Chapter 9

ROBUST STABILITY AND
PERFORMANCE UNDER
MIXED PERTURBATIONS

In this chapter we consider control systems containing parameter as well as unstruc-
tured uncertainty. Parametric uncertainty is modelled as usual by interval systems
or linear interval systems. Two types of unstructured feedback perturbations are
considered. First, we deal with unstructured uncertainty modelled as H., norm
bounded perturbations. A robust version of the Small Gain Theorem is developed
for interval systems. An exact calculation of both the worst case parametric and
the unstructured stability margins are given and the maximum values of various
H., norms over the parameter set are determined. It is shown that these occur
on the same extremal subset which appear in the Generalized Kharitonov Theorem
of Chapter 7. This solves the important problem of determining robust perfor-
mance when 1t is specified in terms of H., norms. Next, we deal with unstructured
perturbations consisting of a family of nonlinear sector bounded feedback gains per-
turbing interval or linear interval systems. Extremal results for this robust version
of the classical Absolute Stability problem are given. The constructive solution to
this problem is also based on the extremal systems introduced in the Generalized
Kharitonov Theorem (Chapter 7).

9.1 INTRODUCTION

Robustness of stability in the presence of unstructured uncertainty is an important
and well developed subject in control system analysis. In the 1950’s an important
robustness problem called the absolute stability problem was formulated and studied.
In this problem, also known as the Lur’e or Popov problem, a fixed linear system is
subjected to perturbations consisting of all possible nonlinear feedback gains lying in
a sector. In the 1980’s a similar problem was studied by modelling the perturbations
as H., norm bounded perturbations of a fixed linear system.
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In most practical systems it is important to consider at least two broad classes
of uncertainties, namely structured and unstructured uncertainties. Unstructured
uncertainties represent the effects of high frequency unmodeled dynamics, nonlin-
earities and the errors due to linearization, truncation errors, etc., and are usually
modelled as a ball of norm-bounded operators. In the control literature it has
been shown that certain types of robust performance problems, specified in terms
of norms, can be posed as robust stability problems under unstructured perturba-
tions. By structured uncertainty we mean parametric uncertainty representing lack
of precise knowledge of the actual system parameters. Our goal in this chapter 1s to
analyze the stability and performance of systems with uncertainties of mixed type
with the objective of quantifying, as nonconservatively as possible, the amounts of
the different kinds of perturbation that can be tolerated by the closed-loop system.
We attempt to do this by considering unstructured perturbations of the above two
types acting around an interval or linear interval system. We show that the ex-
tremal subsets introduced in the last two chapters again play a key role. These
reduced sets in the plant parameter space are exactly where the worst case stability
margins occur. Since these sets are one-parameter families of systems; the solution
is constructive and computationally efficient. We begin in the next section with the
case of H., norm-bounded uncertainty.

9.2 SMALL GAIN THEOREM

In the approach to robust control using norms, uncertainty is usually modelled as
norm bounded perturbations of the nominal transfer function in an appropriate
normed algebra. The main tool for the analysis of stability of the closed-loop
perturbed system under unstructured uncertainty is the Small Gain Theorem. In
general, the Small Gain Theorem can be posed in any normed algebra, and it gives
conditions under which a system of interconnected components is stable. In the
algebra of stable transfer functions (H,, ), the Small Gain Theorem can be used to
supply necessary and sufficient conditions for robust stability under stable (H.,)
perturbations.
In the following we will use the standard notation:

C, :={s € C :Re[s] > 0},

and Ho, (Cy ) will represent the space of functions f(s) that are bounded and ana-
lytic in C, with the standard H., norm,

1 llee = sup [F(je),
wER.

where f(jw) is the boundary function associated with f(s).

We consider one version of the Small Gain Theorem. In this problem, a stable,
linear time-invariant system is perturbed via feedback by a stable transfer function
AP with bounded H., norm, as illustrated by Figure 9.1. The question which
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AP

Figure 9.1. Stable system with H_, norm bounded feedback perturbation

is usually addressed in the robust stability literature i1s that of stability of the
closed-loop system for all stable AP contained in an H., ball of prescribed radius.
Referring to Figure 9.1, we state the following well known result.

Theorem 9.1 (Small Gain Theorem)
If G(s) is a stable transfer function, then the closed loop system remains stable for
all perturbations AP satisfying ||AP||c < «, if and only if

1

16 < 9.1
Notice that in this result AP can be any H,, function. However, it has been shown
that if (9.1) is violated then it is always possible to find a destabilizing AP which is
a real rational function. We remark that an identical result also holds for a matrix
transfer function G(s). This result provides a way to account for unstructured
perturbations of the fixed linear system (. In the next section we extend this result
to the case where G/(s) is subject to parameter perturbations as well.

9.3 SMALL GAIN THEOREM FOR INTERVAL SYSTEMS

We now turn our attention to the case where in addition to the unstructured feed-
back perturbations, the linear part of the configuration in Figure 9.1 is subject to
parametric perturbations also. As in the previous two chapters we will model para-
metric uncertainty by considering interval or linear interval systems. We present
the results first for the case of an interval system. Let

N(s)
D(s)

G(s) =

where N(s) belongs to a family of real interval polynomials N(s) and D(s) belongs
to a family of real interval polynomials D(s). The interval family G(s) is written,



Sec. 9.3. SMALL GAIN THEOREM FOR INTERVAL SYSTEMS 389

following the notational convention of the last two chapters, as

N(s)

G(s) = D)’

(9.2)

Let K (s) and K% (s), i = 1,2,3,4 denote the Kharitonov polynomials associated
with N(s) and D(s), respectively. Introduce the Kharitonov systems

GK(S):{iiiYEz; : i)je{1,2,3,4}}. (9.3)

The robust version of the Small Gain Theorem for interval systems can be stated
as follows.

G(s) € G(s) —

AP

Figure 9.2. Closed loop system with H,, norm bounded function

Theorem 9.2 (Small Gain Theorem for Interval Systems)

Given the interval family G(s) of stable proper systems, the closed-loop in Figure 9.2

remains stable for all stable perturbations AP such that [|AP||o < o if and only if
1

maxg e Gy [|Gleo

a < (9.4)

The proof of this result follows from Theorem 9.1 (Small Gain Theorem) and the
following lemma.

Lemma 9.1 ||Glec < 1 for all G(s) in G(s) if and only if ||G||cc < 1 for the 16
elements of Gk (s).

The proof of this lemma is based on the following preliminary result, proved in
Chapter 3, which characterizes proper rational functions G/(s) which are in H,(Cy)
and which satisfy ||G|| < 1.
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Lemma 9.2 Let
N(s)

D(s)

be a proper (real or complex) rational function in Hoo(CyL), with degree[D(s)] = ¢
and n, and d, denoting the leading coefficients of N(s) and D(s), respectively. Then
|Glles < 1 ¢f and only if

al) [ng| < |d,|
b1) D(s) + €* N(s) @s Hurwitz for all @ in [0,27).

G(s) =

The proof of this lemma is given in Chapter 3 (Lemma 3.1).
We can now prove Lemma 9.1.

Proof of Lemma 9.1 Necessity is obvious. For sufficiency we use the result of
Lemma 9.2. First note that condition al) of Lemma 9.2 is clearly true for all
G(s) € G(s) if it is true for the 16 Kharitonov systems.

Thus we prove that condition a2) is satisfied by any plant in G(s) if it is satisfied
by the 16 plants of Gk (s). We know from the bounding properties of Kharitonov
polynomials that for an arbitrary element

in G(s) and for any fixed w € R, there exists i € {1,2,3,4} such that,

‘N(j:w)
D(jw)

Ky (jw)
D(jw) |

<

Therefore, ||G(s)|| < 1, for all G(s) € G(s), if and only if

K& (s)
D(s)

<1, for all ¢ € {1,2,3,4} and for all D(s) € D(s).

‘ oQ

Now for a fixed i, we have to check that, D(s) + e/ Ki;(s) is Hurwitz, for all
D(s) € D(s), and for all § € [0,27). However, for a fixed 6 € [0,27), and a fixed
i €{1,2,3,4}, the family of polynomials

{D(s) + e/’ Kiy(s) : D(s) € D(s)}

is an interval family of complex polynomials (with constant imaginary part) and
therefore by Kharitonov’s theorem for complex polynomials (see Chapter 5) this
family 1s Hurwitz if and only if

K5 (s) + e Kiy(s)

is Hurwitz for all { € {1,2,3,4}. The proof of the Lemma is now completed by
using again Lemma 9.2. &



Sec. 9.3. SMALL GAIN THEOREM FOR INTERVAL SYSTEMS 391

The proof of Theorem 9.2 is an immediate consequence of the Small Gain Theorem
and Lemma 9.2. We remark that at a particular frequency w the maximum mag-
nitude of |[|G(jw)|| does not necessarily occur at a Kharitonov vertex and therefore
the result established in Theorem 9.2 is quite nontrivial.

Before proceeding we present a generalization of Lemma 9.2 to the multivariable
case. Even though we will not use it, we believe that this generalization is of interest
in its own right. Let HZX?(C_ ) be the space of matrix-valued functions F(s) that
are bounded and analytic in C, with the norm,

1l = Sup omax (F(jw))
wEeER

where 0pax(-) denotes the largest singular value of (-). For a constant complex
matrix, ||Al| will denote the following induced norm,

[All = sup [lAv]}> = omax(A) .
o fl2<1

Lemma 9.3 Let G(s) be a proper rational transfer function matriz in H2*?(Cy ).
Assume without loss of generality that p > m, and let G(s) = N(s)D7'(s) be a
right coprime description of G(s) over the ring of polynomial matrices, with D(s)
column-reduced, then |G| < 1 if and only if

a2) ||G(e0)l] < 1,

I

b2) det (D(s) +U [ .

] N(s)) is Hurwitz for all unitary matrices U in CP*P.
Proof. Sufficiency: By contradiction if ||(]|cc > 1, then a2) implies that
there exists w, € R such that ||G*(jw,)G(jw,)|| = 1. But it is well known that
|G(jw,)|* = [|G* (jw,)G(jw,)]|, and therefore for that same w, we have ||G(jw,)|| =
1. Thus there exists v € CP such that,

|G Gwo)vllo = [fofl: -
This implies that,

= llofl2
2

and therefore there exists a unitary matrix U such that,

[ ] 07 e

v g | D e =0

As a result,
det (DG 0| | W) =0,

and this is a contradiction.
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Necessity: It is clear that condition a2) is necessary and therefore we assume that
it holds in the following. In order to establish b2), the first step is to prove that,

det (D(s) 4 [ ! ] N(s))

is Hurwitz for all A € [0,1]. Consider the family of polynomials

{PA(S) — det (D(s) +A [ ! ] N(s)) aelo, 1]}.

Let us first show the following: a2) implies that this family has a constant degree.
Indeed we can write,

D(s) = DpeH.(s) + Di.(s), N(s) = Np.H.(s) + Ni.(s), (9.5)

where H,.(s) = diag(s*,i = 1---,p), k; being the column-degree of the 7" column
of D(s), and D;.(s), Ni.(s) contain the lower-degree terms.
It is easy to see that G(o0) = Ny Dj. Using (9.5) we also get

D(s) + A [ ! ] N(s) = (Dhc 4 [ : ] th) Ho(s) + Dio(s) + A [ ; ]N,C(S).

Now the fact that D(s) is column-reduced implies that det(Dp.) is nonzero. To
prove our claim it is enough to show that

det (Dhc 4 [ : ] th) £0, for all A€ (0,1].

Suppose by contradiction that for some A, € (0, 1],

det (Dhc + A, [ é ] th) =0.

This implies immediately that

det <I+/\o [ é ] thD;j> = det (I—i— Ao [ é c] G(oo)) =0.

Thus there would exist a vector v € C? such that

[ ! ] Glooy = 10,

o

and therefore

I 1
I 5 | ceon| =160l = -k = il

2
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so that [|G*(00)G(20)]| = ||G(o0)|]* > 1, which is a contradiction.

With this claim we know that the family of polynomials P,(s) contains one
stable element, namely Py(s), and has a fixed degree. Using now the continuity of
the roots of a polynomial with respect to its coefficients, we see that this family
contains an unstable polynomial if and only if it also contains a polynomial with a
root on the imaginary axis. However, if P, (jw,) = 0 for some A, € (0, 1] and some
w, € R, then

det (D(jwo) + A, [ é ] N(jwo)> =0,
and the same argument as above leads to the contradiction that
16" (jwo ) Gliwo )| = |G (jwo )I|* = 1.

To complete the proof we need only apply the exact same reasoning as in the first
step of the proof to the family of polynomials

{PU(S) = det (D(s) +U [ é ] N(s)) : U unitary matrix in cm} ,

It can be proved first that this family has a constant degree, and the first part of the
proof shows that it contains one stable polynomial (corresponding to U = I). Now
note that the set of unitary matrices is pathwise connected. This is due to the fact
that any unitary matrix I/ can be expressed as I/ = ¢/F, where F is some Hermitian
matrix, and therefore it is the image of a convex set under a continuous mapping.
This implies in turn that the family of polynomials Py (s) is pathwise connected
and thus allows us to use the continuity property of the roots of a polynomial with
respect to its coefficients. &

9.3.1 Worst Case H_, Stability Margin

Theorem 9.2 states that in order to compute « the radius of the maximum allowable
unstructured perturbation ball that does not destroy closed loop stability, it is
sufficient to compute the maximum H,, norm of the Kharitonov systems. This is a
tremendous reduction in computation since it replaces testing norms of an infinite
family of functions to that of a finite set. In this context it is important to note that
the boundary results of Chapter 8 already tell us that since 0G(jw) C 0Gr(jw),
the maximum H,, norm over the parameter set occurs over the subset Gg(s). The
following example illustrates the use of these results.

Example 9.1. Consider the stable family G(s) of interval systems whose generic
element is given by
G(s) _ np+ns+ n252 + n353

- do + d15 + d252 + d353

where

ng € [1:2]7 ny € [_3: 1]7 ny € [2:4]7 n3 € [1:3];
d0€[173]: di 6[2:4]7 d2€[677]: d3€[172]'



394

ROBUST STABILITY UNDER MIXED PERTURBATIONS  Ch.

Gk (s) consists of the following 16 rational functions

_ 1—3s44s? + 367

 1—3s+4s?+ 33

GO =TT PO T T h s
e g et
Co(s) = L+4s+4s2 43  Gals) = 1+s+452+s3’
1+ 25 + 757 4 25 L+ 4s+ 757 + 5%
6o = g aam 0= G
e R
) = zlgi i ziz i 2::2 Grz(s) = 23;3:;265;135’
i) = S Gl = FAEES
Ghs(s) = 32++2z j—— ziz i ;Zs ;o Gis(s) SR

- 3+4s+652+ 53

The 16 corresponding H,., norms are given by,

1Gh oo = 2012, [|Galoo = 3.0, |Gallow = 5002, [[Galloo = 3.0,
1Gslleo = 1074, ||Galloo = 1.0, [|G7lloo = 1.710,  ||Gs]lo = 1.0,
||G9||Oo = 3356, ||G10||Oo = 30, ||G11||Oo = 4908, ||G12||00 == 30,

Therefore, the entire family of systems remains stable under any unstructured feed-
back perturbations of H., norm less than

1
¥ = e = 0.19992 .

To compute the worst case H,, stability margin of this system, without using the
result of Lemma 9.2, we would need to plot the frequency template G(jw). From
the boundary properties developed in Chapter 8 it follows that the maximum H,
norm occurs on the subset Gg(jw). Figure 9.3 shows this template from which we
find the worst case H., stability margin to be 0.2002. This compares favorably with
the previous computation of the H,, norm at the Kharitonov vertices, which was
based on Lemma 9.2.

9.3.2 Worst Case Parametric Stability Margin

The converse problem, where a bound is fixed on the level e (size of the ball) of
unstructured H., perturbations that are to be tolerated and the largest parametric
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Imag

Real

Figure 9.3. Frequency template of Gg and H, stability margin (Example 9.1)

stability ball is sought, is also important and will be considered in this subsection.
In this case we start with a nominal stable system

. _n8—|—n‘1’5—|—~~~—|—n;57’
G(s) = dy+dis+ -+ dgse

which satisfies ||G°||cc = a. A bound 1 < % is then fixed on the desired level of
unstructured perturbations. It is then possible to fix the structure of the parametric
perturbations and to maximize a weighted [, ball around the parameters of G(s).
More precisely, one can allow the parameters n,, d; of the plant to vary in intervals
of the form

n; € [nf — ey, n +eyy], d; € [d;’ —epy, df + el

where the weights v;, y; are fixed and nonnegative. For each ¢ we get a family of
interval systems G(s, €) and its associated set of Kharitonov systems Gg(s,€). The
structured stability margin is then given by the largest €, say €qax, for which every
system (/(s) in the corresponding interval family G(s, emax ) satisfies ||G]|eo < 3.
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An upper bound €; for ey, is easily found by letting ¢; be the smallest number
such that the interval family,
{D(s) =do+ - +dys? s dy €[d] —erpy, di +erpy])

contains an unstable polynomial. This upper bound is easily calculated using
Kharitonov’s Theorem. One way to compute €y, 18 then to use a bisection al-
gorithm:

1. set LBOUND=0, UBOUND=¢;.

UBOUND + LBOUND
2. Let e = 3 .

3. Update Gk(s, ).

4. If the 16 systems in Gg(s,€¢) have Ho, norm < § then set LBOUND = ¢,
otherwise set UBOUND = e.

5. if [UBOUND — LBOUND)] is small enough then EXIT, otherwise GOTO 2.

This procedure requires, at each step, that we check the H., norm of the 16 current
Kharitonov systems. We illustrate the computation of the [, structured margin in
the following example.

Example 9.2. Let the nominal system be given by
1—s
Gls) = 1435452

The H, norm of G(s) is equal to 1. TLet us fix the bound on the unstructured
margin to be equal to % To simplify the notation we assume that the perturbed
system 1s of the form

1+a—(1+0b)s
Ga c,d =
e (9) I+c+B+ds+s
where
al<e bl<e Jel<e d<e. (9.6)

We seek the largest e such that for all (a, b, ¢, d) satisfying (9.6)
1Gapedlloe < 2.

For this simple example, €.« can be computed analytically and is readily found to
be equal to 1/3. The extremal systems are,

4 _ 4 4_ 2 4_ 4
3 38 3 3% 3 3%

2410 27 2,410 27 2,48 27 2,48 2 7
3—1—35—1—5 3—1—35—1—5 3—1—35—1—5 3—1—35—1—5

—2
55

QO[>

In the next section we extend the results of this section to the case where a
feedback controller is present and G(s) is a set of linear interval systems.
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9.4 ROBUST SMALL GAIN THEOREM

We now extend the results of the last section to the case in which a fixed feedback
controller is connected to a class of linear interval systems. As we have seen before,
this case occurs when the parameters of interest enter affine linearly into the transfer
function coefficients. Let
G(s):= N()
D(s)
be a family of strictly proper linear interval systems. We refer the reader to Chapter
8 (Section 8.6, p. 358) for precise definition of this family of systems as well as the
definition of the extremal subset Gg(s).
Assume that we have found a stabilizing controller C'(s) for the entire family. We
therefore have a family of stable closed-loop systems and we consider unstructured
additive perturbations as shown in Figure 9.4. The family of perturbed plants under

(9.7)

AP(s)

Figure 9.4. Closed loop system with additive norm bounded perturbations

consideration can be represented as
{(G(s) + AP) - G(s) € G(s), | AP]l.. < a}.

In order to determine the amount of unstructured perturbations that can be tol-
erated by this family of additively perturbed interval systems we have to find the
maximum of the H., norm of the closed-loop transfer function

C(s) (14 G(s)C(s)) ™

over all elements G(s) € G(s).
In the case of multiplicative perturbations we consider the family of perturbed

plants to be:
{I+AP)G(s) : G(s) € G(s), ||AP||eo < a}.
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Here, the level of unstructured perturbations « that can be tolerated by the closed
loop system without becoming unstable is determined by the maximum value of the

H,, norm
|ceice) 1+ Gece) ™|
as ((s) ranges over G(s).

The following theorem shows us that the exact level of unstructured perturba-
tions that can be tolerated by the famaly of closed-loop systems, can be computed,
in both the additive and multiplicative cases, by replacing G(s) by the subset Gg(s)
in the corresponding block diagram.

AP

C(s)

Figure 9.5. Closed loop system with multiplicative norm bounded perturbations

Theorem 9.3 (Robust Small Gain Theorem)

Given an interval family G(s) of strictly proper plants and a stabilizing controller
C(s) for G(s), the closed-loop in a) Figure 9.4 or b) Figure 9.5 remains stable for
all stable perturbations AP such that ||AP||e < o if and only if,

a) o <

'l
-

1
squeGE||c(s)(1+G(s)c(s))—

b)) o< , L )
)< GO +GCG)

squEGE
Proof. For a) consider the family of transfer functions
{Ce) 1+ GEHCE)™ -+ Gl e Gls)}

which we denote as

C(s) (14 G(s)C(s)™".
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Recall from Theorem 8.4 (Chapter 8) that the boundary of the image of the above
set at s = jw is identical to the boundary of the image of the set

C(5) (1+ Gr(3)C(s))
In other words,
0 (C(jw) (14 Gw)C(w)) ™) € Cw) (1 + G ljw)C(jw)) ™
From this it follows that

sup |C(jw) (14 Giw)C(iw)) ™" | = sup |C(iw) (14 Gliw)Cliw)) |

aeG ceGe
for each w > 0. Therefore,
sup H(j(s)(1-+<;(s)cxs))—1H = sup chs)(1-+<;(s)cxs))—1H .
ceG ®  qeGg 0
This completes the proof of a). The proof of b) is similar. &

Remark 9.1. The theorems given above are stated for an interval plant G(s).
From the boundary results Theorem 8.3 established in Chapter 8 we know that
identical results hold for linear interval systems (p. 358) and also for linear fractional
transformations of linear interval systems (p. 363).

Theorem 9.3 allows for the computation of the unstructured stability margin for a
prescribed level of structured perturbations. This stability margin can also serve as
a measure of the performance of the system. The computation of

(ig‘k@M1+G@m@»”H

oQ
is not very complicated as can be seen from the following example.

Example 9.3. (Computation of unstructured stability margin) Consider
the interval plants,

P(0)

Bs
ST e . PElA veBas)

Using the results of GKT (Chapter 7) one can easily check that the controller
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stabilizes the entire family. The transfer function family of interest is given by
3(1 — s+ ys? 4 5%)
1438s+ (v —Ds?+ (v + 1)s® + st

According to Theorem 9.3, to compute the H_, stability margin «, we have to find
the maximum H, norm of four one-parameter families of rational functions, namely

3(1— s+ As? 4+ 5%)

O(s) (L4 Gy (5)C(s)) ™" =

ra(s) = X € [34,5),

T+3s+(A—1)s2 + (A +1)s3 + 5%’
) = f((l:i);”s (:if)53+54, 1€ [34,5),
ru(s) = 1+§E/15;52Z§54j24255 )+ o velt
re(s) = S Zsd B ey g

1+ 36s+4s? + 653 + s’
Consider for example the case of r,(s). We have

9((1=2w?)? +w?(1+w?)?)
(1—(A=Dw?+wh)’ +w? (3= A+ 1w?)”

[ (jw)” =

Letting ¢t = w? we have to find
9((1—A)? +t(1+1)?)

sup  f(t,A) = sup

120,2€[3.4,5] soreBas) (1— A =Dt +2)° +t(3— (1 +Mt)*>
Differentiating with respect to A we get a supremum at,
=2+ 3+ VA + 1212+ 1

or

2+ 33—V + 1262+ 1

It is then easy to see that A;(¢) € [3.4,5] if and only if ¢ € [¢1,t2] U [t5,14] where,
t1 ~0.39796, t, ~0.64139, t3 ~ 15.51766, t4 ~ 32.44715,
whereas, A (t) € [3.4, 5] if and only if t € [t5, ts] Where,
t5 ~ 0.15488, 5 ~ 0.20095 .

As a result, the maximum H,., norm for r,(s) is given by,

maX(llrmllooallrslloo;\/ sup - f(t, M (1)), [ sup f(t;Az(t)))

te[ta,t2]Ut3,t4] tefts,te]
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where one can at once verify that,

9(2t—1— Va3 + 1202 + 1)

t, () =
HM ) = S e T VAR T T T
and,

9(2—1+ VB3 + 122 +1

T AT -1+ )P T2+ 1

This maximum is then easily found to be equal to,
max(34.14944,7.55235, 27.68284,1.7028) = 34.14944 .

Proceeding in the same way for 7, (s), r,(s), and r¢(s), we finally get

max
el 2] vEl3.4,5]

C(s) (14 Gy, (5)C(s) ™ Hoo — 34.14944

where the maximum is in fact achieved for f =1, v=3.4.

9.5 ROBUST PERFORMANCE

The result established in the last section that for the controller to tolerate a certain
amount of unstructured uncertainty over the entire parametrized family G(s) it is
necessary and sufficient that it achieves the same level of tolerance over the subset
Gr(s). In the H,, approach to robust control problems, system performance is
measured by the size of the H., norm of error, output and other transfer functions.
When parameter uncertainty is present, it is appropriate to determine robust perfor-
mance by determining the worst case performance over the parameter uncertainty
set. This amounts to determining the maximum values of the H., norm of various
system transfer functions over the uncertainty set. For instance, in the control sys-
tem shown in Figure 9.6 it may be desirable to minimize the H., norm of the error
transfer function

T7(s) = (14 C(s)G(s)) ™ (9-8)
in order to minimize the worst case tracking error. The H,, norm of the output
transfer function

T¥(5) = C()G(s) (1 + C(s)(s) ™ (9.9)
known as M - peak in classical control is usually required to be small. To keep the
control signal small the H,, norm of

T(s) = O(s) (1 + C(s)G(s)) ™" (9.10)
should be small.

The following theorem shows us that the worst case performance measured in
any of the above norms over the set of systems G(s) can in fact be determined by
replacing G(s) in the control system by elements of the one-parameter family of
systems Gg(s).
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Figure 9.6. A standard unity feedback systems

Theorem 9.4 (Robust Performance)
The mazimum value of the Hy, norms of T°(s), TY(s) and T"(s) over G(s) is
attained over Gg(s):

sup H(l +C()G(s) 7 = sup ||(1+C()G(s) ™ H
aeG *©  ceGg ~
sup )60 (14 oG = sup |61+ @6
ceG > GeGo h
s, lcea+ceaes ™| = S [ (1 SOOI

The proof of this theorem is identical to that of Theorem 9.3 and also follows from
the boundary properties given in Chapter 8. Analogous results hold for systems
where disturbances are present and also where the transfer functions under con-
sideration are suitably weighted. These results precisely determine the role of the
controller in robust stability and performance analysis and in the design of control
systems containing parameter uncertainty.

Example 9.4. (H,, Performance Example) Let the plant and the stabilizing
controller be

_ s
Gls) = st as?—s5+1
and 5
0(5) - s+1
where

a€[34,5, gell,2).

A closed loop system transfer function is

T (s) = C(s)[1 + G(s)C(5)]
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To compute the worst case H, stability margin of this closed loop system under
additive perturbations, we only need to plot the frequency template

T (ju) = C(jw) [L + G () C(Gw)] ™"

Figure 9.7 shows this template. From this we find that the worst case H,, stability
margin is 0.0293.

10+

Imag
o

-10+

20+

30

40 |

-40 -20 0 20 40
Real

Figure 9.7. Frequency template of T*(jw) and H,, stability margin (Example 9.4)

9.6 VERTEX RESULTS FOR EXTREMAL H., NORMS

In this subsection we give some useful vertex results for the computation of the
extremal H,, norm. We start by considering a control system containing an inter-
val plant with multiplicative unstructured perturbations, connected to a feedback
controller with a special structure.

Theorem 9.5 Let a controller C(s) be of the form
_ Ne(s) _ Ai(s)En(s)

C(s) = D.(s) B st As(s)Eq(s)

(9.11)
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where t is a positive integer, A;(s) are anti-Hurwitz and E;(s) are even polynomials.
C'(s) stabilizes the feedback system in Figure 9.5 for all AP such that ||AP||. < «
if and only if it stabilizes Gk (s) and

1

a <
SUP GGy [G()C(s) (1+ G(s)C(5) ™

oQ

Proof. From Theorem 9.4 we already know that the extremal value of the H.,
norm of G(s)C(s)(1 + G(s)C(s))~" over the family G(s) occurs over the subset
Gg(s). Thus, we need only show that the maximum H., norm of the closed loop
transfer function G(s)C'(s)(1 + G(s)C(s))™! along an arbitrary segment of Gg(s)
is attained at one of the two vertex plants corresponding to its endpoints.

Now consider a specific extremal segment in Gg(s) say,

— Kx(s)
GV =y ey 0l

Denote the associated vertex systems by

= (cwri) (B fe) )
bt = (e 5 (1 ) ),

We need to establish the implication

Q|

max ([[Vi(s)[leo, [|[Va(5)l]e) <

J
HG(S,A)C(S) (1+ G(s,/\)C(s))_IHw < é for all A € [0, 1]. (9.13)

(9.12)

By the hypotheses in (9.12) and Lemma 9.2, the following two polynomials are
Hurwitz for any fixed real ¢ € [0, 2#]:

Pa(s)

Ky ()N ()(1 — ael®) + D, ()5 (5
P (S) \

KX (s)N.(s)(1 — ae’®) 4+ D.(s) K3 (s).

Consider now the complex segment of polynomials
Pa(s) = Po(s) + A[Pu(s) — Po(s)], A €l0,1].
We have

b0(s) 1= Pi(s) = Po(s) = Du(9)[KH (5) — Kp()] = s Au(s) Eu(5) [ (5) — K (5)]
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It is easy to see that under the assumptions made on C(s)

d .
— arg o) <0

since the anti-Hurwitz factor has nonpositive rate of change of phase while each of
the other factors has a zero rate of change of phase. Thus dy(s) is a convex direction
by Lemma 2.15 (Chapter 2) and therefore Py(s) is Hurwitz for all A € [0,1]. This
implies that

P(jw) = Ky (jw) No(jw)(L = ae’”) + D (jw) K (je)
AAD, () [ () = K ()] # 0.
for all w, forall A€ [0,1]. (9.14)

Since (9.14) holds for any 6 € [0, 27], the conditions in Lemma 9.2 are satisfied for
the transfer function

aG(s,\)C(s) (14 G(s,\)C(s))”", forall Ael0,1].

Thus, it follows that (9.13) holds. This type of argument can be applied to each
segment in Gg(s) to complete the proof. &

The extremal H., norm calculation of the sensitivity and complementary sensitivity
functions of a unity feedback system containing an interval plant G(s) also enjoy
the vertex property. The sensitivity function is

1

S(s) = e (9.15)

and the complementary sensitivity function is

T(s)=1-95(s). (9.16)
Lemma 9.4
sup |[S(s)|lo, = sup [|S(5)]]
ceG ceGk
sup [[T'(s)l|,, = sup [[T(s)||., -
aeG aeGx

We leave the proof to the reader as it is identical to the proof of the previous result,
and based on Lemma 9.2 and the Complex Convex Direction Lemma (Lemma 2.15,
Chapter 2).

To conclude this section we present without proof two special vertex results that
do not follow from the Convex Direction Lemma. The first result holds for interval
plants multiplied by a special type of weighting factor. As usual, let G(s) denote
an interval transfer function family.
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Lemma 9.5 Let p(s) be an arbitrary polynomial and 7 a positive real number such

that %G(s) is proper and stable for every G(s) € G(s). Then
5

p(s) H _
G = su
‘ s + 6 (S) [els] GE(I_;IK

2],

sup‘ st 7

ceG

The next vertex result holds for a limited class of weighted sensitivity and comple-
mentary sensitivity functions.

Lemma 9.6 Let « and 3 be positive numbers with o £ 3, Kg > 1 and Kr < é
o
If the transfer functions

s+ «
s+ 0

S(s) and

are proper and stable for all G(s) € G(s), then

s+« s+«
sup [|[Ks——=S(s)|| = sup ||Ks——=95(s)
GGG 5+6 (%) GeGK 5+6 )
s+« S+«
sup ||[Krp T(s) H = sup |Ap T(s) H
ceG 5+6 oo GEGK 5+6 o]

In the following section we turn to another model of unstructured perturbation,
namely nonlinear feedback gains lying in a sector.

9.7 THE ABSOLUTE STABILITY PROBLEM

The classical Lur’e or Popov problem considers the stability of a fixed linear time
invariant dynamic system perturbed by a family of nonlinear feedback gains. This
problem is also known as the absolute stability problem. This framework 1s a device
to account for unstructured perturbations of the fixed linear system. Consider the
configuration in Figure 9.8 where a stable, linear time-invariant system is connected
by feedback to a memoryless, time-varying nonlinearity.

The Absolute Stability problem is the following: Under what conditions is the
closed-loop system in the configuration above globally, uniformly asymptotically
stable for all nonlinearities in a prescribed class? We first consider the allowable
nonlinearities to be time-varying and described by sector bounded functions. Specif-
ically, the nonlinearity ¢(¢, o) is assumed to be single-valued and satisfying (see
Figure 9.9)

#(t,0) =0, forallt>0,

0<od(t,o) < ko (9.17)
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Figure 9.8. Absolute stability problem

P .
e

Figure 9.9. Sector bounded nonlinear function

Assumption (9.17) implies that ¢(¢, ) is bounded by the lines ¢ = 0 and ¢ = ko.
Such nonlinearities are said to belong to a sector [0, &].

An important condition that arises in the solution of this absolute stability
problem is the property of strict positive realness (SPR) of a transfer function.
This property is closely related to passivity and robustness of the system. The SPR
property 1s defined as follows:
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Definition 9.1, A proper transfer function G(s) is said to be strictly positive real
(SPR) if

1) G(s) has no poles in the closed right half plane, and
2) Re[G(jw)] > 0, w € (—o0,+00).
Referring to Figure 9.8, we first state a well-known result on absolute stability.

Theorem 9.6 (Lur’e Criterion)
If G(s) is a stable transfer function, and ¢ belongs to the sector [0,kr], then «
sufficient condition for absolute stability is that

1
T+ Re[G(w)] >0, for allw € R, (9.18)
L

We illustrate this with an example.

Example 9.5. Let us consider the following stable transfer function

G(s) = 3.1s+4+ 3.2
T st 41183424552 +2.55+ 3.5

&
W
T
|

Imag
o
T
|

G(jw) —

Real

Figure 9.10. G(jw) : Lur’e problem (Example 9.5)
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Figure 9.10 shows that the Lur’e gain kr, is obtained from the minimum real value of
G(jw). From Figure 9.10 we obtain k;, = 0.98396. Using the Lur’e gain, Figure 9.11

shows that )
— 4+ Re[G(s)]
kr

18 SPR.

Imag
o
T

w
W
T

Real

Figure 9.11. SPR property of é + G(s) (Example 9.5)

We now impose the further restriction that the nonlinearity ¢ is time-invariant and
enunciate the Popov criterion.

Theorem 9.7 (Popov Criterion)
If G(s) is a stable transfer function, and ¢ is a time-invariant nonlinearity which
belongs to the sector [0, kp], then a sufficient condition for absolute stability is that
there exist a real number q such that

ki + Re[(1+ qjw)G(jw)] >0, forallw € R. (9.19)
P
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This theorem has a graphical interpretation which is illustrated in the next example.
Example 9.6. Consider the transfer function used in Example 9.5. To illustrate
the Popov criterion, we need the Popov plot

G(jw) = Re[G(jw)] + joTm [G(jw)]

As shown in Figure 9.12, the limiting value of the Popov gain kp is obtained by
selecting a straight line in the Popov plane such that the Popov plot of é(]w) lies
below this line. From Figure 9.12 we obtain kp = 2.5 We remark that the Lur’e
gain corresponds to the case ¢ = 0 in the Popov plot.

0.5

Imag

-1.5F a

Real
Figure 9.12. Popov criterion (Example 9.6)

In addition to the Lur’e and Popov criteria, there 1s another useful result in robust
stability of nonlinear systems known as the Circle Criterion. It 1s assumed that the
nonlinearity is time-invariant and lies in the sector [ky, ks2]:

0 <k < ¢(0) < ks (9.20)

Introduce the complex plane circle C centered on the negative real axis and cutting

. . 1 1
1t at the points T and I
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Theorem 9.8 (Circle Criterion)

If G(s) is a stable transfer function and ¢ is a time-invariant nonlinearity which
belongs to the sector [kq, ko], then a sufficient condition for absolute stability is that
the Nyquist plot G(jw) stays out of the circle C.

We illustrate this theorem with an example.

Example 9.7. Consider again the transfer function G(s) used in Example 9.5.
Figure 9.13 shows the plot of G(jw) for 0 € w < co. From Figure 9.13 we see that
the smallest circle centered at —1 touches the G(jw) locus and cuts the negative

1 . e
real axis at —— = —0.3 and —-— = —1.7. This gives the absolute stability sector

[ ey
[0.59, 3.33].

Imag
o
T
|

2 G(jw) —

w
(9]
T
|

Real

Figure 9.13. Circle criterion (Example 9.7)

In a later section we will consider the robust version of the absolute stability
problem by letting the transfer function G(s) vary over a family G(s). In this case
it will be necessary to determine the infimum value of the stability sectors as G(s)
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ranges over the family G(s). We will see that in each case these stability sectors can
be found from the extremal systems Gg(s) in a constructive manner. We develop
some preliminary results on the SPR property that will aid in this calculation.

9.8 CHARACTERIZATION OF THE SPR PROPERTY

The importance of the SPR property in robustness can be seen from the fact that
a unity feedback system containing a forward transfer function which is SPR has
infinite gain margin and at least 90° phase margin. Our first result is a stability
characterization of proper stable real transfer functions satisfying the SPR, property.
More precisely, let

N(s)
D(s)

be a real proper transfer function with no poles in the closed right-half plane.

G(s) = (9.21)
Theorem 9.9 G(s) is SPR if and only if the following three conditions are satisfied:
a) Re[G(0)] > 0,
b) N(s) 1s Hurwity stable,
¢) D(s) + jaN(s) is Hurwitz stable for all o in R.

Proof. Let us first assume that G(s) is SPR and let us show that conditions b)
and c) are satisfied since condition a) is clearly true in that case. Consider the
family of polynomials:

P :={P,(s) = D(s) +jaN(s): o« € R}.

Every polynomial in this family has the same degree as that of D(s). Since this
family contains a stable element, namely Py(s) = D(s), it follows from the continuity
of the roots of a polynomial (Boundary Crossing Theorem of Chapter 1) that P will
contain an unstable polynomial if and only if it also contains an element with a root
at jw for some w € IR. Assume that for some «, and w in IR, we had that:

P, (jw) = D(jw) + jor, D(ju) = 0.

We write
D(jw) = D*(w) + jwD’(w) (9.22)

with similar notation for N(jw). Separating the real and imaginary parts of P, (jw),
we deduce that

Df(w) — apwN°(w) =0 and wD’(w)+ a,N°(w) = 0.
But this implies necessarily that

Nf(w)D*(w) —|—w2N°(w)D” (w)y=0
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that 1s
Re [G(jeo)] = 0

and this contradicts the fact that G(s) is SPR. Thus c) is also true.
Since c) is true it now implies that,

N(s)+ jBD(s) is Hurwitz stable for all g # 0.

Therefore, letting 4 tend to 0 we see that N(s) is a limit of Hurwitz polynomials
of bounded degree. Rouché’s theorem immediately implies that the unstable roots
of N(s), if any, can only be on the jw—axis. However, if N(s) has a root on the
jw—axis then Re[G(jw)] = 0 at this root and again this contradicts the fact that
((s) is SPR.

To prove the converse, we use the fact that a) and b) hold and reason by con-
tradiction. Since a) holds it follows by continuity that G(s) is not SPR if and only
if for some w € R, 0 # w, we have that Re [G(jw)] = 0, or equivalently

Ne(w)D®(w) + szo(w)Do (w)=0. (9.23)
Now, assume that at this particular w, N(s) satisfies
N¢(w) #0, and N°(w) # 0.

From (9.23) we then conclude that

D (w)  —wD(w) N
wNo(w)  Ne(w) — °° (9.24)
and therefore
D*(w) — apwN°(w) =0, and wD’(w)+ a,N°(w) =0 (9.25)

so that
[D+ja,N](jw) =0,

contradicting c).

On the other hand assume for example that N¢(w) = 0. Since N(s) is sta-
ble, we deduce that N°(w) # 0, and from (9.23) we also have that D°(w) = 0.
Therefore (9.24) is still true with
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9.8.1 SPR Conditions for Interval Systems
Now consider the following family G(s) of transfer functions
A(s)

B(s)’

where A(s) belongs to a family of real interval polynomials A(s), and B(s) belongs
to a family of real interval polynomials B(s), defined as follows:

G(s) =

A(s) ={A(s) : A(s) =apn+a1s+ -+ a,s", and a; € [0, 3], forall i=0,--- p}
B(s) ={B(s) : B(s) =bo+bis+---+0b,5", and b; € [y;,6;], forall j=0,--- ,n}.

Let K'\(s), i =1,2,3,4 and K§(s), i = 1,2,3,4 denote the Kharitonov polyno-
mials associated with A(s) and B(s) respectively. We call G(s) a family of interval
plants and the Kharitonov systems associated with G(s) are naturally defined to
be the 16 plants of the following set,

G (s) = {2;42‘3 g€ {1,2,3,4}}.

We assume that the interval family G(s) is stable. Let 5 be any given real
number. We want to find necessary and sufficient conditions under which it 1s true

that for all Gi(s) in G(s):

Re[G(jw)] +v >0, forall w e R. (9.26)

In other words we ask the question: Under what conditions is G(s) ++ SPR for all
((s) in G(s) ? The answer to this question is given in the following lemma.

Lemma 9.7 FEquation (9.26) is satisfied by every element in G(s) if and only if it
is satisfied for the 16 Kharitonov systems in Gg(s).

Proof. For an arbitrary A(s) in A(s) and an arbitrary B(s) in B(s) we can write:
A(jw)
Re -
[B(JW)
e (A5() £ 9B (W) B (@) + o (A°(w) + 7B () Bow) > 0. (9.21)

The right hand side of this last inequality is linear in A°(w) and A°(w) and thus
from the facts (see Chapter 5)

]+'y>0

I{Z7mlﬁ(w) = I(jven,min (j(,d) S AP ((,d) S I(Z,T’ﬂa)( (w) = I(jven,max (j(,d)

Izodd,min - ~odd max / -
U)oy < Ky = Ba T U)

Izo,min —
(@) o o

)
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it is clear that it is enough to check (9.27) when A(s) is fixed and equal to one of the
4 Kharitonov polynomials associated with A(s). To further explain this point, let
A(s) and B(s) be arbitrary polynomials in A(s) and B(s) respectively and suppose
arbitrarily that at a given w we have B¢(w) > 0 and B°(w) > 0. Then the expression
in (9.27) is obviously bounded below by

(K5 @) 498 (@) BY () +w? (K5™" (@) + 78" (@)) B"(w),
which corresponds to A(s) = K1 (s).

Now, since A(s) is a fixed polynomial, we deduce from Theorem 9.9 that the
following is true:

A(jw)]
Re - 4+~ >0, forallw € IR, and for all B(s) € B(s),

if and only if the following three conditions are satisfied

1) Re [A(O)] +7 >0, for all B(s) € B(s),

B5(0)
2) A(s) +vB(s) is Hurwitz stable for all B(s) € B(s),
3) B(s)+ A(s) is Hurwitz stable for all o« € IR and all B(s) € B(s).

L+ jay
Note that in condition 3) above we have used the fact that
e [0 A(je) +7B(jw)
€ - — b/ N
B(je) B(je)

and therefore condition c) of Theorem 9.9 can be written as

]+7>0¢¢Re >0,

B(s)+ ja(A(s) + vB(s)) stable for alla € R
which 1is of course equivalent to
ja
1450y

B(s) + A(s) is Hurwitz stable for all « € R.

The family of polynomials defined by condition 2) is a real interval family so that
by using Kharitonov’s theorem for real polynomials, we deduce that condition 2) is
equivalent to:

2)
A(s) +7Kp(s), A(s)+vKB(s),
A(s) +7K3(s),  Als) +v7K5(s)

stable.
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The polynomials defined in 3) is a complex interval family for every o and thus
Kharitonov’s theorem for complex polynomials applies and 3) is equivalent to:

3)

- jo - ja
Kh(s) + Al KR() + 2 A,
ja - ja

stable for all @ € R. Also 1) is equivalent to

Re [Ié(?g)] 4+ v > 0 and Re [I?fgf(()g)] +v>0.

Thus by using Theorem 9.9 in the other direction, we conclude that when A(s)
1s fixed,

A(J'W)]
Re - 4+~ >0, forallw € R, and for all B(s) € B(s

if and only if

Re [ i(jc-d) ] +7 >0, for allw € IR, and for all k € {1,2,3,4},
K (jw)

and this concludes the proof of the lemma. 3
As a consequence of Lemma 9.7 we have the following result.

Theorem 9.10 Given a proper stable family G(s) of interval plants, the minimum
of Re(G(jw)) over all w and over all G(s) in G(s) is achieved at one of the 16

Kharitonov systems in Gg(s)

Proof. First, since G(s) is proper it is clear that this overall minimum is finite.
Assume for the sake of argument that the minimum of Re[G(jw)] over all w and
over the 16 Kharitonov systems is vy, but that some plant G*(s) in G(s) satisfies

iIelfR Re[G* (jw)] =11 < . (9.28)
Take any v satisfying 1 <y < 7. By assumption we have that

iglg Re[G(jw)] —v > 0, (9.29)

whenever G(s) is one of the 16 Kharitonov systems. By Lemma 9.7 this implies
that (9.29) is true for all G(s) in G(s), and this obviously contradicts (9.28). &
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We now look more carefully at the situation where one only needs to check that
every plant (i(s) in G(s) has the SPR property. In other words, we are interested in
the special case in which v = 0. A line of reasoning similar to that of Theorem 9.10
would show that here again it is enough to check the 16 Kharitonov systems. How-
ever a more careful analysis shows that it is enough to check only 8 systems and we
have the following result.

Theorem 9.11 Every plant G(s) in G(s) is SPR if and only if it is the case for
the 8 following plants:

= 6= T G = 1 6= 1
661 = 190, G = 4 G = 13D, 9= A0,

Proof. Using Definition 9.1 and Theorem 9.9, it is easy to see that every transfer
function

A(s)
B(s)

in the family i1s SPR if and only if the following three conditions are satisfied:

G(s) =

1) A(0)B(0) > 0 for all A(s) € A(s) and all B(s) € B(s),
2) A(s) is Hurwitz stable for all A(s) € A(s),
3) B(s) + jaA(s) is stable for all A(s) € A(s), all B(s) € B(s), and all « € R.

By Kharitonov’s theorem for real polynomials, it is clear that condition 2) is equiv-
alent to:

2') K} (s), K%(s), K3(s), K (s) are Hurwitz stable.

Now, the simplification over Theorem 9.10 stems from the fact that here in condition
3), even if A(s) is not a fixed polynomial, we still have to deal with a complez interval
family since ¥ = 0. Hence, using Kharitonov’s theorem for complex polynomials
(see Chapter 5), we conclude that 3) is satisfied if and only if:

3)
Kg(s)+jaK3(s), Kp(s)+jaki(s),
K% (s) —l—jaKi, (s), K% (s) —l—jaKf, (s),
K3(s) +jaKy(s), K(s)+jak)(s),
Kg(s) +jaK3(s), Kpx(s)+ijaK3(s)

are Hurwitz stable for all o 1n IR.
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Note that you only have to check these eight polynomials whether « is positive or
negative. As for condition 1) it is clear that it is equivalent to:

1) K2(0)KL(0) > 0, K3(0)K5(0) > 0, KL (0)K2(0) > 0, K4(0)K3,(0) > 0.

Once again using Theorem 9.9 in the other direction we can see that conditions
1'), 2’) and 3') are precisely equivalent to the fact that the eight transfer functions
specified in Theorem 9.11 satisfy the SPR. property. &

As a final remark on the SPR property we see that when the entire family is
SPR as in Theorem 9.11, there are two cases. On one hand, if the family is strictly
proper then the overall minimum i1s 0. On the other hand, when the family is
proper but not strictly proper, then the overall minimum is achieved at one of the
16 Kharitonov systems even though one only has to check eight plants to verify the
SPR property for the entire family. In fact, the minimum need not be achieved at
one of these eight plants as the following example shows.

Example 9.8. Consider the following stable family G(s) of interval systems whose
generic element is given by

_ 1+ as+ G5 +53

Gs) = v+ 65+ es? + 3

where

€[1,2], B€[3,4], vy€[l,2], 6 €[5,6], € € [3,4].

Gk (s) consists of the following 16 rational functions,

ri(s) =

ra(s)
rs(s)
r7(s)
ro(s)
r11(s)
r1a(s)

r15(8)

14+ s4+3s2+s3

1+ 5s44s2 453’
1454357 +5°

24 5s+ 352 + 53’
14+ s+4s? + 53

14 5s +4s% + 53’
14 s+ 4s + 53

2+ 5s+ 352+ 3’
1425+ 3s2 +5°
14 5s +4s2 4+ 53’
1425+ 3s2 +5°
2+ 55+ 352 4 53’
14254482 + 53
14 5s +4s2 4+ 53’
_ 14 2s+4s%> 4+ s
T 2455+ 352+ 53

145437467
T 14654482 + 537
145437467
T 2465+ 352 + 83’
14 s+4st 488
r6(5)_1—|—65—|—452—|—53’
14 s+4st 457
TS(S)_2—|—65—|—352—|—53’
1425+ 3s2 +5°
"ols) = TG A 1 5
14254357 4+53
2+ 65+ 352 4 53’
14254482 + 53
14 65+ 4s2 4+ 53’
14 2s+4s%> 4+ s
2+ 65+ 352 4 53

7“12(5) =

ra(s) =

re(s) =
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The corresponding minima of their respective real parts along the imaginary axis
are given by,

inf Refry(jiw)] = 01385416, inf Re [ra(jiw)] = 01134093,
Jgg Re [rs(jw)] = 0.0764526, u}g{ Re[ra(jw)] = 0.0621581,
JIGIE Re [r5(jw)] = 0.1540306, JEE Re [rs(jw)] = 0.1262789,
inf Relrr(jw)] = 0.0602399,  inf Rel[rs(jw)] = 0.0563546,
L‘}Ielg Re [ro (jw)] = 0.3467740, u}g{ Re [rio(jw)] = 0.2862616,
inf Re [ (jw)] = 0.3011472,  inf Refriz(jo)] = 02495148,
J?ﬂ Re [r13(jw)] = 0.3655230, u}g{ Re [ria(jw)] = 0.3010231,
J?ﬂ Re [r15(jw)] = 0.2706398, u}g{ Re [ri6(jw)] = 0.2345989 .

Therefore the entire family is SPR and the minimum is achieved at rs(s). However
rs(s) corresponds to
K, (s)

3(5)

which is not among the eight rational functions of Theorem 9.11.

Complex Rational Functions

It is possible to extend the above results to the case of complex rational functions.
In the following we give the corresponding results and sketch the small differences
in the proofs. The SPR property for a complex rational function is again given by
Definition 9.1. Thus a proper complex rational function

is SPR if
1) G(s) has no poles in the closed right half plane,

2) Re[G(jw)] > 0 for all w € R, or equivalently,

Re[N(jw)] Re[D(jw)] + Im [N (jw)] Im[D(jw)] > 0, for allw € R

As with real rational functions, the characterization given by Theorem 9.9 is true
and we state this below.

Theorem 9.12 The complex rational function G(s) is SPR if and only if the con-
ditions a),b) and ¢) of Theorem 9.9 hold.



420 ROBUST STABILITY UNDER MIXED PERTURBATIONS  Ch. 9

Proof. The proof is similar to that for Theorem 9.9. However there is a slight
difference in proving that the SPR property implies part ¢) which is,

D(s) + jaN(s) is Hurwitz for all « € R. (9.30)
To do so in the real case, we consider the family of polynomials:
P ={P,(s) =D(s)+jaN(s) : « € R}

and we start by arguing that this family of polynomials has constant degree. This
may not be true in the complex case when the rational function is proper but not
strictly proper. To prove that (9.30) is nevertheless correct we first observe that the
same proof carries over in the strictly proper case. Let us suppose now that N(s)
and D(s) have the same degree p and their leading coefficients are

n,,:n;—l—jni,, d,,:d;—i—jdé.
Then it is easy to see that the family P does not have constant degree if and only if
dyny, +dyn, = 0. (9.31)

Thus if G(s) is SPR and (9.31) is not satisfied then again the same proof works
and (9.30) is true.
Now, let us assume that G(s) is SPR, proper but not strictly proper, and that

N'(s)
D(s)
It is clear that G (s) is still SPR, and it can be checked that it is always proper

and not strictly proper. Moreover, (9.31) cannot hold for N’(s) and D(s) since in
that case,

G,(s) =G(s)+v = , where N'(s) = N(s) +yD(s).

dyn', + dyn', = dy (n) 4+ ydy) + d, (g, +vd,,) = 5((dy)” + (d,)*) > 0.
Thus we conclude that for all o € IR,
D(s) + ja(N(s) +vD(s)) 1is Hurwitz stable. (9.32)

Now letting v go to 0, we see that D(s) + jaN(s) is a limit of Hurwitz polynomials
of bounded degree and therefore Rouché’s theorem implies that the unstable roots
of D(s) + jaN(s), if any, can only be on the jw—axis. However since G(s) is SPR
this cannot happen since,

. . L Re [D(jw)] — aIm [N(jw)] =0
d(jw) +jon(jw) =0 = { Im [ngw;] + aRe [Ngjw;] 0

bl

and these two equations in turn imply that
Re[N(jw)] Re[D(jw)] + Im [N (jw)] Im [D(jw)] =0,

a contradiction. P 3
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Now consider a family G(s) of proper complex interval rational functions

A(s)
B(s)

where A(s) belongs to a family of complex interval polynomials A(s), and B(s)
belongs to a family of complex interval polynomials B(s). The Kharitonov polyno-
mials for such a family are 8 extreme polynomials. We refer the reader to Chapter
5 for the definition of these polynomials. The Kharitonov systems associated with
G(s) are the 64 rational functions in the set

G(s) =

Ki (s ..
GK(S) = {[{QES; W) S {172737475767778}}'

Similar to the real case we have the following theorem.

Theorem 9.13 Given a proper stable family G(s) of complex interval rational
functions, the minimum of Re[G(jw)] over all w and over all G(s) in G(s) is
achieved at one of the 64 Kharitonov systems.

The proof is identical to that for the real case and is omitted.

One may also consider the problem of only checking that the entire family is
SPR, and here again a stronger result holds in that case.

Theorem 9.14 Fvery rational function G(s) in G(s) is SPR if and only if it is
the case for the 16 following rational functions:

G (s) = Kf;(S)’ Go(s) = Kf’;(S)’ Ga(s) = Ki(s) o (5) = K4 (s)

KL(s) KL(s) K2(s)’ T KL(s)

o = Bals) o = Kals) (s) = K3(s) o = KiG)
Gis(s) K3 (s)’ Cials) K3 (s)’ Gie(s) K& (s) Cs(s) K& (s)
Go(s) = 2% (2, Gio(s) = ﬁé Ez;, Ghi(s) = 2%23; Gia(s) = 2’%53’

The proof is the same as for Theorem 9.11 and is omitted.

9.9 THE ROBUST ABSOLUTE STABILITY PROBLEM

We now extend the classical absolute stability problem by allowing the linear system
G(s) to lie in a family of systems G(s) containing parametric uncertainty. Thus,
we are dealing with a robustness problem where parametric uncertainty as well as
sector bounded nonlinear feedback gains are simultaneously present. For a given
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class of nonlinearities lying in a prescribed sector the closed loop system will be
said to be robustly absolutely stable if it is absolutely stable for every G(s) € G(s).
In this section we will give a constructive procedure to calculate the size of the
stability sector using the Lur’e, Popov or Circle Criterion when G(s) is an interval
system or a linear interval system. In each case we shall see that an appropriate
sector can be determined by replacing the family G(s) by the extremal set Gg(s).
Specifically we deal with the Lur’e problem. However, it will be obvious from the
boundary generating properties of the set Gg(jw) that identical results will hold
for the Popov sector and the Circle Criterion with time-invariant nonlinearities.

First consider the Robust Lur’e problem where the forward loop element G(s)
shown in Figure 9.14 lies in an interval family G(s) and the feedback loop contains
as before a time-varying sector bounded nonlinearity ¢ lying in the sector [0, k]. As
usual let Gk (s) denote the transfer functions of the Kharitonov systems associated
with the family G(s).

Figure 9.14. Robust absolute stability problem

Theorem 9.15 (Absolute Stability for Interval Systems)

The feedback system in Figure 9.14 is absolutely stable for every G(s) in the the
interval family G(s) of stable proper systems, if the time-varying nonlinearity ¢
belongs to the sector [0, k] where

k = oo, if inf inf Re[G(jw)] >0
oo, if ol inf e[G(jw)] 2 0,

otherwise

1
~infg, infuer Re[G(jw)]’

where Gk (s) is the set of sizteen Kharitonov systems corresponding to G(s).

k<

Proof. Let G(s) be any member of the interval family. The following inequality
holds because of Lemma 9.7.

1 1
Re ——|—G'w]> inf infRe[——l—G'w]
[k (jw)| = inf infRe |2+ G(jw)
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1
= inf infRe [E + G(jw)] >0

GEGK w
By Theorem 9.6, the absolute stabilily of the closed loop system follows. &

We can extend this absolute stability result to feedback systems. Consider a feed-
back system in which a fixed controller C'(s) stabilizes each plant G(s) belonging to
a family of linear interval systems G(s). Let Gg(s) denote the extremal set for this
family G(s). Now suppose that the closed loop system is subject to nonlinear sector
bounded feedback perturbations. Refer to Figure 9.15. Our task is to determine
the size of the sector for which absolute stability is preserved for each G(s) € G(s).
The solution to this problem is given below.

Figure 9.15. Closed loop system with nonlinear feedback perturbations

Theorem 9.16 (Absolute Stability of Interval Control Systems)

Given the feedback system in Figure 9.15 where G(s) belongs to a linear interval
family G(s), the corresponding nonlinear system is absolutely stable if the nonlin-
earily ¢ belongs to the sector [0, k], where k > 0 must satisfy:

b=oo, if jnf inf Re [C(w)Gw) (1 + Clw)Gw) ™| 2 0,

otherwise,
1

k< — .
inf_ infuer Re [C(jw)G(jw) (1+ O(jw)G(jw))—l]

Proof. The stability of the system in Figure 9.15 is equivalent, to that of the
system in Figure 9.16. The proof now follows from the fact that the boundary of
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C(s)G(s) (1 +C(s)G(s)) ™"

Figure 9.16. Transformed system

the set
{Clw)GGw) (1 + Clw)Gw) ™ Gs) € Gs)}

is identical with that of
{CGw)G(w) (1+C(w)G(w) ™+ G(s) € Gr(s)}
This boundary result was proved in Chapter 8. &

Remark 9.2. The result given above is stated in terms of an interval plant G(s).
However it is straightforward to show, from the extremal and boundary results
developed in Chapter 8, that identical results hold for linear interval systems and
for linear fractional transformations of interval systems. This allows us to handle a
much more general class of parametrized models.

We illustrate these results with some examples.

Example 9.9. (Robust Lur’e Problem) Consider the feedback configuration
in Figure 9.15 and let the plant be given as

a8+ «p

Gs) = Bas? + Pis + By

where

ap €[0.9,1.1], ay €[0.1,02]
fo€[1.9,21], B €[l8,2], f€[0.91]

A stabilizing controller is

242541

Cls) = st 42534+ 9252 + 5
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We suppose that the closed loop system is perturbed by sector bounded time-varying
nonlinear gains. Then the closed loop transfer function family of interest is

{C’(S)G(s) [L+C(s)G(s)]™ : G(s) e G(s)}.

To compute an appropriate robust Lur’e stability sector for this closed loop system,
we only need to plot the frequency template

T(jw) = {C(jw)G(jw) [1 + C(ju)G(jw)]™" : G € Gg}

for each frequency. Figure 9.17 shows this set of templates.

Imag

Real

Figure 9.17. Frequency template of closed loop system T(jw) (Example 9.9)

We find the robust Lur’e gain from this as the largest value of & for which IL——i—T(jw)
becomes SPR. We get

1
— =19.2294
7 9.229

and Figure 9.18 shows that adding this gain makes the entire family SPR.
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Imag

s

Real
Figure 9.18. Frequency template of SPR system 1 + T(jw)(Example 9.9)

Example 9.10. (Robust Popov Criterion) Consider the stable interval plant

G( ) a8+ «p
s) =
5%+ B35% + 0257 + Gis + o

where
ag €[3,3.3], oy €3,3.2]
Bo €[3,4], B €[2,3], Po €[24,25], Bael,1.2].
To obtain the robust Popov gain we need to plot
Re[G(jw)] + jwIm[G(jw)] : G(jw) € G(jw) for 0 <w < o0
We can instead generate the boundary of the robust Popov plot by determining:
Re[G(jw)] + jwIm[G(jw)] : G(jw) € Gr(jw). for 0 <w < o0

This plot is shown in Figure 9.19. The Popov line is also shown in this figure from
which we find the limiting value of the robust Popov gain to be

k’p =~ 0.4.
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Imag

Real

Figure 9.19. Popov criterion (Example 9.10)

Example 9.11. (Robust Circle Criterion) For the system in the previous ex-
ample we can also use the Circle Criterion to determine a robust absolute stability
sector for the family from the Nyquist envelope of Gg(jw) for 0 < w < o0, Fig-
ure 9.20 shows that the radius of the smallest real axis centered circle (centered at
—1) that touches the envelope is found to be ke = 0.6138. From this the values of
the robust absolute stability sector [k, k2] can be found as shown in Figure 9.20.
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Imag

75 /
<

Ul
% /

o

S

Real

Figure 9.20. Circle criterion (Example 9.11)

9.10 EXERCISES
9.1 Consider the interval system

b15 —+ bo
s34 ag82 + a5+ ag’

G(s) =
where
ap € [1:2]7 € [2:3]7 by € [1:2]7 b € [2:3]

Determine the H,, stability margin of this system using the Robust Small Gain
Theorem.

9.2 For the interval system of Exercise 9.1 determine the size of a Popov and a
Lur’e sector for which Robust Absolute Stability can be guaranteed.

9.3 Consider the feedback system consisting of the interval system given in Exercise
9.1 with a controller C'(s) = 5. Assuming that the plant is perturbed by unstruc-
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tured additive perturbations, determine the H,, stability margin of the closed loop
system.

9.4 Repeat Exercise 9.3 for the case of multiplicative uncertainty.

9.5 TFor the interval plant of Exercise 9.1 and the controller C(s) = 5 determine
the size of a sector such that the closed loop system is absolutely robustly stable
for all feedback gains perturbing the plant and lying in the prescribed sector.

9.6 In Exercises 9.3- 9.5 let C'(s) = « a variable gain lying in the range o € [1, 100].
Determine in each case the optimum value of « to maximize

a) the additive H, stability margin
b) the multiplicative H., margin

¢) the size of the feedback sector guaranteeing robust absolute stability.

9.7 Consider the feedback system shown in Figure 9.21.

Figure 9.21. Feedback control system

Let

2% + 4543 s2 + a5+ ag
L — d = - @
Cls) s2+3s+4 and - G(s) s(s? 4+ b1s + by)

with the nominal values of the parameters being
al=-2, ay =1, bg=2 b =1.

Suppose that each parameter perturbs within the range £0.0875 Determine the
worst case H., stability margin assuming additive uncertainty around the interval
plant G(s).

Answer: 0.3168

9.8 Consider again the interval transfer function G(s) and the control system in
Exercise 9.7. Determine the worst case performance over the parameter set of the
system measured in the H., norm of
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a) the sensitivity function.

b) the complementary sensitivity function.

9.9 In the block diagram shown in Figure 9.21

2 2
< B gyt
and the nominal plant transfer function is
145452
GO(s) = m

Assume that the parameters in G(s) vary as

a; € [a] —€,a + €], i=0,1,2

by € [b9 —€,b) + €], j=0,1,2
where € = 0.2275. Sketch the Bode magnitude and phase envelopes of the closed

loop transfer function. Find the worst case H., norm of this transfer function.
Answer: Worst case (maximum) H., norm = 4.807.

9.10 Consider the block diagram in Figure 9.21 and let

s+ 3 s2+ays+ag

Cls) = ds + 7 and - Gi(s) = 5(s2 + bys+ bo)

with the nominal values of the parameters being
al =5, ad =38, b) =6, b5 =15.
If the parameters vary £2.8737 centered around their respective nominal values,
a) Determine the Bode magnitude and phase envelopes of the transfer function

y(s)

ﬁ. Find the maximum H., norm of the transfer function over the param-
r(s

eters, i.e. the worst case M,.
Answer: M, =2.1212

b) Find the worst case H,, additive stability margin (i.e. the unstructured block
is an additive perturbation around Gf(s)).

Answer: 2.1330

9.11 Suppose that the closed loop system given in Exercise 9.10 is perturbed by
the nonlinear gain ¢ as shown in Figure 9.15.
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a) Find the sector [0, k] such that the corresponding nonlinear system is absolutely
stable for all G(s) € G(s) by plotting the Nyquist plot of an appropriate
transfer function family.

b) Verify that the obtained sector guarantees the robust absolute stability of the
system.

9.11 NOTES AND REFERENCES

The Small Gain Theorem (Theorem 9.1) is credited to Zames [244] and can be
found in the book of Vidyasagar [232]. The Robust Small Gain Theorem for in-
terval systems (Theorem 9.2), the worst case stability margin computations, and
the Robust Small Gain Theorem for interval control systems (Theorem 9.3) were
developed by Chapellat, Dahleh, and Bhattacharyya [63]. Theorem 9.2 was given
by Mori and Barnett [182]. The vertex results given in Lemmas 9.4, 9.5 and 9.6
are due to Hollot and Tempo [116] who also showed by examples that the vertex
results given in Lemma 9.6 do not hold if the weights are more complex than 1st
order. The vertex result in Theorem 9.5 is due to Dahleh, Vicino and Tesi [72].

The SPR problem for interval transfer function families was first treated in
Dasgupta [74], Dasgupta and Bhagwat [76] and Bose and Delansky [48]. The SPR
problem for continuous and discrete time polytopic families has been considered by
giljak [213]. The vertex results for the SPR problem for interval systems were first
obtained in Chapellat, Dahleh, and Bhattacharyya [64].

The absolute stability problem was formulated in the 1950’s by the Russian
school of control theorists and has been studied as a practical and effective ap-
proach to the Robust Control problem for systems containing nonlinearities. For
an account of this theory, see the books of Lur’e [165] and Aizerman and Gant-
macher [9]. The Robust Absolute Stability problem was formulated and solved
for interval systems in Chapellat, Dahleh, and Bhattacharyya [64] where the Lur’e
problem was treated. These results were extended by Tesi and Vicino [222, 223] to
the case where a controller is present. Marquez and Diduch [176] have shown that
the SPR property for such systems can be verified by checking fewer segments than
that specified by GKT. In Dahleh, Tesi and Vicino [71] the Popov version of the
problem was considered. The crucial facts that make each of these results possible
are the boundary results on transfer functions based on the GK'T and established in
Chapter 8. The Robust Lur’e problem with multiple nonlinearities has been studied
by Gruji¢ and Petkovski [104]. In [227] Tsypkin and Polyak treated the absolute
stability problem in the presence of H., uncertainty.



