Chapter 5

INTERVAL POLYNOMIALS:
KHARITONOV’'S THEOREM

In this chapter we present Kharitonov’s Theorem on robust Hurwitz stability of
interval polynomials, dealing with both the real and complex cases. This elegant
result forms the basis for many of the results, to be developed later in the book,
on robustness under parametric uncertainty. We develop an important extremal
property of the associated Kharitonov polynomials and give an application of this
theorem to state feedback stabilization. An extension of Kharitonov’s Theorem
to nested families of interval polynomials is described. Robust Schur stability of
interval polynomials is also discussed and it is shown that robust stability can be
ascertained from that of the upper edges.

5.1 INTRODUCTION

We devote this chapter mainly to a result proved in 1978 by V. L. Kharitonov,
regarding the Hurwitz stability of a family of interval polynomaials. This result was
so surprising and elegant that it has been the starting point of a renewed interest
in robust control theory with an emphasis on deterministic bounded parameter per-
turbations. It is important therefore that control engineers thoroughly understand
both result and proof, and this is why we considerably extend our discussion of this
subject.

In the next section we first state and prove Kharitonov’s Theorem for real poly-
nomials. We emphasize how this theorem generalizes the Hermite-Biehler Interlac-
ing Theorem which is valid for a single polynomial. This has an appealing frequency
domain interpretation in terms of tnterlacing of frequency bands. We then give an
interpretation of Kharitonov’s Theorem based on the evolution of the complex plane
image set of the interval polynomial family. Here again the Boundary Crossing The-
orem and the monotonic phase increase property of Hurwitz polynomials (Chapter
1) are the key concepts that are needed to establish the Theorem. This proof gives
useful geometric insight into the working of the theorem and shows how the result
is related to the Vertex Lemma (Chapter 2). We then state the theorem for the
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case of an interval family of polynomials with complex coefficients. This proof fol-
lows quite naturally from the above interlacing point of view. Next, we develop an
important extremal property of the Kharitonov polynomials. This property estab-
lishes that one of the four points represented by the Kharitonov polynomials 1s the
closest to instability over the entire set of uncertain parameters. The latter result
is independent of the norm used to measure the distance between polynomials in
the coefficient space. We next give an application of the Kharitonov polynomials to
robust state feedback stabilization. Following this we establish that Kharitonov’s
Theorem can be extended to nested families of interval polynomials which are nei-
ther interval or polytopic and in fact includes nonlinear dependence on uncertain
parameters. In the last section we consider the robust Schur stability of an interval
polynomial family. A stability test for this family is derived based on the upper
edges which form a subset of all the exposed edges. We illustrate the application of
these fundamental results to control systems with examples.

5.2 KHARITONOV’S THEOREM FOR REAL POLYNOMIALS

In this chapter stable will mean Hurwitz stable unless otherwise stated. Of course,
we will say that a set of polynomials is stable if and only if each and every element
of the set is a Hurwitz polynomial.

Consider now the set Z(s) of real polynomials of degree n of the form

8(s) = 6o+ 615+ 8987 + 6387 + 648" + -+ 68,8"
where the coefficients lie within given ranges,

oy € [x();y()]; 6 € [5131,3/1], R b, € [xnayn]
Write
é:: [6(); 61; Ty 671]

and identify a polynomial é(s) with its coefficient vector é§. Introduce the hyper-
rectangle or box of coefficients

A:{QQERH_I—l; $z§62§yla 220,1,,71} (51)

We assume that the degree remains invariant over the family, so that 0 & [z, y»].
Such a set of polynomials is called a real interval family and we loosely refer to Z(s)
as an interval polynomial. Kharitonov’s Theorem provides a surprisingly simple
necessary and sufficient condition for the Hurwitz stability of the entire family.

Theorem 5.1 (Kharitonov’s Theorem)
Fuery polynomial in the family T(s) is Hurwitz if and only if the following four
extreme polynomaials are Hurwitz:

K'(s) =2, + 215+ ys5” +yss” + a8’ + 255" +yss® + -+,
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‘Kz(s) =%, +y15+ y252 + 1?353 + 13454 —|—y555 + y656 +
K?(s) = yo + 215+ 125" + y35° + yas® + 258" + 26s® + -+, (5.2)
Ks) =yo + s+ 225" + 235° + yas® + yss® + 265" + -

The box A and the vertices corresponding to the Kharitonov polynomials are shown
in Figure 5.1. The proof that follows allows for the interpretation of Kharitonov’s
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Figure 5.1. The box A and the four Kharitonov vertices

Theorem as a generalization of the Hermite-Biehler Theorem for Hurwitz polyno-
mials, proved in Theorem 1.7 of Chapter 1. We start by introducing two symmetric
lemmas that will lead us naturally to the proof of the theorem.

Lemma 5.1 Let

Pi(s) = P70 (s) + PP (s)
Py(s) = P(s) + P54 (s)

denote two stable polynomials of the same degree with the same even part P<¥"(s)
and differing odd parts PP (s) and P99 (s) satisfying

P (w) < Py (w), for all w € [0,0¢]. (5.3)
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Then,
P(S) — Peven(s) —|—P0dd(5)

is stable for every polynomial P(s) with odd part P°%4(s) satisfying
P (w) < P°(w) < PY(w), for all w € [0, 0] (5.4)

Proof. Since Pi(s) and Ps(s) are stable, PY(w) and P (w) both satisfy the in-
terlacing property with P¢(w). In particular, P} (w) and P{(w) are not only of the
same degree, but the sign of their highest coefficient i1s also the same since it is
in fact the same as that of the highest coefficient of P°(w). Given this it is easy
to see that P°(w) cannot satisfy (5.4) unless it also has this same degree and the
same sign for its highest coefficient. Then, the condition in (5.4) forces the roots of
P?(w) to interlace with those of P¢(w). Therefore, according to the Hermite-Biehler
Theorem (Theorem 1.7, Chapter 1), PeVeR(s) 4+ P°44(s) is stable. &

We remark that Lemma 5.1 as well as its dual, Lemma 5.2 given below, are special
cases of the Vertex Lemma, developed in Chapter 2 and follow immediately from
it. We illustrate Lemma 5.1 in the example below (see Figure 5.2).

Example 5.1. Let

Pi(s) = sT4+9s% + 315" + 715" + 111s* + 109s> + 76s + 12
Py(s) = s7 +95° + 34s° + T1s* + 115> 4 109s” + 835 4 12.

Then

PV (s) = 9s° + T1s* + 109s% + 12
PPad(s) = s7 4 31s° + 1118 + 765
Pd(s) = 57 4 34s° + 111s° + 83s.

Figure 5.2 shows that P¢(w) and the tube bounded by Py (w) and P3(w) satisfy the
interlacing property.
Thus, we conclude that every polynomial P(s) with odd part P°44(s) satisfying

P/ (w) < P°(w) < P9 (w), for all w € [0, o0
1s stable. For example, the dotted line shown inside the tube represents
PoY(s) = s +325° + 111s° + 79s.
The dual of Lemma 5.1 is:
Lemma 5.2 Let

Pi(s) = P/ (s) + P*"(s)
Py(s) = P5*"(s) + P*¥(s)



Sec. 5.2. KHARITONOV'S THEOREM FOR REAL POLYNOMIALS 227

150
100 - a
N A
50+ :
0
_50 L L L L L
0 0.5 1 1.5 2 25 3

rad/sec

Figure 5.2. P¢(w) and (P{(w), P§(w)) (Example 5.1)

denote two stable polynomials of the same degree with the same odd part P°44(s) and
differing even parts PFVe"(s) and P5V"(s) satisfying

Pf(w) < P (w), for all w € [0, . (5.5)

Then,
P(S) — Peven(s) +Podd(5)

is stable for every polynomial P(s) with even part PV"(s) satisfying
Pf(w) < P*(w) < P5(w), for all w € [0, x)]. (5.6)
We are now ready to prove Kharitonov’s Theorem.

Proof of Kharitonov’s Theorem The Kharitonov polynomials repeated below,
for convenience are four specific vertices of the box A:

K' (s) =2, + 215+ Y2s” + yas® + 48 4 255" + yes® + -,
‘[(2(8) =T, + y15+9252 +l‘353 —|—I454 —|— y555 —|—y656 _|_ cee
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K3(s) =yo + 15+ 225" 4+ yss” +yas” + 255° + s’ + -, (5.7)
K4(5) =Y+ U5+ 205> + 235° + yas® + yss° +wes® + - -

These polynomials are built from two different even parts K=< (s) and K2 (s)

max min
and two different odd parts K244 (s) and K234 (s) defined below:
[71(31\]:;( ) =Y+ I282 + y454 + 1‘656 4+ y858 +
Ko (s) =2, + ya5? + w48t + yss® 4+ xgsS 4+ -,

and
K239 (s) = yns+ w38 + ys8° + ars” 4+ yos” +- -+,
KeM(s) =254 yss® 4+ w58 + yrs” +xos” + -+

The Kharitonov polynomials in (5.2) or (5.7) can be rewritten as:

K'(s) = KR (s) + Ko (s),
K2(s) = K (s) + KR (s),
K?(s) = KRt (s) + K3 (s), (5.8)
K'(s) = Kt (s) + Kl (5)-

The motivation for the subscripts “max” and “min” is as follows. Let §(s) be

an arbitrary polynomial with its coefficients lying in the box A and let 67" (s) be
its even part. Then

[(r(;ax(w) = Yo — 132‘-“2 + y4w4 — J}6w6 + ygwg + - .
§(w) = 6o — baw? + Saw® — o’ + Ssw® + - -+,

Koin(w) = 2o — yow” + za0® — yow® + 2sw® + - -+,
so that
Ko (W) = 8°(w) = (Yo — 80) + (82 — 22)w” + (ya — da)w” + (86 — ws)w® + -+,
and
6 (w) — Ko (W) = (69 — @) + (y2 — 82)w® + (84 — wa ) + (ys — b6 )w® +

Therefore,

Kfin(w) <6%(w) < KL (w), for all w € [0, 0] (5.9)
Similarly, if §°49(s) denotes the odd part of §(s), and §°44 (jw) = jwé’(w) it can be
verified that

Koin(w) <6 (w) < K70 (w), for all w € [0, o). (5.10)
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Figure 5.3. Axis parallel rectangle Z(jw)

Thus 6(jw) lies in an axis parallel rectangle Z(jw) as shown in Figure 5.3.

To proceed with the proof of Kharitonov’s Theorem we note that necessity of
the condition is trivial since if all the polynomials with coefficients in the box A are
stable, it is clear that the Kharitonov polynomials must also be stable since their
coefficients lie in A. For the converse, assume that the Kharitonov polynomials are
stable, and let 8(s) = §V°(s) 4 6°94(s) be an arbitrary polynomial belonging to the
family Z(s), with even part 6°V*"(s) and odd part 6°94(s).

We conclude, from Lemma 5.1 applied to the stable polynomials K?(s) and
K*(s) in (5.8), that

K&ven(s) + 6°94(s) is stable. (5.11)

max

Similarly, from Lemma 5.1 applied to the stable polynomials K'(s) and K?*(s) in
(5.8) we conclude that

KZn (s) + 6°94(s) s stable. (5.12)

Now, since (5.9) holds, we can apply Lemma 5.2 to the two stable polynomials

Joeven (S) + 6odd (S) and Keven (S) + 6odd (S)

max min

to conclude that
geven (S) + 6Odd (5) = 6(5) 1s stable.

Since é(s) was an arbitrary polynomial of Z(s) we conclude that the entire family
of polynomials Z(s) is stable and this concludes the proof of the theorem. &

Remark 5.1. The Kharitonov polynomials can also be written with the highest
order coefficient as the first term:

2d n n—1 n—2 n—3 n—4
K'($) =20 + Yn18" 7 F ynoos” " F 2, 38" " Fa,_as" "+,
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IA{Z(S) = xnsn + $n—15n_1 + yn—25n_2 + yn—35n_3 + xn—45n_4 + - Y
K3(s) = yns” 4+ 218" 298" "2 4 438" dyp_as" 4o, (5.13)

-[;74(5) = ynsn + yn—lsn_l + xn—an_z + xn—35n_3 + yn—45n_4 + -

Remark 5.2. The assumption regarding invariant degree of the interval family
can be relaxed. In this case some additional polynomials need to be tested for
stability. This is dealt with in Exercise 5.13.

Remark 5.3. The assumption inherent in Kharitonov’s Theorem that the coef-
ficients perturb independently is crucial to the working of the theorem. In the
examples below we have constructed some control problems where this assumption
is satisfied. Obviously in many real world problems this assumption would fail
to hold, since the characteristic polynomial coefficients would perturb interdepen-
dently through other primary parameters. However even in these cases Kharitonov’s
Theorem can give useful and computationally simple answers by overbounding the
actual perturbations by an axis parallel box A in coefficient space.

Remark 5.4. As remarked above Kharitonov’s Theorem would give conservative
results when the characteristic polynomial coefficients perturb interdependently.
The Edge Theorem and the Generalized Kharitonov Theorem described in Chapters
6 and 7 respectively were developed precisely to deal nonconservatively with such
dependencies.

Example 5.2. Consider the problem of checking the robust stability of the feed-
back system shown in Figure 5.4.

gT“ G(s) -

Figure 5.4. Feedback system (Example 5.2)

The plant transfer function is

(S] s+ (S()
(6452 + 6353 + 62)

G(s) = =
with coefficients being bounded as

b4 € [Ta,ya], 03 € [r3,y3], 02 € [T2, 0], & € [x1,m1], b0 € [xo, w0]-
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The characteristic polynomial of the family is written as
6(5) = 6454 + 6353 + 6252 + 615 + 60.

The associated even and odd polynomials for Kharitonov’s test are as follows:

K (s) = wo+yps” +wast,  KRR(s) = yo + 25" +yas”,
K3 (s) = x1s + y8°, K23 (s) = yys + 235°.

The Kharitonov polynomials are:

KI(S) =ag+ 215+ Y25° + y35> + a5t Kz(s) =20+ yis + yas> + z3s® + xas?,
K3(s) = yo + 154 225" + yss® +yus’,  K*(s) = yo + s + 228” + 35° + yas®

The problem of checking the Hurwitz stability of the family therefore is reduced
to that of checking the Hurwitz stability of these four polynomials. This in turn
reduces to checking that the coefficients have the same sign (positive, say; otherwise
multiply 8(s) by -1) and that the following inequalities hold:

K'(s) Hurwitz : yoys > @124,  1YoYs > ¥14 + Y30,
K? (s) Hurwitz : yoxz > y12a, Y133 > Yi T4 + T30,
K3(s) Hurwitz : xoys > r1ya, 1223 > Tiys + Yo,
K*(s) Hurwitz : xow3 > y1ya, 17223 > Yiya + T5y0.

Example 5.3. Consider the control system shown in Figure 5.5.

C(s) G(s) .

Figure 5.5. Feedback system with controller (Example 5.3)

The plant is described by the rational transfer function G(s) with numerator and
denominator coefficients varying independently in prescribed intervals. We refer to
such a family of transfer functions G(s) as an interval plant. In the present example
we take

2
L _ nast 4+ mnys+ng ]
G(s) = {6y = S et
no € [1,25], I3 € [1,6], N9y € [1,7]
ds € [-1,1], dy € [<0.5,1.5], dy € [L,1.5] [~
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The controller is a constant gain, C(s) = k that is to be adjusted, if possible,
to robustly stabilize the closed loop system. More precisely we are interested in
determining the range of values of the gain k € [—o0, +o0] for which the closed loop
system is robustly stable, i.e. stable for all G(s) € G(s).

The characteristic polynomial of the closed loop system is:

§(k,s) = s* + (dy + kny) s> + (dy + kny) s+ (do + kno) -

§2(k) §1(k) So(k)

Since the parameters d;, n;, ¢+ = 0,1,2, j = 0,1,2 vary independently it follows
that for each fixed k, é(k, s) is an interval polynomial. Using the bounds given to
describe the family G(s) we get the following coefficient bounds for positive k:

8y(k) € [+ k, 1+ Tk],
81 (k) € [<0.5+ k, 1.5+ 6Kk,
So(k) € [—1 + k, 1.5+ 2.5k].

Since the leading coefficient is +1 the remaining coefficients must be all positive for
the polynomial to be Hurwitz. This leads to the constraints:

(a) =1 +k>0, —05+k>0, 1+k>0.

From Kharitonov’s Theorem applied to third order interval polynomials it can be
easily shown that to ascertain the Hurwitz stability of the entire family it suffices
to check in addition to positivity of the coefficients, the Hurwitz stability of only
the third Kharitonov polynomial K3(s). In this example we therefore have that the
entire system is Hurwitz if and only if in addition to the above constraints (a) we
have:

(=05 +k)(—14+k)> 1.5+ 2.5k
From this it follows that the closed loop system is robustly stabilized if and only if

k€ (2+ V5, +o0].

To complete our treatment of this important result we give Kharitonov’s Theorem
for polynomials with complex coefficients in the next section.

5.3 KHARITONOV’S THEOREM FOR COMPLEX POLYNOMI-
ALS

Consider the set 7*(s) of all complex polynomials of the form,
6(s) = (@ +jBo) + (1 +jb1)s+ -+ (an +jBa)s” (5.14)

with
o € [l‘o,yo], o€ [901,3/1], ey € [xn,;yn,] (515)
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and
60 c [UO)UO]) 61 c [ulavl]a Ty 671 c [unavn]' (516)

This is a complex interval family of polynomials of degree n which includes the
real interval family studied earlier as a special case. It is natural to consider the
generalization of Kharitonov’s Theorem for the real case to this family. The Hur-
witz stability of complex interval families will also arise naturally in studying the
extremal H., norms of interval systems in Chapter 9. Complex polynomials also
arise in the study of phase margins of control systems and in time-delay systems.
Kharitonov extended his result for the real case to the above case of complex inter-
val families. We assume as before that the degree remains invariant over the family.
Introduce two sets of complex polynomials as follows:

KiF(s) = (w0 + juo) + (21 + jvr)s + (y2 + jua)s” + (ys + jus)s®
+(z4 +jU4)S4 + (x5 +j05)55 + -,
K;—(S) = (%o + jvo) + (11 + jvi)s + (e +jU2)82 + (23 +jU3)53
(g + jva)s* + (ys + jus)s® + - -, (5.17)
K§(s) = (o + juo) + (z1 4 jur)s + (x2 + jva)s” + (ys + jva)s”
+(ya + jua)s* + (w5 +us)s® + - -+,
K (s) = (yo + jvo) + (1 + jur)s + (22 + jus)s” + (23 + jvs)s®
+(ya + jva)s* + (ys + Jus)s® + - -,

and

K7 (s) := (wo + juo) 4+ (y1 + Ju1)s + (Y2 + jva)s” + (x5 + jus)s®
(4 + jua)s® + (ys + jus)s® + - -+,
K5 (s) = (zo + jvo) + (z1 + jur)s + (o + jU2)82 + (3 —I—jv3)53
+(a + jva)st + (w5 + jus)s® + -+,
[\73_ (8) = (yo —I— _]Uo) —I— (yl —I— jv1)5 —|— (1‘2 —I— jUz)Sz —I— (l‘g —I— jU3)83 (518)
+(ya + Jua)s* + (g5 + jvs)s” + - -+,
K7 (s) = (yo + jvo) + (21 + ju1)s + (x2 + jus)s® + (ys + jus)s®
+(ya + jva)s” + (w5 + jus)s® + - -.

Theorem 5.2 The family of polynomials I*(s) is Hurwitz if and only if the eight
Kharitonov polynomials K (s), K (s), Kf(s), K} (s), Ky (s), K5 (s), K5 (s),
K (s) are all Hurwitz.

Proof. The necessity of the condition is obvious because the eight Kharitonov
polynomials are in 7*(s). The proof of sufficiency follows again from the Hermite-
Biehler Theorem for complex polynomials (Theorem 1.8, Chapter 1).
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Observe that the Kharitonov polynomials in (5.17) and (5.18) are composed of
the following extremal polynomials:
For the “positive” Kharitonov polynomials define:

RE. () := o + jurs + wos” + jugs” +yas” + - -
mln(S) =@ + juis + Yos” + juss® +xast 4

max(s) =Jjvo+yis +jU252 + 383 —I—jv454 4.
mln(s) = jug + 15 + jUase + yss® + jugst + -

so that

S) = Rr-‘lr—lax( ) + I$ax(5)~
For the “negative” Kharitonov polynomials we have
Ry (8) = yo 4 juis + 228" + juss® + yus® + -+
R (8) = xo + juis + yos” + juss® + was* + -+
max(s) = jUO + 18 +jU252 + y353 —|—jv454 + ...
(s)

Ihin(s) = juo +y1s +j0252 + x35° +jU454 + -
and
Ky (8) = Rigin (8) + Lyin (5)
Ky (8) = Ripin(s) + Tax(s)
Ky (8) = Rigax(s) + L ()
Ky (8) = Ripax(8) + Liax(5)-
RE, (jw) and RE, (jw) are real and IE, (jw) and IE, (jw) are imaginary. Let

Re[8(jw)] := 6" (w) and Im[6(jw)] := 6'(w) denote the real and imaginary parts of
8(s) evaluated at s = jw. Then we have:

8 (w) = g — frw —aow? 4 G+
8 (w) = Bo + aqw — Fow? — azw® + - -
It 1s easy to verify that

Rt (jw) <6 (w) < RE, (jw), forall wel0,o0)
+ . + 1
7111““(]“) <8 (w) < 7Imax,(]w), for all w € [0, 0] (5.19)
J J
Ro. (jw) <6"(w) < R, (jw), forall we[0,—oc]
- . 2
w <8 (w) < M, for all w € [0, —o¢] (5.20)
J J
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The proof of the theorem is now completed as follows. The stability of the 4
positive Kharitonov polynomials guarantees interlacing of the “real tube” (bounded
by Rt (jw) and RE, (jw)) with the “imaginary tube” (bounded by I, (jw) and
It (jw)) for w > 0. The relation in (5.19) then guarantees that the real and
imaginary parts of an arbitrary polynomial in Z*(s) are forced to interlace for w > 0.
Analogous arguments, using the bounds in (5.20) and the “negative” Kharitonov
polynomials forces interlacing for w < 0. Thus by the Hermite-Biehler Theorem for
complex polynomials 4(s) is Hurwitz. Since 6(s) was arbitrary, it follows that each

and every polynomial in Z*(s) is Hurwitz. &

Remark 5.5. In the complex case the real and imaginary parts of §(jw) are poly-
nomials in w and not w?, and therefore it is necessary to verify the interlacing of
the roots on the entire imaginary axis and not only on its positive part. This is the
reason why there are twice as many polynomials to check in the complex case.

5.4 INTERLACING AND IMAGE SET INTERPRETATION

In this section we interpret Kharitonov’s Theorem in terms of the interlacing prop-
erty or Hermite-Biehler Theorem and also in terms of the complex plane image of
the set of polynomials Z(s), evaluated at s = jw for each w € [0, o0]. In Chapter 1 we
have seen that the Hurwitz stability of a single polynomial §(s) = 6" (s)+6°%(s) is
t)
O
In considering the Hurwitz stability of the interval family Z(s) we see that the
family is stable if and only if every element satisfies the interlacing property. In
view of Kharitonov’s Theorem it must therefore be true that verification of the
interlacing property for the four Kharitonov polynomials guarantees the interlac-
ing property of every member of the family. This point of view is expressed in
the following version of Kharitonov’s Theorem. Let wl®(w™i™) denote the pos-
itive roots of Kf . (w)(K:; (w)) and let wm(w™in) denote the positive roots of

max min 0 0

A71%21)( ((.d) (](I?ﬂin ((.d) ) .

Theorem 5.3 (Interlacing Statement of Kharitonov’s Theorem)
The family I(s) contains only stable polynomials if and only if

equivalent to the interlacing property of 6°(w) = 6°V*"(jw) and 6°(w) =

1) The polynomials K7, (w), K5 (w), K. (w), K. (w) have only real roots

max min max min
and the set of positive roots interlace as follows:

min max min max min max min max
0<w™ <w™ <wil™ <w™ <w)m <wl <wp ! <wp <

2) K&, (0), K& (0), K2..(0), K2, (0) are non zero and of the same sign.

max min max min

This theorem is illustrated in Figure 5.6 which shows how the interlacing of the odd
and even tubes implies the interlacing of the odd and even parts of each polynomial
in the interval family. We illustrate this interlacing property of interval polynomials
with an example.
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Figure 5.6. Interlacing odd and even tubes

Example 5.4. Consider the interval family

6(5) = 57 —|— 6656 —|— 6555 + 6454 + 6353 + 6252 + 6] S + 60

where
86 €19,9.5], 85 € [31,31.5], 84 € [71,71.5],
83 € [111,111.5], 8, € [109,109.5], 81 € [76,76.5],
8 € [12,12.5]

Then

K oo(w) = —90° + 71.5w"* — 109w” + 12.5

mm(w) —9.5w" + Tlw? — 109.5w? + 12
) = —w® +31.5w* — 111w? + 76.5
) = —w® + 31w* — 111.5w% + 76.

We can verify the interlacing property of these polynomials (see Figure 5.7).

The illustration in Figure 5.7 shows how all polynomials with even parts bounded
by Amax( ) and K¢ (w) and odd parts bounded by K2, (w) and K. (w) on the
imaginary axis satisfy the interlacing property when the Kharitonov polynomials
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150

100

50

rad/sec

Figure 5.7. Interlacing property of an interval polynomial (Example 5.4)

are stable. Figure 5.7 also shows that the interlacing property for a single stable
polynomial corresponding to a point é in coeflficient space generalizes to the boz
A of stable polynomials as the requirement of “interlacing” of the odd and even
“tubes.” This interpretation is useful; for instance it can be used to show that for
polynomials of order less than six, fewer than four Kharitonov polynomials need to
be tested for robust stability (see Exercise 5.4).

Image Set Interpretation

It is instructive to interpret Kharitonov’s Theorem in terms of the evolution of the
complex plane image of Z(s) evaluated along the imaginary axis. Let Z(jw) denote
the set of complex numbers §(jw) obtained by letting the coefficients of §(s) range
over A:

T(jw) = {6(jw) : 8 € A}

Now it follows from the relations in (5.9) and (5.10) that Z(jw) is a rectangle in the
complex plane with the corners K (jw), Ko(jw), Ka(jw), Ka(jw) corresponding to
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the Kharitonov polynomials evaluated at s = jw. This is shown in Figure 5.8. As
w runs from 0 to oo the rectangle Z(jw) varies in shape size and location but its
sides always remain parallel to the real and imaginary axes of the complex plane.
We illustrate this by using a numerical example.

Example 5.5. Consider the interval polynomial of Example 5.4. The image set
of this family 1s calculated for various frequencies. These frequency dependent

rectangles are shown in Figure 5.8.

150+ -
100 + -
K* K*
&
E 50 K K*? .
0 S
- I
O
Do L
_50 L L L
-50 0 50 100 150
Real

Figure 5.8. Image sets of interval polynomial (Kharitonov boxes) (Example 5.5)

5.4.1 Two Parameter Representation of Interval Polynomials

The observation that Z(jw) is an axis parallel rectangle with the K;(jw),i=1,2,3,4
as corners motivates us to introduce a reduced family Zg(s) C Z(s) which generates
the image set Z(jw) at every w. Let Gy(s) denote the center polynomial of the
family Z(s):

ofs) = DEI g I T
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and introduce the even and odd polynomials:

Pe(s) i= Kpad (5) — K (s) (5.21)
Bo(s) 1= KR (s) — Kol (s). (5.22)

We define
Tns) 1= {B(5) = Bols) + 2B (5) + Mafl(s) : | < 1,i = 1,2)
It is easy to see that Zr(s) C Z(s) but
T(jw) = Ir(jw), for all w > 0.

This shows that the n + 1-parameter interval polynomial family Z(s) can always be
replaced by the two-parameter testing family Zz(s) as far as any frequency evalua-
tions are concerned since they both generate the same image at each frequency. We
emphasize that this kind of parameter reduction based on properties of the image
set holds in more general cases, i.e. even when the family under consideration is not
interval and the stability region is not the left half plane. Of course in the interval
Hurwitz case, Kharitonov’s Theorem shows us a further reduction of the testing
family to the four vertices K;(s). We show next how this can be deduced from the
behaviour of the image set.

5.4.2 Image Set Based Proof of Kharitonov’s Theorem

We give an alternative proof of Kharitonov’s Theorem based on analysis of the
image set. Suppose that the family Z(s) is of degree n and contains at least one
stable polynomial. Then stability of the family Z(s) can be ascertained by verifying
that no polynomial in the family has a root on the imaginary axis. This follows
immediately from the Boundary Crossing Theorem of Chapter 1. Indeed if some
element of Z(s) has an unstable root then there must also exist a frequency w*
and a polynomial with a root at s = jw*. The case w* = 0 is ruled out since this
would contradict the requirement that K¢, (0) and K7, (0) are of the same sign.
Thus it 1s only necessary to check that the rectangle Z(jw*) excludes the origin of
the complex plane for every w* > 0. Suppose that the Kharitonov polynomials are
stable. By the monotonic phase property of Hurwitz polynomials it follows that the
corners K1 (jw), K?(jw), K3(jw), K*(jw) of Z(jw) start on the positive real axis
(say), turn strictly counterclockwise around the origin and do not pass through it
as w runs from 0 to co. Now suppose by contradiction that 0 € Z(jw*) for some
w* > 0. Since Z(jw) moves continuously with respect to w and the origin lies outside
of Z(0) it follows that there exists wy < w* for which the origin just begins to enter
the set Z(jwy). We now consider this limiting situation in which the origin lies on
the boundary of Z(jwg) and is just about to enter this set as w increases from wy.
This is depicted in Figure 5.9. The origin can lie on one of the four sides of the
image set rectangle, say AB. The reader can easily verify that in each of these cases
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the entry of the origin implies that the phase angle (argument) of one of the corners,
A or B on the side through which the entry takes place, decreases with increasing
w at w = wp. Since the corners correspond to Kharitonov polynomials which are
Hurwitz stable, we have a contradiction with the monotonic phase increase property
of Hurwitz polynomials.

Imag 1 Imag
—t
B
- . 4 e
=+
Real A B Real
A
—t
Imag 1 Imag
P
B
A B |
1 1 1 , T ,
Real Real
A
P

Figure 5.9. Alternative proof of Kharitonov’s Theorem
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5.4.3 Image Set Edge Generators and Exposed Edges

The interval family Z(s), or equivalently, the coefficient set A, is a polytope and
therefore, as discussed in Chapter 4, its stability is equivalent to that of its ex-
posed edges. There are in general (n + 1)2°*! such exposed edges. However from
the image set arguments given above, it is clear that stability of the family Z(s)
is, in fact, also equivalent to that of the four polynomial segments [K;(s), Ka(s)],
[K1(s), K3(s)], [Ka(s), Ka(s)] and [K3(s), K4(s)]. This follows from the previous
continuity arguments and the fact that these polynomial segments generate the
boundary of the image set Z(jw) for each w. We now observe that each of the dif-
ferences Ks(s) — Ky(s),K3(s) — K1(s),K4(s) — K5(s) and K,(s) — K3(s) is either an
even or an odd polynomial. It follows then from the Vertex Lemma of Chapter 2 that
these segments are Hurwitz stable if and only if the endpoints K (s), Ka(s), K5(s)
and I4(s) are. These arguments serve as yet another proof of Kharitonov’s Theo-
rem. They serve to highlight 1) the important fact that it is only necessary to check
stability of that subset of polynomials which generate the boundary of the image
set and 2) the role of the Vertex Lemma in reducing the stability tests to that of
fixed polynomials.

5.5 EXTREMAL PROPERTIES OF THE KHARITONOV POLY-
NOMIALS

In this section we derive some useful extremal properties of the Kharitonov poly-
nomials. Suppose that we have proved the stability of the family of polynomials

8(s) =60+ 615+ 628" + -+ 6,57,
with coefficients in the box

A= [x();yo] X [zhyl] XX [xnayn]'

Each polynomial in the family is stable. A natural question that arises now is the
following: What point in A is closest to instability? The stability margin of this
point is in a sense the worst case stability margin of the interval system. It turns
out that a precise answer to this question can be given in terms of the parametric
stability margin as well as in terms of the gain margins of an associated interval
system. We first deal with the extremal parametric stability margin problem.

5.5.1 Extremal Parametric Stability Margin Property

We consider a stable interval polynomial family. Tt is therefore possible to associate
with each polynomial of the family the largest stability ball centered around it.
Write

é: [6();61;' "Jén]a

and regard § as a point in IR”*'. Let ||¢]|, denote the p norm in IR”*' and let this
be associated with é(s). The set of polynomials which are unstable of degree n or



242 INTERVAL POLYNOMIALS: KHARITONOV'S THEOREM  Ch. 5

of degree less than n is denoted by /. Then the radius of the stability ball centered
at & 1s

8) = inf || — .

p(5) = inf [l5 — u,

We thus define a mapping from A to the set of all positive real numbers:

A L R\{0}
8(s) — p(é).

A natural question to ask is the following: Is there a point in A which is the nearest
to instability? Or stated in terms of functions: Has the function p a minimum and
is there a precise point in A where it is reached? The answer to that question is

given in the following theorem. In the discussion to follow we drop the subscript p
from the norm since the result holds for any norm chosen.

Theorem 5.4 (Extremal property of the Kharitonov polynomials)
The function

A L RT\{0}
b(s) — p(6)
has @ minimum which is reached at one of the four Kharitonov polynomials associ-

ated with A.

Proof. Let K'(s),¢=1,2,3,4 denote the four Kharitonov polynomials . Consider
the four radii associated with these four extreme polynomials, and let us assume
for example that

p(K") = min [p(K"), p(K?), p(K), p(5*)] (5.23)
Let us now suppose, by way of contradiction, that some polynomial 4(s) in the box
is such that
p(7) < p(K"). (5.24)
For convenience we will denote p(y) by p,, and p(K*1) by p;.
By definition, there is at least one polynomial situated on the hypersphere
S(y(s), py) which is unstable or of degree less than n. Let 8(s) be such a poly-

nomial. Since 3(s) is on S(v(s), py), there exists a = [ag, aq,- - -, ] with ||af| =1
such that

B(s) =70+ aopy + (11 +a1py)s + -+ (yn + anpy)s”, (5.25)
(g, @1, - -+, @, can be positive or non positive here.)

But by (5.23), p1 is the smallest of the four extreme radii and by (5.24) p, is
less than p;. As a consequence, the four new polynomials

8a(8) = (w0 — lag|py) + (21 — lar]py)s + (3o + as]py)s® + (g3 + |as|py)s® +
§2(s) = (wo — laolpy) + (n + laalpy)s + (Y2 + |aa|py)s” + (23 — |ag|py)s® + -
82(5) = (o + levolpy) + (21 — laalpy)s + (22 — |aa|py)s” + (ys + as|py)s® + - -
G (5) = (o + levolpy) + (11 + | lpy)s + (22 — |zl py )s™ + (25 — |es|py)s® +
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are all stable because

||6f — K°

=py < pi, 1=1,2,3,4.
By applying Kharitonov’s Theorem, we thus conclude that the new box

A, = [0 — |Oéo|p7, Yo + |O‘0|p7] X oo X [zn — |O‘n|Pva Yn + |Ozn|,07] (5~26)

contains only stable polynomials of degree n. The contradiction now clearly follows
from the fact that 5(s) in (5.25) certainly belongs to A,, and yet it is unstable or
of degree less than n, and this proves the theorem. &

The above result tells us that, over the entire box, one is closest to instability at
one of the Kharitonov corners, say K'(s). It is clear that if we take the box A,
constructed in the above proof, (5.26) and replace p, by p(K*), the resulting box is
larger than the original box A. This fact can be used to develop an algorithm that
enlarges the stability box to its maximum limit. We leave the details to the reader
but give an illustrative example.

Example 5.6. Consider the system given in Example 5.2:

6252 + 6] s+ 60
53(6653 + 6552 + 645 + 63)

G(s) =

with the coefficients being bounded as follows:

8o € [300,400], & €[600,700], & € [450,500],
85 € [240,300], &4 € [70,80], 85 € [12, 14], 8 € [1,1].

We wish to verify if the system is robustly stable, and if it is we would like to calcu-
late the smallest value of the stability radius in the space of & = [§g, 81, 82, &3, 84, 05, b6]
as these coeflicients range over the uncertainty box.

The characteristic polynomial of the closed loop system is

6(8) = 6656 + 6555 + 6454 + 6353 + 6252 + 615 + 60.

Since all coefficients of the polynomial are perturbing independently, we can apply
Kharitonov’s Theorem. This gives us the following four polynomials to check:

K'(s) = 300 + 6005 + 50057 + 30057 + 70s* + 125° + °
K?(s) = 300 + 7005 + 5005 + 240s° + 70" + 145° + 5°
K3(s) = 400 + 600s + 4505 + 300s® + 80s* + 12° + s°
K*(s) = 400 4 700s + 45052 + 2405® + 80s* + 145" + 5°.

Since all four Kharitonov polynomials are Hurwitz, we proceed to calculate the
worst case stability margin.
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From the result established above, Theorem 5.4 we know that this occurs at one
of the Kharitonov vertices and thus it suffices to determine the stability radius at
these four vertices. The stability radius will be determined using a weighted €,
norm. In other words we want to find the largest value of p, such that the closed
loop system remains stable for all § satisfying

6

[60,- -, 6] : [Z

k=0

&, — 69

g

] <)

where 69 represent the coefficients corresponding to the center (a Kharitonov ver-
tex). Tt is assumed that [ag, on, a0, s, cu, o, o] = [43, 33, 25, 15, 5, 1.5, 1]. We
can compute the stability radius by simply applying the techniques of Chapter 3
(Tsypkin-Polyak Locus, for example) to each of these fixed Kharitonov polynomials
and taking the minimum value of the stability margin. We illustrate this calculation
using two different norm measures, corresponding to p = 2 and p = .

10

S*ZK‘!(W) — B

2+ — zg2(w) 4

Imag
R
N

2k i
4+ i
6 zp1(w) = — zrs(w)
8l i
_10 L L
-10 -5 0 5 10
Real

Figure 5.10. ¢, stability margin (Example 5.6)
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Figure 5.10 shows the four Tsypkin-Polyak loci corresponding to the four Kharitonov
polynomials. The radius of the inscribed circle indicates the minimum weighted £,
stability margin in coefficient space. Figure 5.11 shows the extremal weighted £,
stability margin. From these figures, we have

p2(8) =1 and p..(6) = 0.4953.

10

Imag
[\]

— zra(w)

— zgs(w) 4

Real

Figure 5.11. {, stability margin (Example 5.6)

5.5.2 Extremal Gain Margin for Interval Systems

Let us now consider the standard unity feedback control system shown below in
Figure 5.12. We assume that the system represented by ((s) contains parameter
uncertainty. In particular let us assume that G(s) is a proper transfer function which
is a ratio of polynomials n(s) and d(s) the coefficients of which vary in independent
intervals. Thus the polynomials n(s) and d(s) vary in respective independent in-
terval polynomial families AV(s) and D(s) respectively. We refer to such a family of
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Figure 5.12. A feedback system

systems as an nterval system. Let

G(s) = {G(s) = 7;8 :n(s) € N(s), d(s) € D(s)}.

represent the interval family of systems in which the open loop transfer function

lies.

We assume that the closed loop system containing the interval family G(s) is
robustly stable. In other words we assume that the characteristic polynomial of the
closed loop system given by

M(s) = d(s) + n(s)
is of invariant degree n and is Hurwitz for all (n(s),d(s))e(N(5) x D(s)). Let
II(s) = {II(5) = n(s) + d(s) : n(s) € N(s), d(s) €D(s)}.
Then robust stability means that every polynomial in II(s) is Hurwitz and of de-
gree n. This can in fact be verified constructively. Let Ki(s),i = 1,2,3,4 and
K7,(s),j = 1,2,3,4 denote the Kharitonov polynomials associated with A(s) and

D(s) respectively. Now introduce the positive set of Kharitonov systems Gi:(s)
associated with the interval family G(s) as follows:

Ki(s) .

G (s ::{ N :1:1,2,3,4}.
M= By e)

Theorem 5.5 The closed loop system of Figure 5.12 conlaining the interval plant

G(s) is robustly stable if and only if each of the positive Kharitonov systems in

G (s) is stable.

Proof. We need to verify that II(s) remains of degree n and Hurwitz for all
(n(s),d(s)) € N(s) x D(s). It follows from the assumption of independence of
the families A (s) and D(s) that II(s) is itself an interval polynomial family. Tt
is easy to check that the Kharitonov polynomials of II(s) are the four K (s) +
K4(s), i = 1,2,3,4. Thus the family II(s) is stable if and only if the subset
K4 (s) + K5(s), i =1,2,3,4 are all stable and of degree n. The latter in turn is
equivalent to the stability of the feedback systems obtained by replacing G(s) by
each element of G?; (s). &
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In classical control gain margin is commonly regarded as a useful measure of
robust stability. Suppose the closed system is stable. The gain margin at the loop
breaking point p is defined to be the largest value £* of k& > 1 for which closed loop
stability is preserved with G(s) replaced by kG(s) for all k € [1,k*). Suppose now
that we have verified the robust stability of the interval family of systems Gf(s).
The next question that is of interest 1s: What is the gain margin of the system at
the loop breaking point p? To be more precise we need to ask: What is the worst
case gain margin of the system at the point p as G(s) ranges over G(s)? An exact
answer to this question can be given as follows.

Theorem 5.6 The worst case gain margin of the system at the point p over the
family G(s) is the minimum gain margin corresponding to the positive Kharitonov
systems Gy (s).

Proof. Consider the characteristic polynomial TI(s) = d(s)+ kn(s) corresponding
to the open loop system kG(s). For each fixed value of k this is an interval family.
For positive k the Kharitonov polynomials of this family are K% (s) + kK% (s),i =
1,2,3,4. Therefore the minimum value of the gain margin over the set G(s) is in
fact attained over the subset G (s).

Remark 5.6, A similar result can be stated for the case of a positive feedback
system by introducing the set of negative Kharitonov systems (see Exercise 5.9).

5.6 ROBUST STATE-FEEDBACK STABILIZATION

In this section we give an application of Kharitonov’s Theorem to robust stabiliza-
tion. We consider the following problem: Suppose that you are given a set of n
nominal parameters

{agaa?:"';ag—l}a
together with a set of prescribed uncertainty ranges: Aag, Aay, -+, Aa,_1, and

that you consider the family Zy(s) of monic polynomials,

6(5) = 60 +615—|—6252 _|_..._|_6n_15n—1 +Sn,
where

Aa Aa Aa, _ Aa,, _
by € ag— 207a8+TO:|J"';6n—1€|:a2—1_ 5 1aa2—1+ 9 -

To avoid trivial cases assume that the family Zy(s) contains at least one unstable
polynomial.
Suppose now that you can use a vector of n free parameters

&: (k();k1a"'akn—1)a
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to transform the family Zy(s) into the family Z;(s) described by:
8(s) = (8o + ko) + (81 + k1 )s 4 (62 + k2)s® + -+ (bno1 + kn_1)s" ' + 5"

The problem of interest, then, is the following: Given Aag, Aay, ---, Aa,_1 the
perturbation ranges fixed a priori, find, if possible, a vector k so that the new
family of polynomials Z(s) is entirely Hurwitz stable. This problem arises, for
example, when one applies a state-feedback control to a single input system where
the matrices A, b are in controllable companion form and the coefficients of the
characteristic polynomial of A are subject to bounded perturbations. The answer
to this problem is always affirmative and is precisely given in Theorem 5.7. Before
stating it, however, we need to prove the following lemma.

Lemma 5.3 Letn be a positive integer and let P(s) be a stable polynomial of degree
n—1:
P(s)=po+pis+-+po_15""",  with all p; > 0.

Then there exists o > 0 such that:
Q(s) = P(s) +pns” =po+ s+ +poo15" 4 pas”,
is stable if and only if: Pn € [0, ).

Proof. To be absolutely rigorous there should be four different proofs depending
on whether n is of the form 4r or 4r + 1 or 4r + 2 or 4r + 3. We will give the proof
of this lemma when n is of the form 4r and one can check that only slight changes
are needed if n is of the form 4r +j, j7=1,2,3.

If n=4r r >0, we can write

P(s)=po+pis+-+pa_as,
and the even and odd parts of P(s) are given by:
Peven(S) = —|—p252 + .. '+P4r—254r_2,
Praa(s) = p1s+pas’ 4+ pap_157 !

Let us also define

Pe(w) = Poven (]w) =Po _pZ"‘)z —|—p4w4 - P4r—2w4r_2,
P Jw
Po(w) = % =pn _p3W2 +p5w4 . _p4r_1w47‘—2.

P(s) being stable, we know by the Hermite-Biehler Theorem that P¢(w) has pre-
cisely 2r—1 positive roots we 1, we 2, - - -, We 2,—1, that P?(w) has also 2r—1 positive
ToOtS Wy 1, Wo 2,  * , Wo 2r—1, and that these roots interlace in the following manner:

0 < weﬂ < woﬂ < we,‘Z < wo,‘Z <0< we,?r—1 < wo,?r—W .
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It can be also checked that,

P(w,;) < 0if and only if j is odd, and P°(w, ;) > 0 if and only if j is even,

that is,
P(wo1) <0, P(we2) >0, -+, P(woor—2) >0, P°(wo2,-1) <O. (5.27)
Let us denote pe
o = min {w} : (5.28)
jodd | (we ;)

By (5.27) we know that « is positive. We can now prove the following:
Q(s) = P(s) + pars*" is stable if and only if ps, € [0, ).

Q(s) is certainly stable when ps, = 0. Let us now suppose that

0 < psr < . (5.29)
Q)°(w) and Q°(w) are given by
Q°(w) = P°(w) =p1 = psw’ +psw’ — - = parqw? T,
Q°(w) = P(w) 4 parw® = py — paw” + paw® — -+ — pay_ow® 7 4 pyw?.

We are going to show that Q¢(w) and Q°(w) satisfy the Hermite-Biehler Theorem
provided that py, remains within the bounds defined by (5.29).
First we know the roots of Q°(w) = P°(w). Then we have that Q¢(0) = py > 0,
and also

Qe(wo,l) = Pe(wo,l) + p4r(wo,l)4r

But, by (5.28) and (5.29) we have

P€
@ (oas) < Pl) = T8,

=0

Thus Q°(w,,1) < 0. Then we have
Q" (wo,2) = P(wo,2) + Par(wo,2)"".
But by (5.27), we know that P¢(w, ) > 0, and therefore we also have
Q" (w,2) > 0.

Pursuing the same reasoning we could prove in exactly the same way that the
following inequalities hold

Q°(0) >0, Q(wo1) <0, QW) >0, -, Q(Woar—n) >0, Q(wpar_1) <O0.
(5.30)
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From this we conclude that @Q°(w) has precisely 2r — 1 roots in the open interval

(07 wO,ZT—l)) namely
! ! !
we,l) We,m B We,Zr—la

and that these roots interlace with the roots of Q?(w),
0<wiy <wo1 <wip<Wop < e < W gy < Woro1. (5.31)
Moreover, we see in (5.30) that

Q° (wWo,2r—1) <0,
and since pg, > 0, we also obviously have
Q°(+00) > 0.
Therefore (w) has a final positive root wj ,. which satisfies
Wo,2r—1 < W, o, (5.32)

From (5.31) and (5.32) we conclude that Q°(w) and @Q°(w) satisfy the Hermite-
Biehler Theorem and therefore Q(s) is stable.

To complete the proof of this lemma, notice that Q(s) is obviously unstable if
par < 0 since we have assumed that all the p; are positive. Moreover it can be
shown that for ps, = «, the polynomial P(s) + as?" has a pure imaginary root and
therefore is unstable. Now, it is impossible that P(s) 4 pa,s*" be stable for some
Par > @, because otherwise we could use Kharitonov’s Theorem and say,

P(s) + %54'" and P(s) + ps,s*" both stable = P(s) + as*" stable ,

which would be a contradiction. This completes the proof of the theorem when
n=4r.
For the sake of completeness, let us just make precise that in general we have,

fn=4r, «a= min{M}

j odd (wo j

(.dej
’

fn=4r4+1, «a= min{

j even (.d(,] 4r+1

j even

ifn=4r+ 2 a:'min{ww 4r+2}

ifn=4r4+3, a= min{ C2%))

jodd | (w,j)¥+3
The details of the proof for the other cases are omitted. &

We can now enunciate the following theorem to answer the question raised at the
beginning of this section.
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Theorem 5.7 For any set of nominal parameters {ag, a1, -+, an_1}, and for any
set of positive numbers Aag, Aay, -+, Aa,_1, it is possible to find a vector k such
that the entire family Ty(s) is stable.

Proof. The proof is constructive,

Step 1: Take any stable polynomial R(s) of degree n — 1. Let p(R(:)) be the
radius of the largest stability hypersphere around R(s). It can be checked from the
formulas of Chapter 3, that for any positive real number A, we have

pAR(-)) = Ap(R()).

Thus it is possible to find a positive real A such that if P(s) = AR(s),

Aay®  Aay? Aa, _1*
p(P(~))>¢ D o2 gy (5.33)

4 4 4

Denote
P(S) = Po +p15—|—p252 + - ..+pn_15n—1’

and consider the four following Kharitonov polynomials of degree n — 1:

pl(s):<po—%>+<pl—%>s+<pz+%> sy
O R
P3(5)2<p0+%>+<]71—%> (m—%) S (5.34)
= s 2] (o 22) s (- 22)

)=

We conclude that these four polynomials are stable since || P’ (s

P(s)l| < p(P(s)).

Step 2: Now, applying Lemma 5.3, we know that we can find four positive numbers
aq, as, a3, (g, such that

Pi(s) + p,s™ is stable for 0 < p, < «;, j=1,2,34.
Let us select a single positive number « such that the polynomials,
PI(s) + as” (5.35)

are all stable. If o can be chosen to be equal to 1 (that is if the four o; are greater
than 1) then we do choose v = 1; otherwise we multiply everything by % which is
greater than 1 and we know from (5.35) that the four polynomials

K (s) = le(s) + 57,
o
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are stable. But the four polynomials K7 (s) are nothing but the four Kharitonov
polynomials associated with the family of polynomials

6(5):60+615+"'+6n—15n_1+5n7

where
1 1Aa0 1 1Aa0
60 € |—po— — =%, ~po+ |,
o a 2 o a 2
1 1Aa,_1 1 1 Aa,_
"'aén—le —Pn-1— — 1: _pn—1+_ ! 3
o a 2 o a 2

and therefore this family is entirely stable.
Step 3: It suffices now to chose the vector & such that
o 1 .
ki+a; = —p;, for i=1---n—1
o

]

Remark 5.7. It is clear that in step 1 one can determine the largest box around
R(-) with sides proportional to Aa;. The dimensions of such a box are also enlarged
by the factor A when R(-) is replaced by AR(:). This change does not affect the
remaining steps of the proof.

Example 5.7. Suppose that our nominal polynomial is
56—55—1—254—353—1—252—1—5—1—1,

that is
(Clg, Cl?, aga aga aga ag) = (1) la Qa _3a2a _1)

And suppose that we want to handle the following set of uncertainty ranges:

Aao = 3, Aa1 = 5, Aaz = 2, Aag = 1, Aa4 = 7, Aa5 =b.

Step 1: Consider the following stable polynomial of degree 5
R(s) = (s +1)> = 1+ 55+ 10s* + 105> + 55* + 5°.
The calculation of p(R(-)) gives:  p(R(-)) = 1. On the other hand we have

\/Aa02 + Aa12 Aan_lz

=5.31.

1 Tt

Taking therefore A = 6, we have that

P(5) =6+ 305+ 60s” 4 60s” + 305" 4 65",
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has a radius p(P(-)) = 6 that is greater than 5.31. The four polynomials P/ (s) are
given by

Pt 4.5 4 27.55 + 6152 + 60.55> + 26.5s* + 3.55°,

(s) =
P?(s) = 4.5+ 32.55 4 615 + 59.55° + 26.55* 4 8.55°,
P3(s) = 7.5+ 27.55 4+ 595 + 60.55> + 33.55% 4- 3.55%,
P*(s) = 7.5+ 32.55 4 59s% + 59.55° 4 33.55" + 8.55°.

Step 2: The application of Lemma 5.3 gives the following values
oy ~ 1.360, as ~2.667, az~1.784, as>~3.821,

and therefore we can chose oo = 1, so that the four polynomials

K'(s) = 4.5+ 27.55 + 61s% + 60.55> 4 26 55" + 3.55% + s°,
K*(s) = 4.5+ 32.55 + 615> + 59.55% + 26.55% + 8.55% + 5°,
K3(s) = 7.5+ 27.55 + 595 4+ 60.55> 4+ 33.55% + 3.55° 4 5%,
K*(s) = 7.5+ 32.55 + 59s” + 59.55° 4 33.55" + 8.55° 4 5%,

are stable.
Step 3: We just have to take
ko=pyo—ao=5, ki=pr—a =29, ky=py—a; =058,

kgng—a3:63, k4:p4—a4:28, k5:p5—a5:7.

5.7 POLYNOMIAL FUNCTIONS OF INTERVAL POLYNOMI-
ALS

In this section we extend the family of polynomials to which Kharitonov’s Theorem
applies. Consider the real interval polynomial

s) ={a(s) : a; E[aj_,a;'], j=0,1,2,--,n}, (5.36)
and a given polynomial
p(z)=antarz+ -+ amz™. (5.37)
We generate the polynomial family

p(Z(s)) = {plals)) : a(s) € I(s)} (5.38)
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which consists of polynomials of the form
ag(s) + ara(s) + asd®(s) + -+ apa™(s) (5.39)

where a(s) € Z(s). In the following we answer the question: Under what conditions
is the family ¢(Z(s)) Hurwitz stable?

We note that the family ¢(Z(s)) is in general neither interval nor polytopic.
Moreover, even though the image set Z(jw) is a rectangle the image set of ¢(Z(jw))
is, in general a very complicated set. Therefore it is not expected that a vertex
testing set or an edge testing will be available. However the result given below
shows that once again it suffices to test the stability of four polynomials.

Let

K*(s), K*(s), K*(s), K*(s)

denote the Kharitonov polynomials associated with the family Z(s). We begin with
a preliminary observation.

Lemma 5.4 Given the real interval polynomial Z(s) and a complex number z the
Hurwitz stability of the family

I(s)—z={a(s)—z:a(s) €Z(s)}
is equivalent to the Hurwitz stability of the polynomials K’(s) — z, j = 1,2,3,4.

The proof of this lemma follows easily from analysis of the image set at s = jw of
I(s) — z and is omitted.

Stability Domains

For a given domain I' of the complex plane let us say that a polynomial is I'-stable
if all its roots lie in the domain T'.

Consider a polynomial a;(s) of degree n. The plot z = a;(jw), w € (—00, +00),
partitions the complex plane into a finite number of open disjoint domains. With
each such domain A we associate the integer na, the number of the roots of the
polynomial a;(s) — z in the left half plane, where z is taken from A. This number
1s independent of the particular choice of z in the domain and there is at most one
domain Ay, for which ny = n. Let us associate this domain Ay with ag(s) and call
1t the stability domain. If it so happens that there 1s no domain for which ny = n
we set Ay = 0.

Define for each polynomial K7(s), the associated stability domain A;, j =
1,2,3,4 and let

AO = ﬂif:lAk.

Theorem 5.8 Suppose that
Ao # 0.

The polynomial family o(Z(s)) is Hurwitz stable if and only if ¢(z) is Ag-stable,
that is, all the roots of ©(z) lie in the domain A,.
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Proof. Let 2y, 22, - -, #y be the roots of (5.37). Then

p(2) = am(z = 21)(z = 22) -+ (2 = 2m)

and

pla(s)) = am (a(s) = 21) (a(s) = 22) - (a(s) = 2m) -
The Hurwitz stability of ¢(a(s)) is equivalent to Hurwitz stability of the factors
a(s) — z;. This shows that Hurwitz stability of ¢(Z(s)) is equivalent to Hurwitz
stability of the interval polynomials Z(s) — z;, j = 1,2, -, m. By Lemma 5.4 the
family Z(s) — z; is Hurwitz stable if and only if z; € A;. As a result the Hurwitz
stability of ¢(Z(s)) is equivalent to Ag-stability of ¢(z). L]

This leads to the following useful result.

Theorem 5.9 The polynomial family (Z(s)) is Hurwitz stable if and only if the
four polynomials ¢ (K7(s)), j = 1,2,3,4 are Hurwitz stable.

Proof. Necessity is obvious because these four polynomials are members of ¢(Z(s)).
For sufficiency, we know that Hurwitz stability of ¢ (K7 (s)) implies the A;-stability
of ¢(z). This means that ¢(z) is Ag-stable and hence, by the previous Theorem 5.8,
©(Z(s)) is Hurwitz stable. &

The above theorems describe two different methods of checking the stability of
(5.38). In Theorem 5.8 one first has to construct the domains Aj and then check
the Ag-stability of (5.37). In Theorem 5.9, on the other hand, one can directly check
the Hurwitz stability of the four fixed polynomials ¢ (K7 (s)).

Thus far we have considered the polynomial ¢(z) to be fixed. Suppose now that
¢(z) is an uncertain polynomial, and in particular belongs to a polytope

P(z) = {p(2) : (an, a1, @0, -+, ) € A} (5.40)

where A is a convex polytope. We ask the question: Given an interval family (5.36)
and a polytopic family (5.40) determine under what conditions is the polynomial
family
(Z(s)) = {p(als)) - al(s) € I(s), ¢ € @} (5.41)
Hurwitz stable?
We assume all polynomials in Z have the same degree n and all polynomials in
® have the same degree m.

Theorem 5.10 Let Ay # 0. Then the family ®(Z(s)) is stable if and only if ®(z)
18 Ag-stable.

Proof. The family ®(Z(s)) is of the form
(Z(s)) = {p(Z(5)) : p € D(2)} .

By Theorem 5.8, the family ¢(Z(s)) is Hurwitz stable if and only if ¢(z) is Ag-
stable. &
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From Theorem 5.9 applied to the above we have the following result.

Theorem 5.11 The family ®(Z(s)) is Hurwitz stable if and only if the four families
®(K'(s)) ={p(Ki(s)):p€®}, j=1,234 (5.42)
are Hurwilz stable.

Each of the families (5.42) has a polytopic structure and we can test for stability
by testing the exposed edges. Let £p(z) denote the exposed edges of ®(z). Each
exposed edge is a one parameter family of the form

(I—wei(z) +ppa(z),  pel01] (5.43)

It generates the corresponding family

(1= wer (K7 (s)) + pea (K7 (s)) . pe0,1] (5.44)

which is an element of the exposed edge of ® (K/(s)). Collecting all such families
(5.44) corresponding to the exposed edges of A, we have the following result.

Theorem 5.12 The family ®(Z(s)) is stable if and only if the following four col-
lections of one parameter families

Exriy ={e (K (s)) 19 € &}, ji=1,2,3,4
are stable.

This result is constructive as it reduces the test for robust stability to a set of one-
parameter problems. We remark here that the uncertain parameters occurring in
this problem appear both linearly (those from A) as well as nonlinearly (those from

Z(s))-

5.8 SCHUR STABILITY OF INTERVAL POLYNOMIALS

We emphasize that Kharitonov’s Theorem holds for Hurwitz stability, but in general
does not apply to arbitrary regions. The following examples illustrates this fact for
the case of Schur stability.

Example 5.8. The interval polynomial

17 +17
8’ 8

3 1
6(2,p):z4—|—pz3—|—522—§, pe [—

has the endpoints 6(z, —1') and §(z, <L) Schur stable but the midpoint §(z,0) is
not Schur stable.
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Example 5.9. Consider the interval polynomial

1
8(z) = 2V b3 4 602 612 — 3

with

109 109 49 51
636[_1)0]; 62€|: :|, 1 [ :|

289" 287 100" 100
The four Kharitonov polynomials associated with 6(z)

49 109

K'(z) = %—1— mz—l— 28—7Z2 +z*
K*(z) = —% + %z—l— ;(8)—2,22 -3+
K*(z) = —% + %z—l— %zz + 2t
K*'(z) = —% + %z—l— %22 T

are all Schur stable. Furthermore, the rest of the vertex polynomials

- 149 109

K(2) :—§+m2+@22—z3+z4
R*(z) = —% + %Z—I— ;(8)—322 -4t
R (z) = —% + %Z—i— %22 +2*
R(z) = —% + %Z—i— ;(8)—322 +2*

are also all Schur stable. However, the polynomial

: 1 1 109 1
8(2) :—5—1—5,2—1—@,22—1,23—1—,24

in the family has two roots at 0.25 £ j0.9694 which are not inside the unit circle.
This shows that neither the stability of the Kharitonov polynomials nor even the
stability of all the vertex polynomials guarantees the Schur stability of the entire

family.

Schur stability of a polynomial is equivalent to the interlacing of the symmetric
and antisymmetric parts of the polynomial evaluated along the unit circle. It 1s clear

from the above example that interlacing of the vertex polynomials cannot guarantee

the interlacing of the symmetric and antisymmetric parts of every member of the
interval family. In the case of Hurwitz stability, the interlacing of the odd and even
parts of the four Kharitonov polynomials in fact guarantees the interlacing along

the jw axis of every polynomial in the family.
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In view of the above facts let us see what we can say about the Schur stability
of an interval family of real polynomials. Let Z(z) be the family of polynomials of
the form

P(2) = ans" + 12"V Fag

with coefficients belonging to a box A:

A= {a:=(ao, ", an) |a; €[a;,af], i=0,---,n}. (5.45)

[EERat}

Introduce the vertices V and edges E of the box A:

Vi={(an,  -,a0): a; =a; oral, i=0,--- n} (5.46)
and
Er :={(an, - ya0): a=a oraf, i=0,---,n, itk
a € oy at]} (5.47)
and
E=U'_E,. (5.48)

The corresponding family of vertex and edge polynomials are defined by

Iv(z) :={P(z) = anz" + an 12"+ +ao: (an, -, a0) €V} (5.49)
Te(z) ={P(z) = ap 2" + an_12"" '+ +ag: (an, --,a0) €EE}. (5.50)

It is obvious that the interval family is a polytopic family and therefore stability of
the family can be determined by that of the exposed edges. We state this preliminary
result below.

Theorem 5.13 Assume that the family of polynomaials I(z) has constant degree.
Then I(z) is Schur stable iof and only if Ir(z) is Schur stable.

The proof is omitted as it follows from the image set arguments given in Chapter 4.
The above result in fact holds for any stability region. It turns out that when we
specifically deal with Schur stability, the number of edges to be tested for stability
can be reduced and this is the result we present next.

In the rest of this section, stable will mean Schur stable. The first lemma given
establishes a vertex result for an interval family with fixed upper order coefficients.

Lemma 5.5 Let n > 1 and assume that in the family T(z) we have fized upper

order coefficients, namely that aj = af for i = g—i— 1,---,n if n is even, and
1
i= @ + 1, nifnis odd. Then the entire family I(z) is stable if and only

if the family of vertex polynomials Tv(z) is stable.
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Proof. If the entire family is stable it is obviously necessary that the vertex poly-
nomials must be stable. Therefore we proceed to prove sufficiency of the condition.
We know that the polynomial

P(z)=a,z" + an 12"V -+ ag
is Schur stable if and only if the polynomial

F(s) = (s — 1)* P (ifi)

1s Hurwitz stable. Now

F(s):=ap(s—1)" +ay(s — 1)"‘1(54— 1)+ as(s — 1)"‘2(5—|— 1)2
+-tan(s— DE(s+1)2 +azii(s— DE s+ 13t (5.51)
+-Fa(s+1)".

Let F(s) be the family of polynomials of the form (5.51) with the parameter vector
a ranging over A:

F(s) = {F(s):ai € [a;,a?’], i€(0,1,~~~,n)}.

Since F(s) is a polytopic family, by the Edge Theorem, it is stable if and only if
its exposed edges are. These edges correspond to the edges of A, that is, to letting
each a; vary at a time. We give the detailed proof for the case in which n is even.
Consider the set of lower edges obtained by letting a; for some k € {0, 1, ’2—L}
vary in [a} ,a}] and fixing a;, i € {0,1,---,n}, i # k at a vertex. With a view
towards applying the Vertex Lemma (Chapter 2, Lemma 2.18) we determine the
difference of the endpoints of these edge polynomials. These differences are of the
form

[af —ag] (s = 1" faf = a7 (s = 1" s+ 1), fat — a3 ] (s = DEs+ DE,

From the Vertex Lemma we know that whenever these differences are of the form
A(s)s'(as + b)Q(s) with A(s) antiHurwitz and Q(s) even or odd, edge (segment)
stability is guaranteed by that of the vertices. We see that the difference polynomials
above are precisely of this form. Therefore stability of the vertex polynomials
suffices to establish the stability of the entire family. An identical proof works for
the case n odd with the only difference being that the lower edges are defined with
k€{0,1,~~~,%—|—1}. &

In the above result, we considered a special interval family where the upper order
coefficients were fixed. Now let us consider an arbitrary interval family where all
the coefficients are allowed to vary. For convenience let n, be defined as follows:

n n
forneven.nu_{5-1-1,5_1_2,...’71}
n—+1 n+1 }

Ry = L, 2,
forn odd : n { 5 + 5 + n
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We refer to the coefficients ay, k& € n, of the polynomial P(z) as the upper coeffi-
cients. Also introduce a subset E* of the edges E which we call upper edges. These
edges are obtained by letting only one upper coefficient af a time vary within its
interval bounds while all other coefficients are fixed at their upper or lower limits.
The corresponding family of polynomials denoted Zg-(z) is

Ip+(2) ={P(z) = anz" + an_12" "'+ +ao: (an, -, a) € E*} (5.52)

A typical upper edge in Zg»(z) is defined by:

an? + -+ Aay + (1= Naf )" + -+ ag (5.53)
ken, a=a; oral, i=0,---,n, i#k.
There are
n 7
(5) 2" n even (5.54)
1
(”; )2 n odd (5.55)

such upper edges.
Example 5.10. Consider a second order polynomial
P(z) = asz + a1z + ag
where
ay € [ag,af], a1 €[a7,af], @y € [a5, af].

There are 4 upper edges given by:

(Aa; + (1= X)ad)? +a] 2 + ao
(Aa; + (1= X)ad)z* + a1 z4af
(Aay +(1 A)a;)z + al Z+ag
(Aay +(1=NaF)z" +af 2+ af

In this case, the set of all exposed edges is 12.

We now have the following main result on the Schur stability of interval polynomials.
As usual we assume that the degree of all polynomials in Z(z) is n.

Theorem 5.14 The family Z(z) is stable if and only if the family of edge polyno-
mials T« (z) is stable.

Proof. By Lemma 5.5, the stability of the polytope Z(z) is equivalent to that of
the subsets obtained by fixing the lower coefficients at their vertices and letting the
upper coefficients vary over intervals. The stability of each of these subpolytopes
in turn can be obtained from their exposed edges. These edges precisely generate
the family Zg« (). This completes the proof. &
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It is important to note here that even though this result is not Kharitonov like in
the sense that the number of segments to be checked increases with the order of
the polynomial, it still yields significant computational advantages over checking
all the exposed edges. Indeed for an interval polynomial of degree n, we would
have (n + 1)2" exposed edges to check whereas the present result requires us to

check (in the case n even) only (g) 2", As an example, for a second order interval
polynomial there are 12 exposed edges, but only 4 upper edges. For a sixth order
interval polynomial there are 448 exposed edges but only 192 upper edges.

Example 5.11. Consider the following second order polynomial
P(z) = ay2® + a2 + ag
with coefficients varying in independent intervals
ay € [2.5,4], a; € [-0.1,0.25], ag € [0.2,0.8]

The corresponding exposed edges are obtained by letting one of the coefficients vary
in an interval and fixing the other coefficients at a vertex. We obtain :
E'(A\,2) =252 — 0.1z 4+ 0.8 — 0.6
E*(A,z) = 252" 4 0.252+ 0.8 — 0.6A
E*(A,2) =422 — 0124 0.8 — 0.6
E*(A,z) = 42" + 0.2z + 0.8 — 0.6)
P(A,2) = 2.52% 4+ (0.25 — 0.35))z + 0.2
%A, 2) = 2.52% 4+ (0.25 — 0.350)z + 0.8
E7(A,z) = 427 + (0.25 — 0.350)z + 0.2
(
(
(
(
(

by

E3(A 2) = 422 4 (0.25 — 0.35))2 + 0.8
E’(A,z) = (4= 1.5)0)27 = 0.12 4+ 0.2
EY(A\ )= (4 =150z - 0.124+ 0.8
E™M (A 2) = (4—1.50)2% +0.252 4+ 0.2
E(Az) = (4— 1502 +0.252 4+ 0.8

The upper edges associated with P(z) are

U'(A 2) = (4—150)2" = 0.1z + 0.2
U*(A,z) = (4 =150z - 0.1z + 0.8
UP(A,z) = (4 —1.50)z% +0.252 4+ 0.2
Ur(A,2) = (4 —1.5)0)2% +0.252 4+ 0.8
One can see that the upper edges are a subset of the exposed edges. The evolution

of the image set, evaluated along the unit circle, of the exposed edges and upper
edges is shown in Figures 5.13 and 5.14 respectively.
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Figure 5.13. Evolution of the image set of the exposed edges (Example 5.11)

The image set excludes the origin, which shows that the entire family of poly-
nomials is stable. One can note that the image set of the upper edges is a reduced
subset of the image set of the exposed edges.

As a final note we again point out that robust Schur stability of an interval family
can be ascertained by determining phase differences of the vertex polynomials. In
the previous example this would have required the computation of the phases of
eight vertex polynomials along with the stability check of a single polynomial in the
family.
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Figure 5.14. Evaluation of the image set of the upper edges (Example 5.11)

5.9 EXERCISES

5.1 Consider the control system shown in Figure 5.15. The parameters o;, 3; vary

e . a252—|—a15—|—0z0
+ s+ B33 + Pos? + Bis + Bo

Figure 5.15. A feedback system (Exercise 5.1)

in the following ranges:

ap € [2:6]7 oy € [0:2]7 Qo € [_173];
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and
Bo € [4,8], B €[0.5,1.5], B2 €[2,6], Bs€l[6,14].

Determine if the closed loop system is Hurwitz stable or not for this class of per-
turbations.

5.2 For the system in Exercise 5.1 determine the largest box with the same center
and shape (i.e. the ratios of the lengths of the sides are prespecified) as prescribed
in the problem, for which the closed loop remains stable.

5.3 Show by an example that Kharitonov’s Theorem does not hold when the
stability region is the shifted half plane Re[s] < —«, a > 0.

5.4 Show that for interval polynomials of degree less than six it suffices to test fewer
than four polynomials in applying Kharitonov’s test. Determine for each degree the
number of polynomials to be checked, in addition to the condition that the signs of
the coefficients are the same.

Hint: Consider the interlacing tubes corresponding to the interval family for each
degree.

5.5 Consider the Hurwitz stability of an interval family where the only coefficient
subject to perturbation is &, the coefficient of s* for an arbitrary & € [0,1,2, .., n].
Show that the §; axis is partitioned into at most one stable segment and one or two
unstable segments.

5.6 Apply the result of Exercise 5.5 to the Hurwitz polynomial
5(s) = 8" + 635 + 8257 + 615 + 6o
with nominal parameters
65 =4, 69=10, & =12, 6 =5.
Suppose that all coefficients except 83 remain fixed and 63 varies as follows:
65 < b3 <67

Determine the largest interval (63, 6F) for which 6(s) remains Hurwitz. Repeat this
for each of the coefficients 65, 6, and &g.

5.7 Consider the Hurwitz polynomial
8(s) = s* + 638 + 8957 + 615 + 6
with nominal parameters 8" = [69, 69, 67, 69] given by:

80 =4, 6)=10, & =12, & =5.
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Suppose that the coeflicients vary independently within a weighted {* box of size
p given by:

Ap :{éég_PWS(Szfé?‘i'Pwm Z:071)273}
with weights w; > 0. Find the maximal value of p for which stability is preserved

assuming that w; = 67.

5.8 Consider an interval family and show that if the Kharitonov polynomials are
completely unstable (i.e. their roots are all in the closed right half plane) then the
entire family is completely unstable.

5.9 Consider the positive feedback control system shown in Figure 5.16 below:

o)
+
+

Figure 5.16. A feedback system (Exercise 5.9)

i

G(s) g

Let G(s) belong to a family of interval systems G(s) as in Section 5.2. Show
that the closed loop system is robustly stable (stable for all G(s) € G(s)) if and
only if it is stable for each system in the set of negative Kharitonov systems

)

Gy (s) = {m i= 1,2,3,4}

Prove that if the system is robustly stable, the minimum gain margin over the
interval family G(s) is attained over the subset G (s).

5.10 Let the state space representation of the system (A,b) be

0o 1 0 0 0

0 0 1 0 0

A= 0 0 0 1 B= 0
ap a as as 1

where

ag €[0,1.5], a1 €[-1.5,2], az €[0,1], a3 €[1,2].
Find the state feedback control law that robustly stabilizes the closed loop system.

5.11 Consider the Hurwitz stable interval polynomial family

6(5) = 6353 + 6252 + 6] s+ (S()
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85 € [1.5,2.5), 6, €[2,6], & €[4,8], & €[0.5,15].

Determine the worst case parametric stability margin p(8) over the parameter box
in the ¢35 and {,, norms.

5.12 For the interval polynomial

(S(Z) = 63273 + 622’2 + 612 + (50

1 1
b3 €[l—e,14¢€, 6 € [_1_6’_1—1—6]’

0 € —§—€—§—|—€ oo € 3—63—1—6
' T e SRR TS
determine the maximal value of ¢ for which the family is Schur stable using Theo-
rem 5.13.

5.13 Consider the interval family Z(s) of real polynomials
5(s) = 8, 4 615 + 6957 + 635° + a8t + -+ 8, 8"
where the coefficients lie within given ranges,
b0 € [va,40], 01 € [X1, 3], <+, On € [Tn, Yn].

Suppose now that x, = 0 and that z; > 0, ¢ =0,1,2,---,n — 1. Show that the
Hurwitz stability of the family can be determined by checking, in addition to the
usual four Kharitonov polynomials

K'(5) = 2n8" + Yoo18" " + Ynoos" "2 258" P b a4
K2(5) = 208" + 018" 4 Y08 2+ Ynss” 2 ay_gs 4
K3(8) = 4™ + n 18" 08" 2 4y 38" oy _as" T
RH(5) = ™ + to18" ™+ 228" 2 b 35" T g _as" T

the following two additional polynomials

[;75(8) =Tn-1 5n—1 + xn—an_z + yn—35n_3 + yn—45n_4 —+ -

Ke(s) = yn_18" " + 2y 95" "2 38" 2 Fy_as" T

Hint: Note that K5(s) and Kg(s) can be obtained from Ks(s) and Ky(s) respec-
tively by setting y, = 0. Now use the argument that for a given polynomial ¢(s)

of degree n — 1, the family s” + pqg(s), p € [;—n, oo) is Hurwitz stable if and only if
q(s) and y, s” 4 ¢q(s) are Hurwitz stable.)
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5.14 Prove Lemma 5.3 for the case n =4r+j, 7=12,3.

5.15 Let Z,(s) denote the interval polynomial family
a(s) = azs® + azs® + a1s + ag
where
as €[1—p,14p], as€d—p,4+p], a1 €[6—p,6+p], ag €[l —p,1+p]

and let
o(2) = ayz? + a2 + ag

with as = 1, @3 = 3, &g = 4. Determine the maximum value of p for which the
family ¢(Z,(s)) is Hurwitz stable.

5.16 In Exercise 5.15, suppose that the polynomial ¢(z) varies in a polytope
D(z) = {p(2) = asz® + a1z +ap 1 as = 1,01 € [2,4], 00 € [3,5]}.

Determine the maximum value of p for which the family ®(Z,(s)) is Hurwitz stable.

5.10 NOTES AND REFERENCES

The interval polynomial problem was originally posed by Faedo [92] who attempted
to solve it using the Routh-Hurwitz conditions. Some necessary and some sufficient
conditions were obtained by Faedo and the problem remained open until Kharitonov
gave a complete solution. Kharitonov first published his theorem for real polynomi-
als in 1978 [143], and then extended it to the complex case in [144]. The papers of
Bialas [38] and Barmish [11] are credited with introducing this result to the Western
literature. Several treatments of this theorem are available in the literature. Among
them we can mention Bose [44], Yeung and Wang [240] and Minnichelli, Anagnost
and Desoer [181] and Chapellat and Bhattacharyya [57]. A system-theoretic proof
of Kharitonov’s Theorem for the complex case was given by Bose and Shi [50] using
complex reactance functions. That the set Z(jw) is a rectangle was first pointed
out by Dasgupta [75] and hence it came to be known as Dasgupta’s rectangle. The
proof in Minnichelli et. al. is based on the image set analysis given in Section 5.4.
The proof in Chapellat and Bhattacharyya [57] is based on the Segment Lemma
(Chapter 2). Mansour and Anderson [171] have proved Kharitonov’s Theorem using
the second method of Lyapunov. The computational approach to enlarging the £,
box described in Exercise 5.7 was first reported in Barmish [11]. The extremal prop-
erty of the Kharitonov polynomials, Theorem 5.4 was first proved by Chapellat and
Bhattacharyya [56] and the robust stabilization result of Theorem 5.7 is adapted
from Chapellat and Bhattacharyya [59]. Mansour, Kraus and Anderson [174] and
Kraus, Anderson and Mansour [152] have given several results on robust Schur sta-
bility and strong Kharitonov theorems for Schur interval systems. Lemma 5.5 and
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Theorem 5.14 were proved by Pérez, Abdallah and Docampo [188] and extend sim-
ilar results due to Hollot and Bartlett [115], and Kraus, Mansour, and Jury [155].
In Kraus and Mansour [153] the minimal number of edges to be checked for Schur
stability of an interval polynomial is derived. This number of course depends on
n unlike the Hurwitz case where it is always 4. Rantzer [194] studied the problem
of characterizing stability regions in the complex plane for which it is true that
stability of all the vertices of an interval family guarantee that of the entire family.
He showed that such regions D, called Kharitonov regions, are characterized by the
condition that D as well as 1/D are both convex. Meressi, Chen and Paden [179]
have applied Kharitonov’s Theorem to mechanical systems. Mori and Kokame [183]
dealt with the modifications required to extend Kharitonov’s Theorem to the case
where the degree can drop, i.e. #, = 0 (see Exercise 5.12). Kharitonov’s Theorem
has been generalized by Chapellat and Bhattacharyya [58] for the control problem.
This is described in Chapter 7. Various other generalizations of the Kharitonov’s
Theorem have been reported. In [45] Bose generalized Kharitonov’s Theorem in
another direction and showed that the scattering Hurwitz property of a set of bi-
variate interval polynomials could be established by checking only a finite number
of extreme bivariate polynomials. Multidimensional interval polynomials were also
studied by Basu [23]. Barmish [13] has reported a generalization of the so-called
four polynomial concept of Kharitonov. The extension of Kharitonov’s Theorem
to polynomial functions of interval polynomials described in Section 5.7 are due to
Kharitonov [146].



