Chapter 6

THE EDGE THEOREM

This chapter deals with the robust stability of a polytopic family of polynomials
with respect to an arbitrary stability region. Such problems arise in control systems
whenever the characteristic polynomial coefficients are linear (including affine) fune-
tions of the uncertain parameters and these vary in intervals. The Edge Theorem
shows that the root space of the entire family can be obtained from the root set of
the exposed edges. Since the exposed edges are one-parameter sets of polynomials,
this theorem effectively and constructively reduces the problem of determining the
root space under multiple parameter uncertainty to a set of one-parameter root
locus problems. The stability testing property of edges is also extended in this
chapter to nested polytopic families.

6.1 INTRODUCTION

The Edge Theorem, due to Bartlett, Hollot and Lin appeared in 1988, and was
largely motivated by a desire to extend Kharitonov’s problem by taking dependen-
cies between the coefficients of the polynomial into account and by dealing with
general stability regions. As we have seen in Chapter 4 such dependencies arise
in most practical situations and require the investigation of the robust stability of
a polytopic family of polynomials. The interval family dealt with in Kharitonov’s
Theorem 1is a very special case of a polytopic family. The Edge Theorem gives
a complete, exact and constructive characterization of the root set of a polytopic
family. Such a characterization is of immense value in the analysis and design of
control systems. This entire chapter is devoted to this elegant and useful theorem.

A polytopic family of polynomials can be thought of as the convex hull of a
finite number of points (polynomials). Mathematically, this can be represented as

the family
P(s) =M Pi(s)+ -+ A, Pa(s)

where P;(s) are fixed real polynomials and the A; are real with A; > 0 and " A; = 1.
An alternative representation of a polytopic family, as used in Chapter 4, is of
the form

P(s) =a1Q1(5) + asQa(s) + - - - + am Qum(s)
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where each real parameter a; varies independently in the interval [g;,a;]. In other
words, the parameter vector a := [ay,- - -, a,,] varies in the hypercube

A={a: g < <a, i=1--,m}

In some problems, a polytopic family may arise because the system characteristic
polynomial

6(5,p) := 80(p) + 1(P)s + - -+ 8, (P)s”

has coefficients 6;(p) which are linear functions of the parameter vector p. If p varies
within a hypercube, it generates a polytopic family of characteristic polynomials.
In control problems the elements of p could be physical parameters belonging to
the plant or design parameters belonging to the controller.

The Edge Theorem gives an elegant solution to the problem of determining the
root space of polytopic systems. As a byproduct we therefore can determine the
robust stability of such systems also. It establishes the fundamental property that
the root space boundary of a polytopic family of polynomials is contained in the root
locus evaluated along the exposed edges. In the following section we give the proof
of the Edge Theorem. This is followed by some illustrative examples. In the last
section we derive an extension of the stability testing property of edges to nested
polynomial families which are not polytopic and where the uncertain parameters
appear nonlinearly.

6.2 THE EDGE THEOREM

Let us consider a family of n'" degree real polynomials whose typical element is
given by
5(s) =80 461854+ 615"+ 8,8 (6.1)

As usual, we identify P, the vector space of all real polynomials of degree less than
or equal to n with IR”*", and we will identify the polynomial in (6.1) with the
vector

é:: [6n;6n—1;"'a61a60]T~ (62)

Let Q@ ¢ R"™! be an m-dimensional polytope, that is, the convex hull of a finite
number of points. As a polytope, 2 is a closed bounded set and therefore it is
compact. We make the assumption that all polynomials in 2 have the same degree:

Assumption 6.1. The sign of 4, is constant over €2, either always positive or
always negative.

Assuming for example that this sign is always positive, and using the fact that Q
is compact, it is always possible to find A > 0 such that,

8, > A, for every § € €. (6.3)

A supporting hyperplane H is an affine set of dimension n such that @ N H # 0§,
and such that every point of €2 lies on just one side of H. The exposed sets of {2 are
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those (convex) sets QN H where H is a supporting hyperplane. The one dimensional
exposed sets are called ezposed edges, whereas the two-dimensional exposed sets are
the exposed faces.

Before proceeding we need to introduce the notion of root space. Consider any

W C Q. Then R(W) is said to be the root space of W if,
R(W)={s:6(s) =0, forsome é€ W}. (6.4)

Finally, recall that the boundary of an arbitrary set S of the complex plane is
designated by 05. We can now enunciate and prove the Edge Theorem.

Theorem 6.1 (Edge Theorem)
Let Q@ C R™" be a polytope of polynomials which satisfies Assumption 6.1. Then
the boundary of R(Q) is contained in the root space of the exposed edges of 2.

To prove the theorem we need two lemmas.

Lemma 6.1 If a real s, belongs to R(Q), then there exists an exposed edge E of Q
such that s, € R(FE), and if a complex number s. belongs to R(S2), then there exists
an exposed face F of Q such that s, € R(F).

Proof. Consider an arbitrary 4 in 2, and suppose that s, is a real root of 4(s). We
know that the set of all polynomials having s, among their roots is a vector space
P, of dimension n. Let aff(§2) denote the affine hull of @, that is, the smallest
affine subspace containing . Now, assume that m = dim[af f(2)] > 2. Then we
have that,

dim[P,, N aff(Q)] > 1,

and this implies that this set P, Naff(£2) must pierce the relative boundary of Q.
This relative boundary however, is the union of some m — 1 dimensional polytopes
which are all exposed sets of {2. Therefore, at least one of these boundary polytopes
Q,,_1 satisfies,

S, € R(Qm_l)

If dimlaff(m—1)] > 2, we see that we can repeat the preceding argument and
ultimately we will find a one-dimensional boundary polytope €y for which s, €
R(Q4). But £ is just an exposed edge of €2, so that s, does indeed belong to the
root space of the exposed edges of Q. For the case of a complex root s., it suffices
to know that the set of all real polynomials having s, among their roots is a vector
space P;_ of dimension n—1. As a consequence the same reasoning as above holds,
ylelding eventually an exposed face Q5 of Q for which s, € R(s). ]

We illustrate this lemma in Figures 6.1, 6.2, and 6.3 with a three dimensional
polytope € (see Figure 6.1). Here P, is a subspace of dimension 2 and cuts the
edges of Q (see Figure 6.2). P,_ is of dimension 1 and must penetrate a face of Q

(see Figure 6.3).

Sc



272 THE EDGE THEOREM  Ch. 6

b2

bo

Figure 6.1. Polytope €2

02

do

Figure 6.2. P, cuts edges of Q
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0

bo

Figure 6.3. P,_penetrates a face of Q

The conclusion of this first lemma is that if pr is the number of exposed faces,
then

R(Q) = L_J R(F}). (6.5)

The next lemma focuses now on an exposed face. Let F' be an exposed face of Q
and let us denote by JF its relative boundary. Since F' is a compact set and because
of Assumption 6.1 on , we know from Chapter 2 that R(F') is itself a closed set.
We have the following.

Lemma 6.2 OR(F) C R(OF).

Proof. Let s* be an arbitrary element of R(F'), we want to show that s* is also
an element of R(OF). Since OF is the union of exposed edges of €2, it follows from
Lemma 6.1 that if s* is real then s* € R(OF).

Now assume that s* is complex. Since R(F') is a closed set, R(F) C R(F), so
that it is possible to find §* € F' with §*(s*) = 0. We can write

§*(s) = (s +as+ B)(dy_ss" "+ -+ dys+dp) (6.6)

where o = —2Re(s*) and 8 = |s*|?. Let aff(F) be the affine hull of F. Since F
is two-dimensional it is possible to write aff(F) = {6* + VA; A € R’} where V is
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some full rank (n + 1) x 2 matrix. On the other hand, an arbitrary element of the
vector space of real polynomials with a root at s* can be written as

P(s) = (s" + as+ ) [((hn—2 + dao2)s" 72 4+ (n + di)s + (po + do)] , (6.7)

or more generally we can write,

Py = {Q* + WM = [/’L”—QJ o 'J/'Lla/'LO]T < ]Rn_Q}; (68)
where W is the (n + 1) x (n — 1) matrix,
1 0 0]
a 1 0
b8 « 0
0 g 0
W = (6.9)
0O 0 --- 1
0 0 - «
00 - B ]

The intersection between aff(F) and Py« contains all A, u satisfying,
8"+ VA=8"+Why, or equivalently, [V, —W¥] [ 2 ] =0. (6.10)
Two possibilities have to be considered:

A. [V ,—1V] does not have full rank

In this case, the space of solutions to (6.10) is either of dimension 1 or 2. If it is
of dimension one, then the intersection af f(F) NP+ is a straight line which must
intersect OF at a point 6. Since & € Py, 5(5*) = 0, which implies that s* € R(OF).
If the dimension is two then aff(F) C Py» and for any 5 € OF we have 5(5*) =0
so that clearly s* € R(OF).

B. [V ,—W] has full rank

In this case the intersection aff(F) N Py+ is reduced to 8. We now prove that
8" € OF and this is where the fact that s* € 9R(F') is utilized.

Indeed, s* € R(F) implies the existence of a sequence of complex numbers s, such
that s, ¢ R(F) for all n and such that s,, — s* as n — +oco. In particular this
implies that,

— 2Re(s,) — « and |sp]? — B as n — +oo. (6.11)

As usual, let P, be the vector space of all real polynomials with a root at s,. An
arbitrary element of P, can be expressed as

P(s) = 8"(s) + ((5* = 2Re(sn)s + [sn[”) (tta—25" + -+ p1s + po) +
+ (—(2Re(sn) + @)s + (|sp] = B)) (dn_2s""" 4+ dis +do) ,
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or, similarly

Psn = {Q* —I—Wnﬂ‘i'lfn = [N”—%"'aﬂlaﬂo] c Rn—l}‘

where,
i 1 0 0 i
—2Re(sy) 1 0
s ]? —2Re(sy) 0
0 |5, |? o 0
W, = , , . _ . (6.12)
0 0 1
0 0 —2Re(sy,)
L 0 0 ENE
and -~ _
d,_s 0
dy_3 dpy_
dn—g dn3 —(2Re(s,) + @)
Uy = ) ) " 6.13
: : |sn|* — 8 ( )
do dy
| 0 dy
Clearly,
W, — W and v, — 0 as n — 4oc. (6.14)

Now, since det(-) is a continuous function and since det[V ,—W] # 0, there must
exist nq such that det[V' — W, ] # 0 for n > n;. Also, for every n, the intersection
between P, and aff(F) consists of all A, y that satisfy:

or equivalently

I
For n > ny, the system (6.15) has a unique solution,
)‘n -1
I = [V a_Wn] Vp . (616)

From (6.16) we deduce that [A}, u] — 0 when n — +oc.
We now show that §* belongs to dF. Let us consider an arbitrary open neigh-

borhood in af f(F'),
Bp(8", ) ={s € aff(F) : ||6. — &"[| < e},

We must show that Bp (Q* , e) contains at least one vector not contained in F'.
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To do so, consider the intersection between Py, and af f(F'), that is the vector
8, = & 4+ VA,. This vector belongs to aff(F), and since A, goes to 0, it belongs
to Bp(8¥,€) for n sufficiently large. Moreover, the polynomial corresponding to this
vector has a root at s, and we know that s, does not belong to R(F"). Hence it
must be the case that ¢,, does not belong to F', and this completes the proof of the
lemma. &

Figures 6.4 and 6.5 illustrate this lemma. The sequence s, converges to s* € R(F)

from outside of R(F). The corresponding subspaces P;, converge to Pg+ from
outside F'. Thus Py« must touch an edge of F'.

Imag

Si?N - Sn
N\

OR(F) _>/ . >
./ |
| Real
/ R(F) \
.

-

Figure 6.4. The sequence s, € R(F') converges to s* € JR(F)
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&2

Figure 6.5. The sequence P (Ps, N F = () converges to P«

Proof of the Edge Theorem (Theorem 6.1) From (6.5) and Lemma 6.2 we

have

PF PF PF
oRr(Q) =0 J R(F;) = | JoR(F:) C | ROF).
=1 =1 =1
The OF; are precisely the exposed edges of Q and this proves the theorem. &

Let us now consider an arbitrary simply connected domain of the complex plane,
that is, a subset of the complex plane in which every simple (i.e. without self-
crossings) closed contour encloses only points of the set. We can state the following
corollary:

Corollary 6.1 IfI' C C s a simply connected domain, then for any polytope sal-
isfying Assumption 6.1, R(Q?) is contained in T if and only if the root space of all
the exposed edges of Q is contained in T

Exposed Edges

In general, a polytope is defined by its vertices and it is not immediately clear how
to determine which are the exposed edges of 2. However, it is clear that those
exposed edges are part of all pairwise convex combinations of the vertices of €2, and
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therefore it is enough to check those. In the representation
P:=4{P(s): P(s) = a1Q1(s) + a2@Q2(s) + -+ anQm(s), a€ A}

where a = [a1, a0, -+, @] the exposed edges of the polytope P are obtained from
the exposed edges of the hypercube A to which a belongs. This can be done by
fixing all @; except one, say az, at a vertex g; or a@;, and letting a; vary in the
interval [a;, ax], and repeating this for k = 1,---,m. In general, the number of line
segments 1n the coeflicient space generated by this exceeds the number of exposed
edges of P. Nevertheless, this procedure captures all the exposed edges.

We note that within the assumptions required by this result, stability verification
amounts to checking the root-location of line segments of polynomials of the form

Pi(s) = (1= NPy (s) + APs(s),  A€0,1] (6.17)

The root-locus technique can be used for this purpose. Alternatively the Segment
Lemma given in Chapter 2 can also be used when the boundary of the domain I'
of interest can be parametrized easily. This theorem is the best result that one
can expect at this level of generality, because as we have shown in Chapter 2 a
line segment joining two stable polynomials is not necessarily stable. To reiterate,
consider the following simple polytope consisting of the segment joining the two
points

Pi(s) =35 +3s3+5s2+2s+1 and Py(s) =s*+ 5%+ 557+ 25+ 5.
It can be checked that both P;(s) and Ps(s) are Hurwitz stable and yet the poly-

nomial
Pi(s) + Pa(s)
2

We illustrate the Edge Theorem with some examples.

has a root at s = j.

6.3 EXAMPLES

Example 6.1. Consider the interval control system in Figure 6.6:

K G(s) >

Figure 6.6. A gain feedback system (Example 6.1)

Let
_ 6252 + (S()

Gls) = s(s? +61)
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and assume that X' = 1. Then the characteristic polynomial of this family of
systems is the interval polynomial

6(5) = 53 +6252 +615+60

where
8, €16,8], 6 €[14,18], é €19.5,10.5].

The three variable coefficients form a box with 12 edges in the coefficient space.
By the Edge Theorem, the boundary of the root space of the interval polynomial
family can be obtained by plotting the root loci along the exposed edges of the box.
The root loci of the edges is shown in Figure 6.7. Since the entire root space of the
set of characteristic polynomials is found to be in the LHP, the family of feedback
systems is robustly stable.

Imag
=)

Real

Figure 6.7. Root space for K = 1 (Example 6.1)

We remark that the robust stability of this system could have been checked by
determining whether the Kharitonov polynomials are stable or not. However the
Edge Theorem has given us considerably more information by generating the entire
root set. From this set, depicted in Figure 6.7, we can evaluate the performance
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Figure 6.8. Root spaces for various K (Example 6.1)

of the system in terms of such useful quantities as the worst case damping ratio,
stability degree (minimum distance of the root set to the imaginary axis), largest
damped and undamped natural frequencies, etc.

The movement of the entire root space with respect to the gain K can be studied
systematically by repeatedly applying the Edge Theorem for each K. Figure 6.8
shows the movement of the root space with respect to various gains K. It shows
that the root space approaches the imaginary axis as the gain K approaches the
value 5. The root sets of the Kharitonov polynomials are properly contained in the
root space for small values of K. However as K approaches the value where the
family is just about to become unstable, the roots of the Kharitonov polynomials
move out to the right hand boundary of the root set. These roots are therefore the
“first” set of roots of the system to cross the imaginary axis.

Example 6.2. Let us consider the unity feedback discrete time control system
with forward transfer function:
(S] z 4+ 60

G(z) = m
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The characteristic polynomial is
8(z) = 23 46527 + 612+ 6.
Suppose that the coefficients vary in the intervals
8, €[0.042,0.158], 6, € [—0.058,0.058], &y € [—0.06,0.056]

The boundary of the root space of the family can be generated by drawing the root
loci along the 12 exposed edges of the box in coefficient space. The root space is
inside the unit disc as shown in Figure 6.9. Hence the entire family is Schur stable.

1.5

05r- :

¢
¢

-1.5
-1.5 -1 -0.5 0 0.5

—_

1.5
Real
Figure 6.9. Root space of §(z) (Example 6.2)

Example 6.3. Consider the interval plant

s+a
G(S)_52+b5+c

where
a€e[l,2], bel[9,11], ce]lb,18].
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The controller 1s
35+ 2

s+5°
The closed loop characteristic polynomial 1s

§(s) = (s +bs+c)(s+5)+ (s +a)(3s+2)
= a(3s+2) 4+ b(s* +58) + (s +5) + (s* + 85" + 2s).

C(s) =

The boundary of the root space of §(s) can be obtained by plotting the root loci
along the 12 exposed edges. It can be seen from Figure 6.10 that the family 6(s) is
stable since the root space is in the left half plane. Hence the given compensator
robustly stabilizes the interval plant. From the root set generated we can evaluate
the performance of the controller in terms of the worst case damping ratio, the
minimum stability degree and the maximum frequency of oscillation.

1.5

0.5

-15 ‘ ‘ ‘
-16 -14 -12 -10 -8 -6 -4 -2 0

Real
Figure 6.10. Root loci of the edges (Example 6.3)

The Edge Theorem has many useful applications. For instance, it can be effec-
tively used to determine the coprimeness of two polytopic families of polynomials
as shown in the following example.
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Example 6.4. Consider the two polynomials

where

6A(5) = po&An(S) +p16141(5) +p26z42(5)
6p(5) = quéB,(s) + q108,(s) + q20m,(s)

6a,(s) = 0.2s" +2s” 4+ 100s” + 600s + 5000

6B, (s) = 0.1s* + 35 + 50s% + 500s + 1000
6, (s) = 0.3s* + 35> 4 50s* + 500s + 2000
6p,(s) = 0.65* + 35> 4 88.55 + 190.3s + 2229.1

and the nominal value of parameters p are

20

15

10

Imag
=)

-10

-15

-20

p'=[p #! 5 @ & #]=[111111]

L X B -
B A

X o

i A ,
o
A

|- o —
i 5 ,

X )

B
5 4 3 2 -1

Real

Figure 6.11. Roots of §4(s) and §5(s) (Example 6.4)
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Figure 6.11 shows the roots of the two polynomials at the nominal parameter
p = p’. The roots of §4(s) and ég(s) are labeled in the figure as “A” and “B”,
respectively. Clearly, these two polynomials are coprime as the root sets are disjoint.
Now suppose that the parameters p and q perturb in interval sets. We define
perturbation boxes for the parameters p and q as follows:

HP = {[pi_wle) pi"i’wlda 220,1,2}
H‘] = {[Qi_WQE,qZ"i‘WQE], Z:0a1’2}

where

[wi ws]=T[1 5.

Suppose that we want to determine the maximum value of € such that these two
families of polynomials remain coprime. This can be accomplished by examining the
root space for increment values of . We observe that the root spaces are touching
each other at ¢ = 0.14. As shown in Figure 6.12, certain polynomials in the 64(s)
and 6p(s) families share common roots at the “*” locations. Therefore, at this
point the families cease to be coprime.

20

15 B

Imag
=)

-10-

_20 L L L L L
6

Real
Figure 6.12. Root space of §4(s) and 65 (s) for € = 0.14 (Example 6.4)
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6.4 EXTENSIONS OF EDGE RESULTS

An important consequence of the Edge Theorem is that the stability of a polytopic
family of polynomials can be ascertained from the stability of its exposed edges. This
was exploited to develop robust stability tests for polytopic systems in Chapter 4. In
this section we extend this stability testing property of the exposed edges to a larger
family. This family consists of a polynomial function of a polytope. The results
given here are analogous to the extensions of Kharitonov’s Theorem to polynomial
functions of interval polynomials, given in the last Chapter.

In the following we assume that an open subset § of the complex plane is given
as the stability region, and stable will mean stability with respect to this region,
unless specified otherwise. We shall also assume that all polynomial families under
discussion are of constant degree.

Let

3

P(s) = a(s,p) = Za,' (p)s’ :peP (6.18)

i=0

denote a real polytopic family of polynomials. Here p = [py,p2, -, pi] is a real
vector of uncertain parameters, a;(p) are linear functions of p and P is a convex
polytope. We also suppose that

p2) =ag+arz+ - 4oy, (6.19)

is a given polynomial. We ask the question: Under what conditions is the family of
polynomials

p(P(s)) = {plal(s)) s a(s) € P(s)} (6.20)

stable?

Let Ep(s) denote the subset of P(s) corresponding to the edges of P(s). We
know that stability of the edge polynomials £p (s) implies stability of the polynomial
family P(s). The next lemma follows from this.

Lemma 6.3 Given the polytopic family (6.18) and a complex number z, the stabil-
ity of the set of polynomaials

Pls) - = = {a(s) -  : als) € P(s)}
1s tmplied by the stability of the famaly
Ep(s) —z={a(s) —z:a(s) € Ep(s)}.

Stability domains

Let us consider a one parameter family of polynomials

(L= wax(s) +pay(s),  pef0.1] (6.21)
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corresponding to an edge of P. The image set of this segment at s = jw is a complex
plane line segment. As w is swept from —oo to 400 this segment moves continuously
on the complex plane and generates a “thick” curve which partitions the complex
plane into a finite number of open disjoint domains. With each of these domains we
associate an integer number defined as the number of roots of a(s) — z in 8. This
number is independent of the choice of a(s) in the segment and z in the domain.
There is at most one domain, Ay;, called the stability domain associated with ay(s)
for which the integer number is equal to n = deg(az ). With every element of Ep(s)
we associate such a stability domain Ay; of the complex plane and let A be the
intersection of these domains:

A =NAy;. (6.22)

We will say that a polynomial is A-stable if all its roots lie in A. Then we have the
following result.

Theorem 6.2 Let A £ 0. Then the family (6.20) is stable if and only if p(z) is
A-stable.

Proof.

Sufficiency: The polynomial ¢(z) is A-stable, and so the roots zy, z9, -+, 2, of
¢(z) lie in A. Now, stability of ©(P(s)) is equivalent to stability of P(s) — z;,
j =12 m. By Lemma 6.3 stability of P(s) — z; follows from the stability of
the set Ep(s) —z;. But the condition z; € A guarantees stability of each of the sets
Ep(s)—z,j=1,2,--,m.

Necessity: Stability of ¢(P(s)) implies the stability of P(s) — z;, j =1,2,---, m.
By Lemma 6.3 the family P(s)—z; is stable only if £p(s) — z; is stable. This implies
that z; € A, or ¢(z) is A-stable. &

This theorem can be given in the equivalent and more useful form.

Theorem 6.3 The polynomial family o(P(s)) is stable if and only if the family
v (Ep(s)) ={p(a(s)) : a(s) € Ep(s)}

corresponding to the edges of P(s), is stable.

The proof of this result follows immediately from Theorem 6.2 and Lemma 6.3 and
is left to the reader. The result is an extension of the stability testing property of
exposed edges to a case where the uncertain parameters appear nonlinearly in the
family.

We considered thus far that the polynomial ¢(z) is fixed. Now suppose that
¢(z) 1s an uncertain polynomial, and in particular belongs to a polytope. Let

P(z) := {p(2) : (an, 1,0, ) € A} (6.23)

where A is a convex polytope. We are interested in determining conditions under
which the polynomial family

®(P(s)) = {plals)) s a(s) € P(s), ¢(2) € 2(2)} (6.24)



Sec. 6.4. EXTENSIONS OF EDGE RESULTS 287

is stable?

The uncertain parameters in the polynomial family (6.24) are the vector p which
varies in P and enters the coefficients nonlinearly, and the parameters «; which vary
in A and enter the coefficients linearly.

Theorem 6.4 Let A # 0. Then the family ®(P(s)) is stable if and only if (z) is
A-stable.

Proof. The result follows from Theorem 6.2 and the representation
O(P(s)) = {¢(P(s)) : p(2) € B(2)} .
&
By applying Theorem 6.3 to the above result we immediately have the following.

Theorem 6.5 The family ®(P(s)) is stable if and only if ®(Ep(2)) ts A-stable.

For each fixed polynomial a(s) in Ep(s) (a(s) is a polytopic family and therefore
its stability can be found by testing its edges. This leads to the next result.

Theorem 6.6 The family of polynomials ®(P(s)) is stable if and only if each two
parameter family of polynomials in Eq (Ep(s)) is stable.

The set ¢ (Ep(s)) consists of a finite number of two parameter families correspond-
ing to pairs of edges of P and A. Let

(1= pwar(s) + paj(s),  pel01] (6.25)
correspond to an edge of P and let
(1= v)ou(z) + ve,(2), v €10.1] (6.26)

correspond to an edge of A. Then the family

(L =v)pu (1 = p)ai(s) + paj (s)) + vy (1 = pax(s) + pa;(s)) (6.27)

where (g, v) € [0,1] x [0, 1], is a typical element of £ (Ep(s)).

Theorem 6.6 is a generalization of the stability testing property of edges to this
new class of polynomial families, containing both linear and nonlinear dependency
on uncertain parameters. It shows that the problem is effectively reduced to a set
of two-parameter multilinear problems, or double-edge problems.

6.4.1 Maximizing the Uncertainty Set

The above results can be used to determine maximal nondestabilizing perturbations.
We will consider the situation when P(s) or ®(z) are polytopes of fixed shape but
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variable size. We start with the case when ® is a single polynomial ¢(z), but P is
a polytope of variable size defined by

P(r)= {p:p—p0 67“[)’}
where 53 is a convex polytope containing the origin. Let

Pr(s) = {als,p) :p € P(r)}

and consider the Hurwitz stability of ¢ (P, (s)). Welet a®(s) := a(s, p°) and assume
that ¢ (a®(s)) is stable. Our objective is to find the smallest positive rq such that
© (Pry(s)) is not stable. This 7y determines the limit on how much we may enlarge
the polytope P(r) without losing stability.

Theorem 6.3 can be applied to determine ry. A typical edge of the family
¢ (Ep.(s)) 1s of the form

o (a(s) + r(1— pyat () +rpad (), pe 0,11 (6.28)

Denote by 7; the smallest positive value of r such that the family (6.28) is not
stable. For each such element of the set ¢ (Ep (s)) we can find a corresponding r;.
Let

7o = min {ry; }

where the minimum is taken over all elements of ¢ (Ep, (s)).

Theorem 6.7 Let the polynomial  (a°(s)) be stable. Then ¢ (P,(s)) is stable if
and only if r < rg.

This idea can also be applied to the case when () is not fixed but lies in ®(z).
The problem is now to determine the smallest r such that the family ®(P,(s)) is
unstable. We assume that the family ® (ao(s)) is stable. From Theorem 6.6 we see
that we have to check the stability of elements of the set £¢ (Ep,(s)) which consists
of polynomials of the type

(1—v)e (ao(s) +r(l— u)ak(s) + rual (5))
Fm (a(5) + (1 — p)a*(5) + rua () (6.29)

where (u,v) € [0,1] x [0,1]. Denote by i the smallest value of 7 such that (6.29)
is not stable. This may be defined for every element of & (Ep,(s)).

Theorem 6.8 Let the family ® (a°(s)) be stable. Then ®(P,(s)) is stable if and
only if

r < min {7“/?;1 }
where the minimum is taken over all families from Eg (Ep (5)).

For each value of r the two uncertain parameters (g, v) in (6.29) appear multilin-
early. Such two-parameter multilinear problems can be solved analytically and are
also effectively dealt with using the Mapping Theorem in Chapter 11.
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6.5 EXERCISES

6.1 Using the Edge Theorem, check the robust Hurwitz stability of the following
family of polynomials. Also show the root cluster of the family.

8(s) :== 8%+ (a + 3b)s* + es +d
where a € [1,2], b € [0,3], ¢ € [10,15] and d € [9, 14].
6.2 Consider the plant G(s) and the controller C(s)

s+1 C(s) — as—i—b'
s+c

G(s) i = ———
(s) s2—s5—1
First, choose the controller parameter {a”, ", ¢°} so that the closed loop system has
its characteristic roots at

—1+41 and - 10.

Now for

find the maximum value €.,,, of € that robustly maintains closed loop stability.

Find the root set of the system when the parameters range over a box with sides
Emax

2

6.3 Repeat Exercise 6.2 with the additional requirement that the dominant pair
of roots remain inside circles of radii 0.5 centered at —1 + j1.

6.4 Consider the discrete time plant G(z) and the controller C(z)

z—1 _az+b

G =gy (BT

Choose the controller parameter {a®,4°, ¢} so that deadbeat control is achieved,
namely all the closed loop poles are placed at z = 0. Use the Edge Theorem, find the
maximum range of the controller parameters so that the closed loop poles remain
inside the circle of radius 0.5 centered at the origin. Assume that the controller
parameters are bounded by the same amount, i.e.,

a€fa® — ¢ a® + ¢, be[b®—e b°+d, c€[c® —¢€ .+

Find the root set of the system for the parameters {a, b, ¢} varying in a box

€

2

0 0 f} [o_f 0 f} [o_f 0o, €
a € |a ,a —1—2, be |b 2,1) —1—2, cE |c 5 ¢ —1—2.
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6.5 Consider the polynomials
2 4 ays + ag and 2+ bys + bo

where
[af,ad] =[2,2], [b9,60] = [4,8].

Now find the maximum value €y, of € so that the families remain coprime as [a;, ag)
varies over the box [a] — ¢, a? 4 ¢] x [a) — ¢, a3 + €] and b varies independently over

the box [0 — €, 8% + €] x [b3 — ¢, 65 + €].
6.6 Repeat Exercise 6.5, this time verifying coprimeness over the right half plane.

6.7 Consider a unity feedback system with the plant G(s) and C(s) given as

and C(s) = ii;

5+b0
s2+ a5+ ag

G(s) =
Assume that the plant parameters vary independently as:
a0€[2,4], aq 6[2,4], 606[1,3]

Determine the root space of the family of closed loop polynomials using the Edge
Theorem.

6.8 Consider the two polynomials

A(s) = azs® + a15 + ao
B(S) = b353 + 6252 + blS + bo

where the nominal values of the parameters are
A =2, a1y =2, as=1, by =25, by =7, by =45, by=1.
Suppose the parameter perturbations are:

a; € [a) — ¢,a) + €], i=0,1,2
bj € [b] —€,b] + €], i=0,1,2,3.

Find the maximum value of € for which the two polynomial sets remain coprime.
Answer: €max = 0.25

6.9 Let

A(s) = agsg + a252 + a5+ ap
B(s) = bas® + bos® 4+ bys + by
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and
lag, af, a3, a3, by, b, b5, b5] = [100,100,10,3,1,3,3,3].

Assume that all the coefficients of the above two polynomials are allowed to perturb
independently. Find the maximum value of € so that the two polynomial families
remain coprime when

aie[a?—ga?—l—e], t=20,1,2,3

by € [b] —e,b9 +¢€, =0,1,2,3

Answer: ¢nax = 0.525

6.10 Repeat Exercise 6.9 with the requirement that the families remain coprime
over the right half of the complex plane.

6.11 Consider the polytopic family P(s) consisting of polynomials a(s):
a(s) = s* 4 (pr +p2)s+p 0 1 €[2,4],p: €[3,7).

Let
o(z) =2 +arz+ag

with @ = 3, ap = 4. Determine the Hurwitz stability of the family ¢(P(s)).
6.12 In Exercise 6.11 suppose that ¢(z) belongs to the family ®(z) defined as

®(2) ={p(z) = 22+ a1z + g s ay € [2,4],a0 € [3,5]} .
Determine the Hurwitz stability of the family ®(P(s)).

6.13 Consider the polynomial s? 4+ a1s+ ag and let the coefficients (a;, aq) vary in
the convex hull of the points

(0,0), (0,R), (R*0), (R*2R).

Show that the root space of this set is the intersection with the left half plane of the
circle of radius R centered at the origin. Describe also the root space of the convex
hull of the points

(07 0)7 (07 2R)7 (Rza 0)’ (RZ’ QR)

6.6 NOTES AND REFERENCES

The Edge Theorem is due to Bartlett, Hollot and Lin [21]. We note that the
weaker and more obvious result in Corollary 6.1, that is, the stability detecting
property of the exposed edges, is often referred to, loosely, in the literature as
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the Edge Theorem. In fact as we have seen in Chapter 4, Corollary 6.1 applies
to complex polytopic polynomial and quasipolynomial families. However, the root
space boundary generating property does not necessarily hold in these more general
situations. The extensions of the stability testing property of edges to polynomial
functions of polytopes, reported in Section 6.4 are due to Kharitonov [146].



