has been carried out by Vicino and Tesi in [229]. The
role of exposed edges in determining the stability of polytopes originates from and
follows from the Edge Theorem due to Bartlett, Hollot, and Lin [21] which we de-
velop in Chapter 6. This idea was explored in Fu and Barmish [99] for polytopes
of polynomials and by Fu, Olbrot, and Polis [100] for polytopic systems with time-
delay. Exercise 4.10 is taken from Kogan [149]. Example 4.8 is due to Vicino and
Tesi [220] and is taken from [220]. The image set referred to here is also called the
value set in the literature in this field.



