Chapter 8

FREQUENCY DOMAIN
PROPERTIES OF LINEAR
INTERVAL SYSTEMS

In this chapter we develop some useful frequency domain properties of systems con-
taining uncertain parameters. The Generalized Kharitonov Theorem of the last
chapter introduced a set of one parameter extremal plants which completely char-
acterize the frequency domain behaviour of linear interval systems. We show here
that this extremal set can be used to exactly calculate the uncertainty template at
each frequency as well as the Bode, Nyquist and Nichols envelopes of the system.
We also prove that the worst case gain, phase, and parametric stability margins of
control systems containing such a plant occur over this extremal set. The utility of
these tools in robust classical control design 1s illustrated by examples.

8.1 INTRODUCTION

Frequency response methods play a fundamental role in the fields of control, commu-
nications and signal processing. Classical control focuses on the frequency domain
properties of control systems and has developed design methods based on simple but
powerful graphical tools such as the Nyquist plot, Bode plots, and Nichols Chart.
These techniques are well known and are popular with practicing engineers. How-
ever, they were developed for a fixed nominal system and in general are inapplicable
when several uncertain parameters are present. In these situations it is necessary
to evaluate the frequency domain behaviour of the entire family of systems in order
to effectively carry out analysis and design.

A brute force approach to this problem (grid the uncertainty set) can be avoided
by assuming a certain amount of structure for the perturbations even if such an
assumption introduces some conservatism. In this chapter we shall consider the class
of linear interval systems where the uncertain parameters lie in intervals and appear
linearly in the numerator and denominator coefficients of the transfer functions. For
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example, the family of transfer functions

453 + ans® + s+ 5

G —
) = T 0B + Br? + (5 + 2015

where g, oy, O3, F2, 1,71 vary in independent intervals is a linear interval system
containing six interval parameters. In this example, the uncertainty template G(jw)
at each frequency w is a complex plane set generated by the parameter vector
ranging over the six dimensional parameter box. With the results to be developed
in this chapter we will be able to replace G(s) by a subset of systems Gg(s). This
extremal subset will allow us to constructively generate the ezact boundary of the
uncertainty template by means of a set of one parameter problems. These extremal
systems will allow us to exactly calculate the boundaries of the Bode, Nyquist and
Nichols plots of all transfer functions in the control system. They also can be
used to calculate the worst case gain, phase, and parametric stability margins over
the uncertain set of parameters. The utility of these concepts in control system
design is illustrated by giving examples which robustify classical design techniques
by incorporating parametric uncertainty.

We begin by considering an interval plant connected to a fixed feedback con-
troller and develop the appropriate mathematical machinery for this system. The
generalized Kharitonov segments introduced in Chapter 7 serve to define the ex-
tremal systems. Using these systems, we calculate the boundaries of the image
sets of various system transfer functions evaluated at s = jw. These include the
characteristic polynomial, open and closed loop transfer functions, sensitivity and
complementary sensitivity and disturbance transfer functions. We also evaluate the
worst case stability margins using these extremal systems. These results depend on
some simple geometric facts regarding the sum and quotients of complex plane sets.
We then generalize these results to the larger class of linear interval systems using
essentially the same geometric ideas.

8.2 INTERVAL CONTROL SYSTEMS

Consider the feedback system shown in Figure 8.1 with

F(s) s G(s) >

Figure 8.1. A unity feedback interval control system
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F(s) = 28 (5) = gg (8.1)

We suppose that F'(s) is fixed but G(s) contains uncertain real parameters which
appear as the coefficients of N(s) and D(s). Write

D(s) :=ag+a;s+ass® +ass® + -+ a,_15" "+ a,s"
N(s) :=bg + bys +bys® +b38> 4+ -4 b8 + by, 8™ (8.2)
where a;, € [a}; ,af], for k € n:= {1,---,n} and by € [b;,b}], for k € m. Let us

define the interval polynomial sets
D(s):={D(s) : ag+ais+ ass’ 4 -+ a,s”, a; € [a;,a;], for ke n}
N(s) :={N(s) : bo+bis+bos” + -+ b,s™, b € [b;,b;’], for k € m}
and the corresponding set of nterval systems:
G(s) = { a 8 . (N(s), D(s)) € (N(s)xD(s)) } . (83)
We refer to the unity feedback system in Figure 8.1 as an interval control system.

For simplicity, we will use the notational convention

N(s)

G(s) = D(s) (8.4)
to denote the family (8.3). The characteristic polynomial of the system is
6(5) = Fi(s)N(s) + Fo(s)D(s) (85)
and the set of system characteristic polynomials can be written as
A(s) = I1(s)N(s) + Fa(s)D(s). (8.6)

The control system is robustly stable if each polynomial in A(s) is of the same
degree and is Hurwitz. This is precisely the type of robust stability problem dealt
with in the Generalized Kharitonov Theorem (GKT) of the last chapter, where we
showed that Hurwitz stability of the control system over the set G(s) could be
reduced to testing over the much smaller extremal set of systems Gg(s).

Following the notation of the last chapter, let K (s) and K (s) denote Kharitonov
polynomials associated with N(s) and D(s), and let Sy (s) and Sp(s) denote the
corresponding sets of Kharitonov segments. Recall that these segments are pair-
wise convex combinations of Kharitonov polynomials sharing a common even or
odd part. Define the extremal subsets, using the above notational convention:

Gg(s) := I;;:r((j)) U ;?’V)((z)) (extremal systems) (8.7)
Gk (s) : Kn(s) (Kharitonov systems). (8.8)

~ Kn(s)
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We shall say that F'(s) satisfies the vertex condition if the polynomials £;(s) are of
the form

Fi(s) := s (a;s + b;)U; (s) Ry (), 1=1,2 (8.9)

where t; are nonnegative integers, a;, b; are arbitrary real numbers, U;(s) is an
anti-Hurwitz polynomial, and R;(s) is an even or odd polynomial. We recall the
result given by GKT.

Theorem 8.1 The conirol system of Figure 8.1 1s robustly stable that is stable for
all G(s) € G(s) if and only if it is stable for all G(s) € Gg(s). If in addition F(s)
satisfies the vertex condition, robust stability holds if the system s stable for each

G(s) € Gg(s).

The GKT thus reduces the problem of verifying robust stability over the mul-
tiparameter set G(s) to a set of one parameter stability problems over Gg(s) in
general, and under the special conditions on F'(s) stated, to the vertex set G (s).
In the rest of this chapter we shall show that the systems Gg(s) and Gxk(s) enjoy
many other useful boundary and extremal properties. They can be constructively
used to carry out frequency response calculations in control system analysis and
design. In fact, it will turn out that most of the important system properties such
as worst case stability and performance margins over the set of uncertain parame-
ters can be determined by replacing G(s) € G(s) by the elements of G(s) € Gg(s).
In some special cases one may even replace G(s) by the elements of Gk (s). The
results are first developed for interval plants for the sake of simplicity. They hold
for the more general class of linear interval systems as indicated in section 8.6.

8.3 FREQUENCY DOMAIN PROPERTIES

In order to carry out frequency response analysis and design incorporating robust-
ness with respect to parameter uncertainty we need to be able to determine the
complex plane images of various parametrized sets. In this section we will de-
velop some computationally efficient procedures to generate such sets. We shall
first consider the complex plane images of A(s) and G(s) at s = jw. These sets,
called uncertainty templates, are denoted A(jw) and G(jw). Since N(s) and D(s)
are interval families, N(jw) and D(jw) are axis parallel rectangles in the complex
plane. F (jw)N(jw) and Fs(jw)D(jw) are likewise rotated rectangles in the com-
plex plane. Thus A(jw) is the complex plane sum of two rectangles whereas G(jw)
is the quotient of two rectangles. We assume here that 0 € D(jw). If this assump-
tion fails to hold we can always “indent” the jw axis to exclude those values of w
which violate the assumption. Therefore, throughout this chapter we will make the
standing assumption that the denominator of any quotients exclude zero.

The next lemma will show us how to evaluate the sum and quotient of two
complex plane polygons @; and @, with vertex sets V; and V5, and edge sets F;
and Fs, respectively. Let J(-) denote the boundary of the complex plane set (-).
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Lemma 8.1

(a) Q1+ Q) C(V1+ Ex)U(E +Va)

Q4 E W
® a(@)CVZUE—Z'

Proof. (a)From simple complex plane geometry the complex sum of two straight
lines is generated by adding vertex-segment pairs. Thus the result is true for
this case. For the general case it is known that (@, + @Q2) C 0Q1 + 0Qs.
Then without loss of generality we let 3@ be an edge and Q- be another
edge and use the previous argument. This proves part (a) of the lemma.

(b) First, we establish that z € 0 (%) if and only if 0 € 0(Q — 2Q2). Indeed if
2y €0 (%), then for every € > 0 the open disc |z — z5| < ¢ contains points
z such that z ¢ % Thus, 0 ¢ Q1 — zQ)». However, 0 € @)1 — 22 since

A= % By continuity of ¢ — 25 with respect to z at zy, 1t follows that
0 € 9(Q1 — 20Q=). Now suppose conversely that 0 € d(Q1 — 20Q2). Then for

every € > 0 the disc of radius € centered at the origin contains points ¢ such
that ¢ € Q1 — 20Q)2. By continuity of the mapping % — @1 — 2@ with
respect to z the inverse image z of the point ¢ is close to zy. But this point
z ¢ % since 0 ¢ @1 — 2()>. However, z can be chosen to be arbitrarily close

to zp. Since zy € %, it follows that zy € J (%)

Now,
zea<%> <= 0€0(Q1—2Qn) <= 0€ (Vi —zE2)U(E — zV3)
2
i b

[ )

This lemma shows us the interesting fact that the boundaries of sums and quotients
of two polygons can be determined by sums and quotients of the corresponding
vertex-edge pairs. Figure 8.2 illustrates that the boundaries of the sum of two
four sided polygons are obtained by generating the sum of all segment-edge pairs.
Similarly, Figure 8.3 shows the sum of two general polygons.

It can be shown that the inverse image of a line segment which excludes the
origin, is an arc of a circle passing through the origin (Exercise 8.4). This is shown
in Figure 8.4. Therefore the inverse image of a polygon is bounded by such arcs as
shown in Figure 8.5.
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Figure 8.2. Illustration of sum of two polygons
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Figure 8.4. Line and inverse of line

To determine A(jw) and G(jw) we note that the vertices of N(jw) and D(jw)
correspond to the Kharitonov polynomials whereas the edges correspond to the
Kharitonov segments. The set of points Ky (jw) are therefore the vertices of N(jw)
and the four lines Sy (jw) are the edges of N(jw). Fy(jw)N(jw) is also a polygon
with vertices Fi(jw)Kn(jw) and edges £ (jw)Sy(jw). Similarly, F5(jw)Kp(jw)
and Fy(jw)Sp(jw) are the vertices and edges of the polygon Fa(jw)D(jw). The jw
image of the extremal systems Gg(s) defined earlier exactly coincides with these
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Figure 8.5. Polygon and the inverse of polygon

vertex-edge pairs. Let
(N(s5)xD(s))g := (Kn(5)xSp(s)) U (Sy(s)xKp(s)). (8.11)
Recall that the extremal systems are

Gp(s) = {gg . (N(s), D(s)) € (N(S)XD(S))E} = ’;g((;) U ZJZ 8 (8.12)

and define
Ag(s) :={Fi(s)N(s) + Fa(s)D(s) : (N(s),D(s)) € (N(s)xD(s))r}. (8.13)

We can now state an important result regarding the boundary of image sets.

Theorem 8.2 (Boundary Generating Property)

a) OA(jw) C Ag(jw)
b) 0G(jw) C Gr(jw)

Proof. The proof of this theorem follows immediately from Lemma 8.1 and the
observation regarding the vertices and edges of N(jw) and D(jw).

a) From Lemma 8.1,
IA(jw) C (F1(jw)Kn(jw) 4+ Fa(jw)Sp(jw))

U (F1(w)Sn (jw) + F(jw)Kp (jw))
= Ag(jw) (see(8.11) and (8.13)).
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b)

L]

Example 8.1. Consider the problem of determining the frequency template of the
interval plant

n(s) b15+ b()

Gls) = d(s) T ans? +ars+ ag

where the parameters vary as follows:
apg € [1:2]7 a; € [2a3]a as € [2a3]a bo € [1a2]a b € [2a3]
The Kharitonov polynomials of d(s) and n(s) are:

s24+ 25+ 1
s2+3s+1
s2+25+2
s2+3s+2

[l
CI CRICIIT

and

Thus, the boundary of the entire frequency domain template is obtained by the
frequency evaluation of the following 32 systems:

K (s)

n

| and AKI (s) + (}1 — MKk (s)
AK7(s) + (1= \)Kk(s) Ki(s) ’

for

i=1,2,34; (k) €{(1,2),(1,3),(2,3),(3,4)}.

Figure 8.6 shows the template G(jw) at w = 1.
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Figure 8.6. Frequency domain template G(jw) (Example 8.1)

Closed Loop Transfer Functions

Referring now to the control system in Figure 8.1, we consider the following transfer
functions of interest in analysis and design problems:

@ =G(s u(s) = F(s

W =66, G =) (8.14)

T°(s) == % = F(s)G(s) (8.15)
el = 8) _ 1

") = 15 = A F0m (8.16)
wig) o U0) F(s)

) = ) = T ) ae) (8.17)

To(s) = W) - _FEIG() (8.18)
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As G(s) ranges over the uncertainty set G(s) the transfer functions 7°(s), 1% (s),
T4(s), T¢(s) range over corresponding uncertainty sets T°(s), T¥(s), T%(s), and
T¢(s), respectively. ITn other words,

T(s) == {F(s)G(s) : G(s) € G(s)} (8.19)
Té(s) = {Hf%m . G(s) € G(s)} (8.20)
T (s) = {% . G(s) € G(s)} (8.21)
TY(s) := {% c G(s) € G(s)} . (8.22)

We will now show that the boundary generating property of the extremal subsets
shown in Theorem 8.2 carries over to each of the system transfer functions listed
above. In fact, we will show that the boundary of the image set at s = jw, the
Nyquist plot and Bode plot boundaries of each of the above sets are all generated
by the subset Gg(s). Introduce the subsets of (8.19) - (8.22) obtained by replacing

G(s) by Gg(s):

) ={F( ) P G(s) € Ga(s)} (8.23)
= { T F(S)G : G(s) € GE(S)} (8.24)
F(s)
= : G .
{1—|—F(5)G ) : G(s) € E(s)} (8.25)
Y — (5) . G
T (s) = {71—1—117(5) G G(s) € E(s)} (8.26)
The main result can now be stated.
Theorem 8.3 For everyw >0,
(a) OT°(jw) C Ty (jw)
(b)  0T(jw) C T (jw)
(¢)  0T*(jw) C Ti(jw)
(d)  9TY(jw) C Ty( jw)
The proof will require the following technical lemma.
Lemma 8.2 Let D be a closed set in the complex plane with 0 ¢ D. Then
1 1
0 (7—)) =3p (8.27)
Proof. Let ;- € 6(5) then there exists an open disc such that |- — —| < € for

some d such that + ¢ . This implies that d ¢ D but dy € D. By the contmulty of
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the mapping with respect to d at dp, it follows that d1—0 € %. Conversely, suppose
that dy € 9D, equivalently dl—o € ==. Then there exists an open disc such that

D"
|d — dy| < € for some d ¢ D. This implies that L ¢ £ while % € 5. Again, by the
continuity of the mapping with respect to d at dy, we have % € 8(%). &

Proof of Theorem 8.3
(a)
0T (jw) = A(G(jw)F(jw)) = F(jw)dG(jw)
C F(jw)Ge(jw) = Te(jw).
(b) From Lemma 8.2,

1 )_ 1
1+ G()F(jw)) ~ 01+ G(jw)F(jw))
1
T T O(G(@)F(jw))

Since I(G(jw)F (jw)) C Gr(jw)F(jw), we have 9T°(jw) C T§ (jw).

(¢) Since T"(jw) = F(jw)T¢(jw) with a fixed F(jw) for a fixed w, the property
shown in (c) carries over directly. Thus, 0T"(jw) C T{(jw).

IT" (juw) = a<

(d)
1 1
ITY (juw) = 0 . = :
M R GeGGe) 0<Hﬁwmqw0
1
- 1+ L
F(j)0G(j)
1
C T
M ) Gel)
= T (jw)

&

Remark 8.1. This result shows that at every w > 0, the boundary of the image
set of each transfer function in (8.19) - (8.22) is contained in the corresponding
image set of the extremal systems. We point out that in the definition of the
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interval plant G(s) we assumed that the numerator and denominator parameters
were independent. This assumption obviously does not hold any longer when we deal
with say, TY(s) where the numerator and denominator depend on some common
parameters. It is therefore useful to know that the boundary generating property
of the set Gg(s) carries over nevertheless. In a later section we will show that the
boundary generating property of the set Gg(s) will hold much more generally.

Example 8.2. Consider the system given in Example 8.1. Let us assume that
F(s) =1 and that we wish to calculate TV (jw).

TY(s) = {% :G(s) € G(s)} .

For this example, we have

b]5+b0

TY(s) =
(s) ass® + (a; + b1)s + (ag + bo)

where
ag € [1a2]a M € [2a3]a @ € [2a3]a bO € [1a2]a bl € [2a3]

The denominator and numerator polynomials are dependent on some of the same
perturbing parameters. However, Theorem 8.3 handles this dependency. Since
OTY (jw) C Ty (jw), it is enough to construct the following template:

T35 = { 12U o) € Gt}

In other words, we simply replace G(s) by Gg(s) in TY. Thus we need to construct

the image of the following transfer functions for A € [0, 1]:

K} (jw)
NKE (o) + (1~ VK3 (j) + K (jw)

and
AKE (jw) + (1 - /\)Kfl (jw)

AKE(jw) + (1= MK (jw) + K (jw)
fori=1,2,3,4and (k,1) € {(1,2),(1,3),(2,3),(3,4)}. The sets of Kharitonov poly-
nomials corresponding to the denominator and numerator polynomials are defined
in Example 8.1. The frequency domain template at w = 1 is shown in Figure 8.7.

8.4 NYQUIST, BODE, AND NICHOLS ENVELOPES

In the previous section we established that at a fixed frequency the image set tem-
plate of various transfer function set can be constructed from the corresponding
extremal transfer function set Gg(s). In control system design it is important to
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Figure 8.7. Frequency domain template TY(jw) (Example 8.2)

see the behaviour of these transfer function families for all frequency. Denote the
Nyquist plot of the family G(s) as

G = Up<ucao G(jw). (8.28)

The boundary of G i1s the Nyquist envelope of G. Similarly, the Nyquist plots of
T?(s), T¢(s), T“(s), and T¥(s) are denoted respectively by T°, T¢, T“ and TY.
From the boundary property of Theorem 8.3, it follows that the envelopes of these
Nyquist plots are generated by the extremal systems.

Theorem 8.4 (Nyquist Envelope)
The Nyquist plots of each of the transfer function sets T°(s), TY(s), T¥(s), and
T¢(s) are bounded by their corresponding extremal subsets:

(a) 0G CGg

(b) OT° C Ty
(¢) OTY CTY (8.29)
(d JT" C Ty
(e) OT° CTj.
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The Bode envelopes of each of the system transfer functions G(s), T?(s), T*(s),
T“(s), and TY(s) can also be constructed if we can determine the maximum and
minimum values of the magnitude and phase of the family of systems at each fre-
quency. From the boundary relations given in Theorem 8.3, it again follows that
these maximum and minimum values occur over the subset Gg(s). This leads us
to the following result.

Theorem 8.5 (Bode Envelope)

The Bode magnitude and phase envelopes of each of the transfer function sets
G(s), T(s), T¢(s), T“(s), TY(s) are generated respectively by the extremal subsets,
GE(5)7 T%(S), TE(S), T%(S), T%(S)’

It is instructive to interpret this result from the geometric point of view. Consider
the Bode plot of the interval family G(s). For a fixed w*, the image of the interval
transfer function is the quotient of two convex polygons in the complex plane where
the polygons represent the images of the numerator and denominator polynomial
families. This is depicted in Figure 8.8.

From Figure 8.8(a) and (b), we can see that the maximum and minimum magni-
tudes of G(jw*) occur on one of the vertex-segment combinations of these polygons.
Since the parameters in the numerator and denominator are independent we have:

(a) max N(jw")| _ max|N(jw")|
D(jw*) min |D(jw*)|

- INQw™)| _ min[N(jw")|

(b)  min D(jw*)| max|D(jw*)|’

While the maximum magnitude always occurs at a vertex the minimum can occur
on an edge. The maximum and minimum points will generate the extreme points of
the Bode magnitude envelope at the frequency w*. On the other hand, as shown in
Figure 8.8(c) and (d), the extreme points on the phase envelope are always generated
by vertex-vertex pairs:

N(jw*) ) . .
c max ar - = maxarg N(jw*) — minarg D(jw*
(c) 8 D) gN(jw") gD(jw")
) N(jw*) ) . .
d min ar - = min arg N(jw*) — maxarg D(jw*).
(d) & D) sN(jw") gD(jw")

The relations given in the Theorem above are useful in constructing the Bode
magnitude and phase envelopes as well as Nyquist envelopes. In classical control
design techniques, the Nichols Chart is also a popular computational tool. For a
fixed transfer function, the Nichols Chart is a plot of the magnitude versus the phase
with frequency as a running parameter. When a family of parametrized systems is
involved, we get at each frequency a magnitude-phase template. When this template
is swept over all frequencies, we get the Nichols Envelope of the family. By using
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Figure 8.8. Extremal magnitude and phase of N(jw*) and D(jw*)

the boundary property of Theorem 8.3 it can be seen that the Nichols Envelope is
also generated by the extremal systems.

Theorem 8.6 (Nichols Envelope)
The Nichols Envelope of each of the transfer function sets G(s), T(s), T(s),
T"(s), TY(s) are generated respectively by the extremal subsets, Gg(s), Tg(s),

Ti(s), Ti(s), Tg(s)-
The Nichols template is obtained by mapping the points of the Nyquist plane (see
Figure 8.9) into the Nichols plane (see Figure 8.10). This gives the exact Nichols

template. The Nichols envelope can also be generated approximately from the
Bode magnitude and phase envelopes of the family. At each frequency we draw
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a rectangle in the magnitude-phase plane (Nichols plane). The dashed rectangle
shown in Figure 8.10 corresponds to the magnitude and phase ranges obtained
from the Bode envelopes. When these overbounded images of G(jw) templates are
swept over frequency, we obtain the approximate Nichols envelope which contains
the actual envelope. We illustrate these computations with an example.

Example 8.3. Consider the plant and controller

_ b15+b0 0(5): 52+25+1
ass2 +a1s + ag st + 2534+ 252 + 5

where the plant parameters vary as

by €[0.1,0.2], b €[0.9,1.1]
ar €0.9,1.0], ay €[1.8,2.0], ao € [1.9,2.1].

Figures 8.11, 8.12, and 8.13 show the frequency domain plots for this example.

Imag
o

o
W
—_

1.5 2
Real

Figure 8.11. Nyquist templates (Example 8.3)
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Figure 8.12. Bode envelopes (Example 8.3)
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Figure 8.13. Nichols envelope (Example 8.3)

Conservatism of the Envelopes

For a fixed system, all of the above three frequency plots provide the same infor-
mation on the system. However, for the case of a parametrized family of systems,
the situation is quite different. The Nyquist and Nichols plots of a fixed system can
be regarded as a string in the Nyquist or Nichols plane. For a parametrized family
of systems, the Nyquist or Nichols plots therefore consists of a family of strings.
However, the envelope of the plot is, in general, not a string that belongs to the
family. In other words, there i1s no system in the family which generates the entire
boundary of the envelope itself. On the other hand, every point on the boundary
of the envelope has a string passing through it as shown in Figures 8.14 and 8.15.
The Bode envelopes in fact correspond to an overbound of the image of the
complex plane set G(jw) at each frequency w. Considering Figure 8.16, we also
see that each point on the boundaries of the envelopes came from a true member
system of the family. From the Bode envelopes, we notice that the smallest gain
margin of the family is K. However, the member system passing through the “e”
point in the magnitude plot does not correspond to the phase crossover point “e”
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Imag

Real

Figure 8.14. Nyquist envelope and Nyquist plots of individual member systems

Figure 8.15. Nichols envelope and Nichols plots of individual member systems
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db
0 \\ w
3 ; \\\\.\;\ ;
degree i
I ) ! \\ .
—180° ‘ N w

Figure 8.16. Bode envelopes and guaranteed phase margin

db
0 db w
degree
—180° w

Figure 8.17. Bode envelopes and guaranteed gain margin



Sec. 8.5. EXTREMAL STABILITY MARGINS 353

in the phase plot. Due to this phenomena, the true smallest gain margin might
be bigger than K. A similar argument can be made for the case of the smallest
phase margin (see Figure 8.17). This is because of the independent evaluation of the
magnitude and phase envelopes of the family. In other words, despite the fact that
each point on the boundaries of the Bode magnitude and phase envelopes, comes
from some parameter in the family, the latter envelopes taken jointly, represent
only the approximate set which corresponds to the dashed box in Figure 8.10 and
equivalently, the dashed portion of the disc in Figure 8.9. Therefore, the smallest
gain and phase margins read from the Bode envelopes would be conservative, with
the degree of conservatism depending upon how big the actual image inside the

dashed box is (see Figure 8.10).

Remark 8.2. The above boundary results remain valid if F;(s) are complex func-
tions rather than real polynomials. This is useful in applications. For example,
in systems containing time-delay Fj(s) could contain terms such as e=T%. Also
many robust performance problems reduce to verifying robust stability under real
parameter perturbations using complex compensators.

8.5 EXTREMAL STABILITY MARGINS

In this section, we deal with the calculation of guaranteed stability margins. We
will first consider the gain and phase margins at the loop breaking point “m” shown
in Figure 8.18. When G(s) contains parameter uncertainty the worst case values of

Figure 8.18. A unity feedback system

gain and phase margins over the parameter uncertainty set are important measures
of robust performance. We show that these worst case margins in fact occur over
the subset of extremal plants Gg(s).
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8.5.1 Guaranteed Gain and Phase Margins

Suppose that F(s) robustly stabilizes the family G(s). The gain margin of the
system for a fixed G(s) € G(s) is defined to be the smallest value K¢ for which

(14+ K)Fi(s)N(s) 4+ Fa(s)D(s)

remains stable for all K € [0, K¢). Similarly, the phase margin of the system for a
fixed G(s) € G(s) is defined to be the smallest value 84 for which

e Fy (s)N(s) + Fy(s)D(s)
remains stable for all # € [0, f). The worst case gain and phase margins are:

K*:= inf Kg .= inf  fg. (8.30)
G(s)eG(s) ()€ G(s)

Theorem 8.7 (Extremal Gain and Phase Margin)

1)
K*= inf Kg, 0= il g
G(s)e Ga(s) G(s)e Ga(s)

II) If F;(s) are real and satisfy the vertex conditions specified in part II of GKT,
then we have

K* = inf Kq
G(s)eGk(s)

The proof of this theorem readily follows from the fact that A(jw) and Ag(jw)
share identical boundaries. Moreover, when F;(s) satisfy the vertex conditions the
proof follows from the fact that A(s) is stable if and only if Ax(s) is stable.

8.5.2 Worst Case Parametric Stability Margin

We now consider the worst case parametric stability margin. We assume as before
that F'(s) robustly stabilizes G(s). The parameter p of dimension ¢ consists of the
coefficients of N(s) and D(s) and varies in the hypercube II. We will rewrite 6(s)
in (8.5) as §(s, p) to emphasize its dependence on the parameter p. Let Ily denote
the parameter subset of IT corresponding to the extremal systems Gg(s). Let IIk
denote the parameter subset of II corresponding to the extremal systems Gg(s).
Let || -|| denote any norm in IR and let P, denote the set of points u in IR' for
which (s, u) is unstable or loses degree (relative to its generic degree over II). Let

p(p) = ol [jp —ul,
denote the radius of the stability ball (measured in the norm || - ||) and centered at

the point p. This number serves as the stability margin associated with the point
p and indicates its distance from instability. If the box II is stable we can associate
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a stability margin, denoted p(p), with each point in IT. A natural question to ask
then is: What is the worst case value of the parametric stability margin over IT and
what is the point where it occurs? An answer to this question gives an indication
of how close one can get to instability over the box II.

Define a mapping from II to the set of all positive real numbers:

I = RT\{0}
p — p(p)

Our question stated in terms of functions is: Has the function p(p) a minimum and
is there a precise point in IT where it 1s reached? The answer is provided by the
following theorem:

Theorem 8.8 (Extremal Parametric Stability Margin)

I) The minimum value over IL of p(p) is reached at a point on the extremal set
IIg.

II) If F;(s) satisfy the vertex conditions, the minimum value of p(p) is reached at
a point on the extremal set Il .

Proof. The theorem amounts to proving that

inf p(p) = inf p(p).
peﬂp( ) peHEP( )

Since A(jw) and Ag(jw) have the same boundary,
inf = inf inf —u
penp(p) ook, [P —ull,
—int{lfall : 6w, p+a) = 0,p € L, € [~o0, +x]}
inf{[lal| : 6(jw,p+a)=0,p€lp,w € [0, +]}

inf inf |[p —ul,

= inf p(p). 8.31
int (o) (531
The proof of part 11 is identical. &

Example 8.4. Consider the unity feedback control system with

a5+ ag
G(s)= —————
(5) b252 + b] s+ bo
and ,
2 1
F(s) = 57 425 +

st 42534252 + 5
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where

a; €[0.15—€,0.154¢], ap€[l—¢1+ €,
by €[0.95— ¢,095+¢], bi€[l9—e1.9+¢, bye[2—e24¢.

We wish to find the largest excursion of parameters allowed or equivalently the
maximum value of ¢ for which closed loop stability is preserved. The image set plot
at € = 0.128, shown in Figure 8.19, reveals that the phase difference reaches 180° at
€ = 0.128 (Figure 8.20). It is clear that any value of € smaller than 0.128 results in
smaller image sets than the ones shown in Figure 8.19. Moreover, if we sweep the
frequency the connected image sets will form an envelope which does not contain
the origin for € = 0.128. Therefore, an envelope corresponding to any value of ¢
smaller than 0.128 cannot contain the origin. Thus, we conclude that the feedback
system remains stable under the perturbations bounded by this maximum value of
€.

Imag
=)

Real
Figure 8.19. Image set plot at ¢ = 0.128 (Example 8.4)
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Figure 8.20. Phase plot (Example 8.4)

8.6 LINEAR INTERVAL CONTROL SYSTEMS

The results given so far in this chapter assume that G(s) is an interval plant, namely
the ratio of interval polynomials. Each of the results given shows that a particular
calculation involving G(-) can be replaced by the corresponding calculation over
the one parameter subsets Gg(-). This sort of simplification actually carries over
to the more general class of linear interval systems G(s) defined below. Instead
of repeating all the previous results, we show in this section how to construct the
extremal subsets Gg(s) and leave the details of the proofs to the reader.

We still consider the unity feedback system shown in Figure 8.1 with

F(s):= G(s) = . (8.32)

We suppose that F(s) is fixed, ((s) is subject to parametric uncertainty and is now
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of the form

N(s) :=Li(s)A1(s) + La(s)Az(s) + - -+ Ly (s) Au(5)
D(s) := Mq(s5)B1(s) + Ma(s)B2(s) + - - -+ My (s) By (s) (8.33)

with A;(s) and B;(s) being independent interval polynomials. Write
Ai(s) i=ah +ais+abs® +ays® + o+ ak 8" T a8
Bj(s) :=b +bls+bls* +bls> 4+ + bgj_lsdj_l + bgjsdj (8.34)
where ai € [aﬁc_,a?'], for £ € n; and bi € [bi_,bi-i'], for k € d;, and L;(s) and
M; (s) are fixed polynomials in s. Let
A() = [An(3), Aafs), -+ Au®)], B(s) = [By(s), Ba(s), - Bu(s)]. (3.39)
Let us define the sets
Ai(s) :={A4i(s) : ab+ais+als®+ - +d, s, d, €[d,df], for ken}
B;(s) = {Bj(5) : b +bls+0bhs”+ - +b, 5%, b €[t b*], for ked;}

N(s) := {ZLi(s)Ai(s) 2 (Ai(s), - -, Au(s)) € Aqg(s) x -+ X Au(s)}

D(s) := {ZMZ(S)BZ(S) 2 (Bi(s), -, Bu(s)) € Bi(s) x -+ x Bv(s)}

and the corresponding set of uncertain systems

N(s)

G(s) = {g 8 . (N(s), D(s)) € (N(S)XD(S))} =50

is called a linear interval system. The Kharitonov polynomials and segments asso-
ciated with A;(s) are denoted K, (s) and Sa,(s), respectively. Kg,(s) and Sg, (s)
are defined similarly. Now let us define

Ax(s) :=Ka,(s) x - x Ka,(s), Bk (s) :=Kpg,(s) x ---x Kg,(s) (8.37)
and

Al]i](s) = ICAl(S) XX ICAk—l(S) X SAk(S) x ICAk+1(5) e X ICAu(S)a
Bl (s) = Kp,(s) x -~ x Kn,_,(5) x Sg,(8) x Kp,,,(8)--- x Kp,(s) (8.38)

for k € u and j € v. Let

Ap(s) = U/ AL(s),  Br(s) := U/ Bi(s). (8.39)
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Now introduce
= {N(s) : N(s) = ZLZ'(S)AZ'(S), (A1(s),---, Au(s)) € AK(S)}
)= {N(s) N (s) = D0 L) 4i(5), (Aa(5), -+, Au(5)) € An(s) }(3.40)

Similar definitions hold for Dk (s) and Dg(s), and the extremal subsets are:
(N(s)xD(s))g := (Ng(s)xDg(s)) U (Ng(s)xDx(s)). (8.41)
The extremal subset of the family G(s) is:

Gg(s) = {gg : (N(s), D(s)) € (N(S)XD(S))E} = 1;?8 U gig (8.42)

In words the extremal set is obtained by fixing all the A;, B, at Kharitonov
vertices except one and letting this one range over the Kharitonov segments. We
remark here that in the more general case where some of the 4; and B; happen
to be identical the same procedure for constructing the extremal subset will work
except that this constraint must be imposed on Gg(s).

With the above definitions we can verify that N(jw) and D(jw) are polygons.
The vertices of N(jw) are contained in the set Nk (jw) and the edges of N(jw) are
contained in Ng(jw). Similar relations hold for D(jw). From this, it follows easily
that for the class of linear interval systems G(s) defined in (8.33) - (8.36) each of
the statements given in Theorems 8.1 - 8.8 remains valid with Gg(s) defined as in
(8.42). The conditions are constructive because here again Gg(s) is a set of one
parameter families. We illustrate the above calculations in the example below.

Example 8.5. Consider the linear interval system
Li(s)A (s)
G(s) =
( ) M] (S)B] (S) + M2 (5)32 (5)
_ 5(715 +70)
s(azs® + ans?) + (fos® + fis)

where
11 €[0.40, 1.60], ~o € [19.40,20.60], «3 € [0.40,1.60],
oy € [7.40,8.60], 5y €[31.4,32.6], (3 € [74.45,75.65].

Here, we illustrate the construction of Bode, Nyquist, and Nichols templates. First
we write the Kharitonov polynomials of 4, (s), Bi(s), and Ba(s):

K}, (s) = 1.65° + 8.65 xAl( 5) = 0.45° + 8.65”
K73 (s) = 1.6s° + 7.45° 4.(s) = 0.45% + 7.457
Kp (s) = 32.65” + 74.45s 2 (s) = 32.65% 4+ 75.65s
K} (s) = 31.4s® 4+ 74.45s 1(5) 31.45% + 75.65s
B, (5)
B, (5)

s
B,

K%E;Q(s) =0.454+ 19.4s = 1.65” 4+ 19.4s
K3, (s) = 0.4s> + 20.6s

5
B,

1.657 + 20.6s

5
B



360 FREQUENCY DOMAIN PROPERTIES OF INTERVAL SYSTEMS Ch. 8

Then the extremal systems we will deal with are

L1(5) (VS (5) + (1= MK, 5)
M;(5)Kl, () + Ma(3) K}, (5)

Li(s)KY (s) '
Mi(s) (AKE (8) + (1 — NKY (5)) + Ma(s)K_(s)

' Ly (S)KQ1 (s)
Mi(s)K% (s) + Mo(s) (AKE (s) + (1= N KL _(s))

for

i,j=1,2,34; (k1) €{(1,2),(1,3),(2,4),(3,4)}.

Figures 8.21, 8.22 and 8.23 show the Nyquist, Bode and Nichols envelopes of the
system respectively.

Imag
=)

o
[\S]

-2 -1.5 -1 -0.5 0 0.5

Real

Figure 8.21. Nyquist templates of linear interval system (Example 8.5)
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Figure 8.22. Bode envelopes of linear interval system (Example 8.5)
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Figure 8.23. Nichols templates of linear interval system (Example 8.5)

8.7 POLYTOPIC SYSTEMS

In many models containing parametric uncertainty the only convenient representa-
tion is one where each independent parameter is explicitly displayed. In this case,
we write

a1 Ly (s) +asLa(s) + - -+ ay Ly ()

) = L (o) T o Mo () T £ by Mo (5) (8.43)
and let
G(s) :={G(s) : af <a; <af, b7 <b; <bf, i€u, jeuv} (8.44)
denote the family of uncertain systems. Let
p = [ar,az, o, ay, by bay o b (8.45)
denote the parameter vector and
I:={p :af <a; <al, by <b <bf, icu, jeu} (8.46)

the uncertainty polytope. Write (8.43) as G(s,p) to emphasize its dependence on
p. For convenience we refer to the family of systems G(s,p) : p € II represented in
the form (8.43) as a polytopic system. Of course a polytopic system is just a special
case of a linear interval system with the uncertain polynomials being of degree zero.
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Let ITg denote the exposed edges of IT and introduce the extremal systems
Gg(s) ={G(s,p) : pelg}. (8.47)

Now suppose that s* is an arbitrary point in the complex plane, where the image
set G(s*) needs to be found. In the Hurwitz case we might have s* = jw and in
a discrete time control system, for example, s* could be a point on the unit circle.
We have the following result.

Theorem 8.9
IG(s") C Gg(s").
Proof. The proof follows from Lemma 8.1 applied to the polygons

Ql:{alLl(s*)—l—~~~—|—auLu(5*) Doa; Saigaj', iEg}
Q?I{b1M1(S*)++b7JMﬂ(5*) : b]_ Sb] Sb;l—a jEQ}

L]

All the results of Theorems 8.1 to 8.8 carry over to this general case with the
extremal set Gg(s) being defined by (8.47). The more general case where some
a;, b; are identical can be handled by imposing the same constraint on Gg(s).

8.8 LINEAR FRACTIONAL TRANSFORMATIONS OF INTER-
VAL SYSTEMS

We have thus far assumed that our uncertain system is described by an interval
system, a linear interval system, or a polytopic system model. In each of these
cases we developed extremal and boundary results under the assumption that the
numerator and denominator parameter sets are disjoint or that they perturb inde-
pendently. On the other hand, we saw that these extremal and boundary results
carry over to all the feedback system transfer functions even though, in some of
these, the numerator and denominator do contain common uncertain parameters.
A natural question to ask therefore is: What is a useful general model with in-
terval parametric uncertainty, incorporating dependencies between numerator and
denominator parameters, for which boundary or extremal results can be obtained?
It turns out that a very broad class of systems of this type can be encompassed
under the class of linear fractional transformations of an linear interval system.
Therefore, let us suppose that G(s) is a linear interval system (see (8.36)) with
independent uncertain interval polynomials A;(s), B;(s) and let Gg(s) denote the
extremal subset as defined in Section 8.6. Let P(s), Q(s), R(s), S(s) be four arbi-

trary fixed functions and consider the transformation

P(s)G(s) + Q(s)
R(s)G(s) 4+ S(s)

H(s)=
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We suppose that the transformation is well defined (R(s)G(s) + S(s) # 0) and re-
fer to such a transformation as a linear fractional transformation. Obviously H(s)
contains, in general, common interval parameters in the numerator and denomi-
nator even though G(s) has only independent parameters in the numerator and
denominator. As before let

H(s) := {P(S)G(S) +Q6) s € G(s)}

and let
_ [ P(s)G(s) +Q(s) |
Hg(s) := { R6)G0) + 50 G(s) € GE(S)} .

We show below that under mild conditions on the set P(s), Q(s), R(s), S(s) the
boundary of the set H(jw) is generated by the extremal set Gg(jw).

Theorem 8.10 If

P(jw)S(jw) — Q(jw)R(jw) # 0
we have
OH(jw) C Hg(jw).

Proof. We know that the boundary of G(jw) is contained in Gg(jw). There-
fore all we need to show is that the transformation G(s) — H(s) is a boundary
preserving mapping. Write

P(w)=p, QUuw)=4q, R(w)=r 5S(w)=s Gw)=9g, H(jw)="h

We see that under the assumption stated (ps — ¢r # 0), we can write

h:[qr—pSH 1 ]+g:pg+q.
r rg—+s r rg—+s

Thus h is obtained from ¢ by a sequence of operations consisting of multiplication
by a complex number, addition of a complex number and inversion of a complex
number. Each of these are boundary preserving operations (see Lemma 8.1) and so
the result follows. 3

Remark 8.3. With this result in hand it is easy to see that all the extremal and
boundary results stated in this chapter carry over to linear fractional transforma-
tions of linear interval systems. The practical implication of this result is that by
adjusting the set P(s), Q(s), R(s), S(s) we can account for a large class of inter-
dependencies between the perturbations. It is easy to show that all the transfer
functions that occur in a closed loop system can be shown to be linear fractional
transformations of (i(s) which satisfy the restriction stated in the theorem above.
Thus it is not surprising that the extremal results stated in Theorem 8.3 hold. Fi-
nally, we point out that the boundary generating property of Gg(s) continues to
hold for any further linear fractional transformations applied to H(s).
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Example 8.6. Let us consider the block diagram shown in Figure 8.24. The closed

Pay(s)

—O—1 P Gls) D -

Ps(s)

Figure 8.24. A feedback system

loop transfer function of the system is
y(s) _ P (s)Pa(s) + P1(s)G(s)

u(s) L+ [Pi(s)Pa(s) + Pa(s)] Pals) + [Pr(5) Ps(s) + Pa(s)] G(s)
= H(s).

If G(s) belongs to an interval transfer function family G(s), then the family of
output transfer functions is
H(s)

Py (5)P4(s) + Pi(s)G(s) s )
{1+ [P1(5)Ps(s) + P2(s)] Pa(s) + [P1(5) Ps(s) + Pa(s)] G(s) 1 G(s) € G( )}
P(s) Q(s)

~— ——
P Gls) + Pulo) Pato)

S\ POBE T REIGE + 11 BERBE T HEIAG ) €G)
R(s) 5(5)
Thus, 1f
P(j)S(j) — Qi) Rljw) £ 0.
we have

0H(jw) C Hi(jw).

The point is, that even though H(s) is not an interval transfer function, the bound-
ary of H(jw) is captured by replacing G(s) by the elements of the extremal set
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Gg(s) which is a considerable saving. Similar results hold for the Nyquist and
Bode envelopes, and in fact all extremal properties of H(s) will occur on the subset

HE(S)

8.9 ROBUST PARAMETRIC CLASSICAL DESIGN

We illustrate the utility of the above tools in extending the design techniques of
classical control to systems containing parameter uncertainty. The requirement of
robust design is that the design specifications must be satisfied over the entire pa-
rameter set. Thus the worst case values must be acceptable. Since these worst case
values occur over the extremal set Gg(s), it suffices to verify that the specifications
are met over this set.

8.9.1 Guaranteed Classical Design
Example 8.7. Consider the interval plant

Ny

G =
(5) d353 + d252 + d] s+ do

with ny € [10,20], ds € [0.06,0.09], dy € [0.2,08], dy € [0.5,1.5], dy = 0. The

objective is to design a controller so that the closed loop system
a) is robustly stable under all parameter perturbations,

b) possesses a guaranteed phase margin of at least 45°. In other words the worst
case phase margin over the set of uncertain parameters must be better than

45° and

¢) possesses a bandwidth greater than or equal to 0.1 [rad/sec] with a reasonable
value of resonant peak M,.

‘We simply follow the standard classical control design techniques with the new tools
developed here. First we construct the Bode envelopes of the open loop interval
plant G(s). From the magnitude and phase envelopes, we observe that the worst
case phase margin of 50° is achieved if the gain crossover frequency w/ is at 0.5
[rad/sec]. In order to bring the magnitude envelope down to 0 [dB] at the new
crossover frequency w/, the phase lag compensator of the form

_ 1+ aTl's

C(S)—m, Cl<1

must provide the amount of attenuation equal to the minimum value of the magni-
tude envelope at w/:

max |G(jw)| = —201log,, a[dB].
Gliw)eG(jwl)
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Thus, we have a = 0.01. Now we choose the corner {requency (;—T to be one decade
below w’:

1wl
al' 10|,
and we have 7' = 2000. Finally, the resulting phase lag compensator becomes
_ 1+20s
) = T3 20005

Here we give some analysis to check whether the controller C'(s) satisfies the given
design requirements. The robust stability of the closed loop system with the con-
troller C'(s) may be easily determined by applying Theorem 8.1. Moreover by GKT
since we use a first order controller 1t is only necessary to check the stability of the
following vertex polynomials:

(1 +2000s)K7;(s) + (1 + 20s) K7 (s), i=1,234j=12
where

K} (s):=10 K;(s) =20
K}(s) := 0.5s + 0.85* + 0.09s" K3(s) := 1.55 + 0.8s* + 0.065"
Kj(s) := 0.5s + 0.25* + 0.09s" Kj(s) := 1.5s + 0.2s* + 0.06s°.

The eight polynomials above are stable and this shows that the closed loop system
remains stable under all parameter perturbations within the given ranges. Fig-
ure 8.25 shows the frequency response (Bode envelopes) of G(s) (uncompensated
system) and C'(5)G(s) (compensated system). Clearly, the guaranteed phase margin
requirement of 45° is satisfied. The guaranteed gain margin of the system is 12 db.
The closed loop response |M(jw)| called TY(jw) in (8.22) is shown in Figure 8.26
where

M(jw) = M(5)] s = {M(s) : % G(s)EG(s)}. (8.48)

Note that the |M(jw)| envelope shown in this figure is calculated from the result
of Theorem 8.4. Figure 8.26 shows that the M, of every system in the family lies
between 1.08 and 1.3886. This also shows that the bandwidth of every system
in the family lies in between 0.12 and 0.67 [rad/sec]. Thus, the design objective
is achieved. Figure 8.27 shows the Nyquist plot of C'(s)G(s). The center of the
M-circle in Figure 8.27 is

Mp N L3sse®
1Mz )~ \1-1.3886"

= (—2.0772,0)
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Figure 8.25. Bode envelopes of G(s) and C(s)G(s) (Example 8.7)
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Figure 8.26. Closed-loop frequency response (Example 8.7)

[M|=1.3886
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Figure 8.27. Nyquist envelope of C(s)G(s) with M-circle (Example 8.7)
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and the radius of the circle is

M,

e = 1.496.

r:‘

Example 8.8. (Lead-lag Compensation) We give an example of lead-lag com-
pensation design utilizing the developments described above. Let us consider the

interval plant
Qo

- b353 + b252 + 1)15 + bo
with coefficients bounded as follows:

G(s)

ap € [5,7], bs € [09, 11], by € [9, 12], b, € [8, 15], by € [1, 3]

The objective of the design is to guarantee that the entire family of systems has a
phase margin of at least 60° and a gain margin of at least 30dB. From Figure 8.29,
we observe that the phase margin 70° which is equal to the desired phase margin of
60° plus some safety factor can be obtained if the new gain-crossover frequency w’,
is at 0.35 [rad/sec]. This means that the phase-lag compensator must reduce the
maximum magnitude of G(jw’) over the interval family to 0 [db]. Thus, we solve

—20log,ga = max |G(jw!)| = 28[db]
GueGGwY)

and we have
a = 0.0398.

In order that the phase lag of the compensator does not affect the phase at the new
gain-crossover frequency «’,, we choose the value of 1/aT to be at one decade below

w’.. Thus,

10 10
T=—=—— __ =7I7875.
aw’.  (0.0398)(0.35)

Therefore, the lag compensator obtained is

Gole) = 1+als 2857145+ 1
N = s T 717875+ 1

We have now achieved approximately 70° of guaranteed phase margin and 25dB of
guaranteed gain margin.

To achieve the desired gain margin, we now wish to move the phase-crossover
frequency o/ to 4.7 [rad/sec]. If the magnitude plot does not move, we can achieve
the gain margin of 35db at this frequency. Thus, we solve

—10log,q a = —(35 — 25) = —10[db]

and we have
a = 10.
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Then, .
7= V! = V10(4.7) = 14.86

and T = 0.0673. Therefore, the cascaded lead compensator is

114+aTl's
o) = o777y
1 (10)(0.0673)s+1 s+ 1.485
10 0.0673s+ 1 T s+ 14.859°

From Figure 8.29, we verify that the compensated system provides approximately
105° of guaranteed phase margin and 50dB of guaranteed gain margin. Therefore,
the controller

s+ 1.5285714s+ 1
s+ 15 717.682s+ 1
attains the design specifications robustly. Figures 8.28, 8.29 and 8.30 show the

Nyquist, Bode and Nichols envelopes of the uncompensated and compensated sys-
tems.

C(s) = Ca(s)Ch (5) =

Uncompensated

Imag

Compgnsated

A

/I

(=}
W
W
[\S]

Real

Figure 8.28. Nyquist envelope (Example 8.8)



372

FREQUENCY DOMAIN

PROPERTIES OF INTERVAL SYSTEMS Ch. 8

40

... Uncompensated

5 4ot ~
-.- Lag Compensated
- Lag-Lead Compensated
60
80
-100 -
-120 L Liiii Liiiid L
10-2 10-! 100 10! 102
rad/sec
0= T T R REE
500 i
-100 - 3
... Uncompensated
m -.- Lag Compensated
E - Lag-Lead:Compensated )
5 150+ R i N il
sl
a
200+ E 1
=250+
2300 L Liiii Liiiid L
102 10! 100 10! 102
rad/sec

Figure 8.29. Bode envelopes (Example 8.8)
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Figure 8.30. Nichols templates (Example 8.8)

Example 8.9. (PI Compensation) Consider the plant

_ ms+1
T .028% + das3 4 doys? + .04s

G(s)
with its coeflicients bounded by given intervals as follows:

The objective of the design is to guarantee that the entire family of closed loop
systems has a phase margin of at least 45°.
Here we design a PI compensator of the form

From Figure 8.32 we see that the new gain-crossover frequency w’. should be moved
to 0.034 [rad/sec]. Since the maximum magnitude at w?, is 55 [db], we let

Gp(juwl) = max |G(jwl)| = —20log, K, = 54.89[db]
GwheGlwy)

from which
Kp = 10~ 1GpGw0ldbI/20 — 1(=54.89/20 _ ( 9018,
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In order that the phase lag of the PI compensator not effect the phase of the
compensated system at w’,, we choose the corner frequency K;/Kp to be one decade
below w?. Thus,

W 0.034 - i

Therefore, the PI compensator obtained is

_6.12x 107° 4 .0018s
- :

C(s)

Figure 8.31 shows the Nyquist envelope while Figures 8.32 and 8.33 show the Bode
and Nichols envelopes of the uncompensated and compensated systems. We can see
that the phase margin specifications are robustly achieved.

0.5F E
Uncompensated|
0
i
//
2 /
g -05p | 1
= I
1r \ 1
-1.5¢ \ Compensated 4
2 L L L L
-2 -1.5 -1 -0.5 0 0.5 1
Real

Figure 8.31. Nyquist envelope (Example 8.9)
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Figure 8.32. Bode envelopes (Example 8.9)
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Figure 8.33. Nichols templates (Example 8.9)

8.9.2 Optimal Controller Parameter Selection

In the design problem, we interchange the role of plant and controller, and consider
a family of controllers stabilizing a fixed plant G(s). The design problem here is
to select from the controller family the best parameter value according to some
criterion. This type of problem i1s common in practice. Let us consider for example
that this parameter selection is to be made to maximize gain margin or phase
margin. The set of controller parameters may be given in terms of bounded values.
In other words, we have a interval family of controllers stabilizing a fixed plant. To
maximize the gain margin (or phase margin) over this set, we explore the boundary
results given earlier.

In Section 8.4 we showed that the minimum gain margin (or phase margin)
occurs over the extremal set. In practice, the maximum gain margin (or phase
margin) will also frequently occur over the same set. To see this, we argue as
follows. The Nyquist boundary of the system cuts the real axis over the range A
to B (see Figure 8.34 and Figure 8.35). The point A corresponds to the minimum
gain margin of the family. The point B is a potential candidate for the maximum
gain margin (gain margin = 1/OB). Corresponding to the point B, there exists a
set Cp of admissible (parameters lie within the given intervals) controllers whose
Nyquist plots pass through the point B. Suppose that one of these controllers is
such that the Nyquist plot does not cut the real axis at any other point (see Figure
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Imag

1A * o Real

Figure 8.34. A system that delivers the maximum gain margin

Imag

Real

Figure 8.35. A system that does not deliver the maximum gain margin
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8.34). It is clear that this controller delivers the maximum gain margin (1/0B) and
is the optimally robust gain margin controller in the family. We can see that the
maximum gain margin will be unrealizable only if each and every controller in Cg
happens to cut the real axis at another point also (see Figure 8.35). Based on the
above arguments, we suggest the following design procedure. First, check whether
the given family of interval controllers stabilizes the plant G(s) by using the GKT
(Chapter 7). TIf so, we use this set of controllers. Otherwise, we determine the
parametric stability margin around the nominal values of controller parameters and
create the largest interval stabilizing controller family around this nominal. From
this controller set we can find the controller parameters that provide the maximum
gain or phase margin. This can be done by generating the Nyquist envelope of
the family using the development discussed earlier. If the margin obtained is not
satisfactory, we reset the controller parameters to the new nominal corresponding to
the point B and create a new interval stabilizing family. We repeat this procedure
until a satisfactory margin is achieved or the improvement of the margin is negligibly
small. The set of stabilizing interval controllers can be determined by many different
methods; for example the locus introduced by Tsypkin and Polyak (Chapter 4) may
be used. Of course, there is no guarantee that a globally optimum design will be
achieved by this method. However, a satisfactory robust design will often result.

Example 8.10. Consider the feedback system with the plant transfer function

950
G) = G352 T 1755 730

and controller transfer function

C’(s) — as+ 1

24+ Bs+v°

The nominal values of controller parameters are
ap =9, Po=2, =1

The phase margin of the given system with the nominal values of controller param-
eters is 19.55°. The objective is to tune the three controller parameters so that
the resulting system has a phase margin of approximately 45°. We first find the /5
parametric stability margin r; around the nominal values of parameters («y, Gy, 7o)
by using the method proposed by Tsypkin and Polyak (Chapter 4). From this value
of r1, which was obtained as r; = 1, we create the family of stabilizing controllers in
the form of an interval transfer function C; (s). Using this interval controller family,
we create the corresponding Nyquist envelope which shows the maximum obtainable
phase margin of 29.85°. Using the formulas developed previously, we select the pa-
rameter values (a1, 31,71 ), and consequently the controller C(s, a1, 81,71) € Ci(s)
that produces the maximum phase margin of 29.85°. Since the resulting controller
C(s, a1, f1,71) does not satisty the given requirement, we proceed with a second
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iteration. The parametric stability margin around (g, £1,71) we found is again 1.
We now create a new interval family C,(s) of stabilizing controllers. Using the same
procedure as before, we find the controller Cy(s, ava, Fa,72) € Ca(s). This produces
the maximum phase margin of 43.76°. In the table below we present the successive
designs through several iterations and Figure 8.36 shows the Nyquist plot of the
optimal system for each iteration.

iteration parameter ranges parameter selected phase margin

? (Oz,ﬁ,"}/) (ai)ﬁiap)/i)

0 - (5,2,1) 19.55°
1 ([4,6],[1,3],[0,2]) (4,3,2) 29.85°
2 ([3,5],12,4],[1,3]) (3,4,1) 43.76°

-2 -1.5 -1 -0.5 0 0.5 1.5 2

—

Real

Figure 8.36. Nyquist plots of optimal systems (Example 8.10)

8.9.3 Discrete Time Control Systems

The frequency templates of discrete interval control systems can also be constructed
similarly. We still use the basic geometric facts regarding the addition, multipli-
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cation and division of complex plane image sets discussed here; however, the main
simplifying tool used in the case of continuous systems, the GKT, is no longer
applicable here. We illustrate this by an example.

Example 8.11. Consider the discrete-time feedback system shown in Figure 8.37.
Let the interval plant G(z) and the controller C'(z) be

Figure 8.37. A discrete time feedback system (Example 8.11)

z+ « and C(z) ~ —0.22-0.35
224+ Bz +7 o z4+3

G(z) =

where
a€08,1.2 = [a",a%], BE[1.8,29 = 3", *], 7 € [28,32] := [y, 7*].
Then we have the extremal subset Gg(z) consisting of the following 12 systems:

z4+ (Aa” + (1= A)at) z4+ (Aa” 4+ (1= A)at)

GEl(Z) = 22 +6_Z+7_ ) GE2(Z) = 22 +6+Z _1_7_
z4 (Aa™ + (1 = A)at) z4+ (Aa” 4+ (1 = A)at)
GEa(Z) = 22 +6_Z _|_7_|_ ) GE4(Z) = 22 +6+Z +7+
. Z 4+ a”
) = T =B 4
. Z 4+ o~
e = T T = T
o B 24+ at
e P RN (VPR
24+ at
GES(Z) =

2+ A+ =N )z +F
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Gy (%) = = - Z+il_

244+ (A + (1= A)yH)
Ca(2) = 75, +z;yix:r (1=2)7+)
Gr,(2) = 215z +z;—y—a:- (1=X)7t)
Counls) = z+at

24T+ (M + (1= A)t)

where in each case A ranges over [0, 1].

By searching over the family Gg(z) with z = e/“T for w € [0,00) and a fixed
T, we can obtain the frequency templates of the system. For illustration, the Bode
envelopes of the above discrete time feedback system are given in Figure 8.38 for
T = 1. The Nyquist and Nichols envelopes can also be generated similarly.
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Figure 8.38. Bode envelopes (Example 8.11)
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8.10 EXERCISES

8.1 Consider the family of transfer functions
G(s) 483 + ass® + 15+ 5
5) =
5% + 100353 4 Fos2 4 (B1 + 271 )s
where s, € [1,2],0[1 € [_2a3]’ Ps € [_Ll]a Pa € [05’15]a 1 € —0.5,1]a N o€

[
[-4,—1]. Determine a) the frequency template G(jw) at w = 1,10,100, b) the
Nyquist, Bode and Nichols templates of G(s).

8.2 Consider the interval system

N(s)

G =)

where N(s) and D(s) are interval polynomials. Let

pgliw) = inf |G(jw)| and pg(iw):= sup |G(jw)l
ceG aeG

with similar definitions holding with G(s) replaced by Gg(s). Prove the following
formulas for computing the extremal Bode magnitude values for interval systems:

pGls) = ng (=) igle) = g, ()

where

8.3 In the interval system considered above in Exercise 8.2, prove the further
simplification for computing extremal Bode angle values:

dGUw) = oG, (W) oGiw) = og, (iw)

8.4 Prove that ]

Mo + (1= Nd;

where dy and dy are arbitrary complex numbers, is an arc of a circle. The circle

A€ [0,1]

passes through the points T a and 0, the origin in the complex plane.
0 d

8.5 In the control system given in Figure 8.39

2s? +4s5+3 2 4+ a1s + aqg

C(s) = JEanE ey and G(s) = m
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Figure 8.39. Feedback control system

with the nominal values of parameters being

al =2, aS =1

by =2, b9 =1.

bl

Now let
ag €[1—€,1+4¢€], by €[2—€,2+¢€
ay €E[-2—¢€,—-24¢, be[l—c1+¢.
Assuming that e = 0.0875h, determine
a) Bode envelopes of the open loop transfer function C'(s)G(s)

b) From the Bode envelopes determine the worst case gain and phase margins of
the system over the interval parameters

Answer: Gain margin=1.8014

¢) Determine the worst case value over the parameter set, of M), the peak value of
the output transfer function evaluated over jw, for w € [0, c0).

Answer: M, =5.7075

8.6 In the feedback system shown in Figure 8.39

a € (—2.115,-1.885),  ay € (6.885,7.115)
by € (7.885,8.115), by € (—0.365, —0.135)

Find the worst case gain and phase margin of the system.
Answer: K* =5.6703

8.7 Consider the block diagram given in Figure 8.39 with
ar €[09,11], ape[-1.1,-0.9], b € [-1.1,-09], b €[1.9,21].

Find the worst case gain and phase margins for the family by drawing the Bode
magnitude and phase envelopes.
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Answer: Gain margin=0.8358 = 1.55db. Phase margin=38.4381°)

8.8 In the control system shown in Figure 8.39

20+ 30s + 12s°

2
(o) = "5t and Gs) = Qo T 010 T dzo

~ 5(bg +bys + 52)
and the nominal plant transfer function

1+s+s?
0 —
Gs) = s(142s+s%)"

Let
a; € [a) —¢,al + €], bjE[b?—e,b?—l—e], i,j=0,1,2.

For ¢ = 0.2275

a) Sketch the Bode magnitude and phase envelopes of the closed loop transfer
function.

b) Find the worst case value of M,,.

¢) Find the worst case gain and phase margins of the system.

8.9 For the system in Exercise 8.8, determine the worst case maximum steady state
error over the parameter set when the reference input r(¢) is unit step.

8.10 Consider the stable interval transfer function G(s). Show that the steady state
response with respect to step inputs for an interval transfer function is bounded by
the steady state responses of its extremal systems G (s).

8.11 NOTES AND REFERENCES

The boundary result of Theorem 8.2 is due to Tesi and Vicino [221]. The bound-
ary result of Theorem 8.3 was reported by Keel and Bhattacharyya [132] and Keel,
Shaw and Bhattacharyya [142]. The proofs of the frequency domain results of The-
orems 8.4, 8.5, and 8.6 are given in Keel and Bhattacharyya [137]. In Bartlett [19]
and Fu [98], the generation of frequency domain envelopes using the Edge Theorem
is treated. The generation of Bode envelopes for interval plants are also dealt with
by Bartlett, Tesi and Vicino [22]. Bartlett [20] showed that the extremal values
of the steady state response of an interval plant for the case of multiaffine param-
eter dependencies are obtained from its vertex systems. Hollot and Tempo [117]
showed that the Nyquist envelope of an interval family is not contained in the en-
velope of Nyquist plots of the Kharitonov plants. Applications of these frequency
domain tools to classical control design, as described in Section 8.9, were reported
in Keel and Bhattacharyya [135], Ahmad and Keel [5], and Ahmad, Keel and Bhat-
tacharyya [6, 7].



