Chapter 11

FREQUENCY DOMAIN
PROPERTIES OF
MULTILINEAR INTERVAL
SYSTEMS

In this chapter we continue our development of the theory of robustness under
multilinear interval uncertainty. We consider the robust Hurwitz stability and per-
formance of control systems which contain transfer functions that are ratios of
multilinear interval polynomials. The characteristic polynomial of such a system 1s
a multilinear interval polynomial. We extend the Generalized Kharitonov Theorem
(Chapter 7) to this case. This extension provides a set of extremal manifolds which
serve as a reduced test set for robust stability. These manifolds are the multilin-
ear counterpart of the extremal segments derived for the linear case and possess
the same optimality and boundary generating properties. In particular, they can
be used, in conjunction with the polytopic approximation based on the Mapping
Theorem derived in Chapter 10, to generate frequency domain templates, Bode
and Nyquist envelopes, to calculate worst case stability margins and to determine
the robust performance of control systems under mixed parametric/unstructured
uncertainty in a computationally efficient manner.

11.1 INTRODUCTION

Consider the feedback configuration shown in Figure 11.1. F(s) is a fixed controller
and G4 (s) and G'5(s) are independent subsystems containing parameter uncertainty.

Let
Fi(s) Pri(s) Pya(s)
F(s) = , Gi(s) := , Ga(s) = . 11.1
( ) FQ(S) 1( ) P21(5) 2( ) PQQ(S) ( )
If the subsystems G4 (s) and Gs(s) contain independent parameters it is reason-
able to model them as interval or linear interval systems G;(s), ¢ = 1,2. The
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F(s) o Gi(s) o Ga(s) -

Figure 11.1. Interconnected Feedback System

characteristic polynomial of this feedback system is:
6(5) = Fl(S)P11(S)P12(S) + FQ(S)le(S)PQQ(S). (112)
The open loop transfer function

Fy(s)P11(s)P12(s)
F3(s)Pa1(5)Paa(s)

T7(s) = F(s)G1(s)Ga(s) =

and the closed loop transfer function

F(s)G1(s)Ga(s)
14+ F(s)G1(s)Ga(s)
Fi(s)P11(s)P1a(s)
Fi(8)Py1(s)Pra(s) + Fo(s) Py (5) Paa(s)

These transfer functions have numerator and denominator polynomials that are
multilinear functions of interval polynomials. In addition, the numerator and de-
nominator in 7°(s) have independent interval polynomials (parameters), but in
T°(s) the numerator and denominator contain common interval polynomials.

For this class of systems we are interested in the following types of questions:

T°(s) =

1) Does F(s) robustly stabilize the system or not?

2) If F(s) does robustly stabilize the system, what are the worst case gain margin,
phase margin, parametric stability margin, H., stability margin and perfor-
mance measured in terms of H,, norms, as the parameters range over the
uncertainty set?

3) How can one construct the Bode magnitude and phase, and Nyquist plots
of various transfer function sets such as T7°(s) and 7°(s) generated by the
uncertain parameters?

These questions were addressed in the previous chapter for an arbitrary stability
region using the Mapping Theorem as a computational tool. In this chapter, we
focus on the case of Hurwitz stability and show how the Generalized Kharitonov
Theorem (GKT) derived in Chapter 7 can be extended to this multilinear case to
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provide a great deal of simplification and computational efficiency. We first derive
a multilinear version of GKT. This generalization provides us with an extremal
test set for multilinear interval systems, with drastically reduced dimension of the
parameter space, from which all the above questions can be answered. It will
tell us, essentially that as long as the dependencies are multilinear, worst case
stability margins and performance can be calculated for an arbitrary control system
containing interval subsystems by replacing each interval subsystem G'(s) by the
corresponding extremal set of systems G (s). The polytopic approximation derived
in the last chapter can then be used on this extremal set to give a highly efficient
computational solution to the design and analysis questions posed above. In the
next section we describe the extension of GKT to the multilinear case.

11.2 MULTILINEAR INTERVAL POLYNOMIALS

To avoid notational complexity, we first consider the simplest multilinear polynomial
form motivated by (11.2). We consider the Hurwitz stability of the characteristic
polynomial family of the form

8(s) := F1(s)P11(s)P1a(s) + Fa(s)Pa1(s)Pas(s) (11.3)

where Fj(s) are fixed real polynomials and P;;(s) are real interval polynomials with
independently varying parameters. Let p denote the ordered set of coefficients of
the polynomials {Py1(s), Pi2(s)Pa1,(5)Paa(s)}. We assume that each coefficient
varies in an independent interval, or equivalently that p varies in an axis-parallel
box TI. The dimension of the parameter space here is equal to the number of
independently varying parameters contained in these polynomials. Referring to the
notation used in Chapter 7 we let P;;(s) denote the interval polynomial family and
Ki;(s) and S;;(s) denote the respective Kharitonov polynomials and Kharitonov
segments (refer to Chapter 7 for the definition of these segments). The family of
uncertain polynomials is represented, using the notation of Chapter 7, as

A(s) := F1(s)P11(5)P12(s) + F1(5)Pa1(5)Paa(s). (11.4)
Define
Ag(s) = Fi(5)811(5)S12(5) + Fa(5)Ko1(5)K2(s)
Af(s) = Fi(s)K11(5)K12(8) + F2(5)S1(5) S22 (5)
and introduce the extremal manifolds
Ap(s) = AL(s) U AL(s). (11.5)

Lemma 11.1 Under the assumption that every polynomial in A(s) is of the same
degree and the parameters (coefficients) in the interval polynomials P11 (s), Pqs(s),
P.i(s), Poo(s) are independent, A(s) s Hurwitz stable if and only if Ag(s) is
Hurwitz stable.
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Proof. The proof consists of recursive application of the Generalized Kharitonov
Theorem (GKT) in Chapter 7. From GKT, A(s) is stable if and only if the following
families:

F1 (S)Sll(S)Plz(S) + Fz(S)ICzl(S)Pzz(S) (116)

and

Fl(S)]Cll(S)Plz(S) + Fz(S)Szl(S)PQQ(S) (117)
are stable for each polynomial Ps(s) € Pys(s) and Pas(s) € Paa(s). Since each
expression in (11.6) and (11.7) is linear in Pi5(s) and Po(s), we can apply GKT
again to each such family and conclude that the stability of the family (11.6) is
equivalent to the stability of the families of polynomials

Fi(8)811(5)812(5) + Fo(5)K 21 (5)K o (s) (11.8)
Fi(8)811(5)K1(5) + Fa(s)K a1 (5)S22(s) (11.9)
and the stability of the family (11.7) is equivalent to the stability of the families
Fi()K11(8)K1o(5) + Fa(8)S21(5)S5(s) (11.10)
Fi(8)K11(5)81(5) + Fo(5)Sa1 (5)Kaa (). (11.11)

We note that each element of the families of polynomials in (11.9) and (11.11) is
a polytope of polynomials. Therefore, by the Edge Theorem in Chapter 6, the
stability of each such polytope is equivalent to the stability of its exposed edges.
Since the segment polynomials are convex combinations of Kharitonov polynomials,
we see that these exposed edges are contained in the families (11.8) and (11.10).
Therefore, the theorem holds. F 3

For the general case, we have the multilinear interval polynomial
As) = Fi(8)P11(s) - - - Proy(8) + - 4 Frn(8)Pri (8) - - Py, (5) (11.12)

where F;(s) are fixed and P,;(s) are interval polynomial families. The arguments
used in the earlier case carry over to this case and the result will be presented
without repeating the proof. We define

Ag(s) = Fi()K11(s) - Kir(5) + -+ Foi()Kima0(5) - Kim iy (5)
+Fi(8)S11(8) -+ S (8) + Fipa Kipr 1(8) -+ Kig gy
+ o+ (8)Kmi(s) - K, () (11.13)
and introduce the extremal manifolds
Ap(s) = U2, AL(s). (11.14)

Theorem 11.1 Under the assumption that every polynomial in A(s) is of the same
degree and the parameters (coefficients) in the interval polynomials P;;(s) are in-
dependent, A(s) is Hurwitz stable if and only if Ag(s) is Hurwitz stable.
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Remark 11.1. The theorem is also valid when some of the polynomials F;(s) are
complex or quasipolynomials This follows from the corresponding fact that GKT
(Chapter 7) holds when some of the fixed polynomials F;(s) are replaced by complex
polynomials or quasipolynomials.

The next example illustrates the construction of the set of manifolds.

Example 11.1. (Extremal Manifolds for Multilinear Systems) Consider
the characteristic polynomial

8(s) = F1(s)P11(5)P15(s) + F5(8) P21 (s) Pas(s)
where the fixed polynomials F(s) are
Fi(s)y=s+ fi, Fa(s)=s+ fo
and the interval polynomials are

PH(S)ICEQSZ—I-CllS—i-Cl(), P12(S)Il7252+l715+bo,
P21(5)26252+615+Co, P22(5)2d252+d15+d0,

with all coefficients varying independently. The Kharitonov polynomials corre-
sponding to Pyi(s), Pia(s), Pai(s) and Paa(s) are:

Kp,,(s) = a3s’ +a7s+ag, K3 (s) =afs® +afs+aj,
K, (5) = ay 5" +ays+ag, Kp, (s) =a5s" +afs+af,
Kb (s)=bFs> +b7s+by,  Kp_(s)=bls”+bFs+0by,
[(?312(5)2172_52—1—[)1_5—1—[)3—’ K?DlQ(S):bz_Sz-l-bTS-l-bga
Kp, (s) =cfs* +¢7s+cg, Kp, (s) =cts® +cfs+cp,
Kp, (s) = c3s" +efs+ag, Kp, (s)=c5s +cfs+cf,
1(11322(8):d;52+d1_5+d0a [{%Q(S)Idg—sz‘i‘di—s‘i‘daa
K} () =dys* +dis+df,  Kp(s) =dy s +df s +df.

The sets of segments joining appropriate pairs of Kharitonov polynomials can also be
obtained. Here we give only the segments corresponding to the interval polynomial
Py (s); others can be similarly obtained.
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From the above, we now can write the manifolds:
A (s {F1 () Kb, (5)KD, (5) + Fo(s)Sh, ()b, () : (5,5, k, 1) €4 x 4 x 4 g}
As(s {F1 (5)Sh,, (5)Sh,_ (s) + Fa(8)KF, (s)Kp, (s) : (3, k) €4 x4 x4 x4

and
AE(S) = Al U Az.

As we can see, the total parameter space is of dimension 12. However, our problem
is now reduced to checking the stability of 512 two-dimensional manifolds. Notice
that each manifold remains of dimension two, even though the dimension of the
parameter space can be increased arbitrarily. The dimension of the manifolds 1s
increased only if the number of interval polynomials in a product term is increased.

11.2.1 Dependencies Between the Perturbations

The theorem is stated assuming that the polynomials P;;(s) perturb independently.
In an interconnected multiloop control system, it will in general happen that some
of the polynomials F;;(s) are in fact identical (see, for example, Exercise 11.1). Such
dependencies can be easily handled. To avoid introducing cumbersome notation we
1llustrate the procedure with an example.

Consider the following multilinear interval polynomial family with dependencies
between the perturbations:

8(s,p) := F1(8)P11(s)P12(8) + F2(5)Pa1(s)Pa2(s) + F5(s)Ps1(s)Pas(s)

where Pi1(s) = Pa1(s) and Paa(s) = Psa(s) and each polynomial P;;(s) is interval.
If we rewrite embedding the above constraints, we have
6(5, p) = Fl(S)Pll(S)Plz(S) + Fz(S)Pll(S)Pzz(S) + F3(5)P31 (S)PQQ(S). (1115)

Let us first fix Pi1(s) and Psi(s) and apply GKT. This tells us that the Hurwitz
stability of the set A(s) is equivalent to stability of the sets

Li(s) = {F1(s)Pr1(s)Si2(s) + (Fa(s)Pra(s) + F3(5) Ps1(s))Kaa(s) }

I(s) = {F1(s)Pr1(s)K12(s) 4+ (F2(s) Pra(s) + F5(5) Ps1(5))S2a(s)}
for each (Pi1(s), P31(s)) € P11(s) x P3(s). We now apply GKT again to each of the

sets I (s) and Iy (s) letting P11(s) and Ps1(s) now vary. This leads to the condition
that the robust stability of A(s) is equivalent to robust stability of the manifolds:

)
)

Aq(s) ={6(s,p) : P11 € S11, P12 € S12, Paz € Kaa, Ps1 € K1}
Ay(s) ={0(s,p) : P11 € 811, Piy €Kya, Poy € 8oy, Py € Kgy}
As(s) = {6(s,p) : P11 € K11, P12 € S12, Pas € Koo, P31 € 831}
A4(5) ={é (S,P) Pi1 € Ky1, Pio €Kyo, Poy € o9, P31 € 851}
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Since Ajs(s) is a polytope, we now can apply the Edge Theorem (Chapter 6) to
conclude that this is stable if and only if its exposed edges are. These exposed
edges are

{8(s,p) : P11 € K11, Pio € S12, Pas € Kaa, Pa1 € K31} (11.16)
16(s,p) : Pr1 € K11, Pi2 €Kiz, Paz € Koo, Pa1 € Sa1}. (11.17)

It is easy to see that the manifolds (11.16) and (11.17) are contained in A;(s) and
A,(s) respectively. Therefore the set of manifolds that finally need to be checked
is

Ag(s) == Aq(s) UAs(s) UAy(s). (11.18)

Interval Polynomial Matrix

An important special case of dependent perturbations is that of interval polynomial
matrices. Let M(s) be an nxn polynomial matrix whose ij*® entry is the polynomial
P;;(s). The characteristic polynomial associated with this matrix is det[M(s)]. We
assume that each P;;(s) belongs to an interval family P;;(s) and the parameters
of each Pj;(s) are independent of all others. Let M(s) denote the corresponding
set of matrices. We will say that the set is stable if det[M(s)] is Hurwitz stable
for every M(s) € M(s). To test Hurwitz stability of the family of characteristic
polynomials so obtained we have the following result. Let T be the set of n x n
permutation matrices obtained from the identity matrix. Corresponding to each
T € T, introduce the set of polynomial matrices My (s) where P;;(s) ranges over
Ki;(s) if the ij™® entry of T'is 0 and P;(s) ranges over S;;(s) if the ¢j™ entry of
T is 1. Let M*(s) denote the collection of matrices Myp(s) obtained by letting T
range over all permutation matrices T.

Theorem 11.2 M(s) s Hurwitz stable if and only if M*(s) is Hurwitz stable.

Proof. Consider the case n = 3.

Pii(s) Pis(s) Pis(s)
M(s) == | Pai(s) Paa(s) Pas(s)
P31(5) P32 (S) P33(5)

Then

det[M(s)] := P11(s)Pa2(5)P33(s) + Pra(s) Pa3(s) Pai () + Pai1(s) Paa(s) Pra(s)
—P13(8)Pao(5) P31 (5) — Pra(s)Par () Pas(s) — Pr1(5) Pas(s) Psa(s).
We see that we have a multilinear interval polynomial with dependencies. We can
apply GKT recursively as we did in the previous example. We omit the detailed

derivation. The final result is that the following six sets of manifolds need to be
checked 1n order to determine the stability of the set:

Ay (s) :={det[M(s)] : P11 € Si1, Pag € San, Paz € Saz, Pia € Ky,
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Py3 € Kas, P31 € K1, Po1 € Koy, Pso € Ko, Pis € Kis}
As(s) = {det[M(s)] : P11 € S11, Poy € Koz, P33 € K33, Pz € Kyo,

Pa3 € Sa3, P31 € K31, Po1 € Koy, P32 € S32, P13 € K3}
Ajz(s) = {det[M(s)] : P11 € K11, Pao € Ka, P33 € S33, Pz € Sio,

Paz € Koz, P31 € K31, Po1 € 821, P32 € K32, P13 € K13}
Ay(s) = {det[M(s)] : P11 € K11, Pas € So2, P33 € K33, Pz € Kio,

Paz € Koz, P31 € 831, Po1 € Koy, P32 € K32, Pi3 € Si3}
As(s) = {det[M(s)] : Piy € K11, Pay € Koo, P33 € Ka3, Py € K1,

Poz € Koz, P31 € K31, Po1 € So1, Paz € S32, P13 € Si13}
Ag(s) = {det[M(s)] : P11 € K11, Pas € K2, P33 € K3z, P12 € 812,

Paz € 823, P31 € S31, Po1 € Koy, Psz € K32, P13 € Ki3} .

The reader can verify that the above expressions for the characteristic polynomials
correspond to the family M*(s) in this case. The result for arbitrary n is proved
similarly. &

Boundary Generating Property of the Extremal Manifolds

We have established that Hurwitz stability of the family A(s) is equivalent to the
stability of the manifolds Ag(s). This equivalence also follows from the following
boundary result relating the image sets A(jw) and Ag(jw).

Theorem 11.3
0A(jw) C Ap(jw) (11.19)

Proof. The set A(s) is a multilinear function of interval polynomials P;;(s). The
boundaries of the sum and product of two complex plane sets Z; and Z; (i # j)
satisfy the following properties:

NE; - 2) COZ, - 0F;.

Therefore, the boundary of A(jw) is obtained by replacing each set P;;(jw) with
its boundary. However P;;(jw) is an axis parallel rectangle whose vertices are the
jw images of the Kharitonov polynomials and whose edges are the jw images of the
Kharitonov segments. Equation (11.19) follows from this. &

The boundary result established above implies that the problem of checking robust
stability is now reduced to verifying that the origin is excluded from the set Ag(jw)
for each w in [0, 00). This is a great deal simpler than the original problem because
of the greatly reduced dimensionality of the set Ag(s) relative to the original set
A(s). However, this verification is still not easy because the set Ag(s) is multilinear
in the parameters A;. At this point, the Mapping Theorem can be brought in and
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used to approximate Ag(jw). Indeed, since Ag(s) depends multilinearly on the
parameters A;; associated with the Kharitonov segments, the vertex set of A(s) can
be generated by setting the P;;(s) to the corresponding Kharitonov polynomials.
Let

Ax(s) ={6(s,p) : Pj(s) = K./(s), iy €4, i€m, jErn} (11.20)

We can also introduce the polytopic set consisting of convex combinations of the
vertex polynomials:

A(s) = {Mvi(s) + (L= N (s) = vi(s),vi(s) € Ax(s), Ae[0,1]}. (11.21)
It follows from the Mapping Theorem now, that
co Ag(jw) = co Ak (jw) = Ak (jw).

Therefore, the condition that Ag(jw) excludes the origin can be replaced by the
sufficient condition that Ak (jw) exclude the origin. Since this latter set is a poly-
tope, this condition can be verified by checking that the angle subtended by the set
Ak (jw) at the origin, ® A (jw) is less than 7 radians. Therefore we have proved
the following result.

Theorem 11.4 The family A(s) is Hurwitz stable if it contains at least one stable
polynomaal and satisfies

1) 0 & co A(jw) for some w
2) P, (Jw) <, for all w € [0, 00).

This result states that the Hurwitz stability of A(s) can be determined by checking
the phase difference of the vertex polynomials corresponding to the Kharitonov
polynomials along the jw axis. This is useful in view of the fact that the number of
Kharitonov vertices is fixed whereas the vertices of IT increase exponentially with
the dimension of the parameter space. We illustrate these results with examples.

Example 11.2. Consider the interconnected feedback system shown in Figure 11.2.

F(s) P(s) Q(s) g

Figure 11.2. Interconnected Feedback System (Example 11.2)
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Let
Fi(s) s+2
F(S) = F (5) = 5+1’
P(s) = Pl(s): s2+s+1
Py(s) s34 ass®+4s+ap’
Qls) = 1(5) _ 6.65% +13.55" +15.55 +20.4
Q2(s) 53 4 bys? + 3.55 + 2.4

and let the set of parameters p = [as, ag, by] vary as follows:

s,
as € [ay ,a¥] = [—3.625, —2.375],
ap € [ay,af] = [1.375,2.625]
by € [by,bF] = [2.875,4.125].
The characteristic polynomial of the system is:
6(s,p) =5 + (7.6 + ag + by)s°
+(40.8 + ag + by + azby)s®

+ 137 + o + 5.9&2 + 4()2 + aobz)SS
+ 158.3 + 3.5&0 + 2.4&2 + aobz)Sz
+(101.8 + 5.9a0)s + (40.8 + 2.4ay).

We verify that the following polynomial in the family is Hurwitz:
§(s,p =1[-3,2,3.5]) = s" 4 8.1s° 4+ 30.85° + 80.7s* + 142.35>

+165.15% + 113.65+ 45.6

The parameter sets corresponding to the Kharitonov polynomials are

{(a;’aa’b-l_) (a2 » Qg ’b+) (a;’aa’bg)’(az_’ag’bz_)}'

The set of Kharitonov vertex polynomials is

Ax(s) = {0k, (), 6x,(5), 0K, (), 0k, (5) }

where

65, (8) = 57 +9.355° + 32.7531s° + 85.46565 + 146.53445% + 163.08445”

+109.9125s5 4 44.1

brcy(s) = 57 + 8.10s° + 34.47195° + 83.43445" + 139.81565° + 161.36565°

+109.9125s5 4 44.1

brc5(s) = 57 + 8.10s° + 26.34695° + 77.18445" + 145.56565° + 169.61565°

+117.2875s5 4 47.1

br,(5) = 57 + 6.855° + 29.6281s° + 76.71565* + 137.28445° + 166.33445>

+117.2875s5 4 47.1

(

+(857 + ag + 3.5&2 + 4()2 + (12()2)54
(
(
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One approach is to check the Hurwitz stability of all convex combinations of these
polynomials. This in turn can be done by using the Segment Lemma (Chapter 2).
Alternatively, we may check the phase differences of these vertex polynomials. If
the maximum phase difference is less than 180° (7 radians) for all w, the origin is
excluded from convex hull of Ag(jw) for all w. We show the convex hulls of image
sets in Figure 11.3 for illustration.

100

50+ :

-150 :

-200 - :

_250 I I I I I
-100 -50 0 50 100 150 200 250

Real

Figure 11.3. Convex hulls of image sets (Example 11.2)

We confirm robust stability by verifying (see Figure 11.4) the maximum phase differ-
ence never reaches 180° for all w. We also note that if we had applied the Mapping
Theorem directly to the three dimensional parameter space p, we would have had to
check 8 vertices as opposed to the 4 vertices checked here. This reduction is due to
the application of the multilinear version of the Generalized Kharitonov Theorem.
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140

120 - :

100 - :

80 :

40+

20+

Figure 11.4. ® A (w) vs. w (Example 11.2)

11.3 PARAMETRIC STABILITY MARGIN
Consider again the family of polynomials
A(s) = Fi(s)Pii(s) - Py (s)+ 4 Fin(s)Pri(s) - - P (). (11.22)

Let p,; denote the vector of coefficients of the polynomials P;;(s). Each such coeffi-
cient belongs to a given interval and the corresponding box of parameters is denoted
by IL;. Then the box of uncertain parameters is

II .= H11 XH12 X oo X Hmrm~ (1123)
The extremal manifolds Ag(s) are defined as follows:

AE(S) = (8)K(s) - Ky (s) +- -+ Fo1(8)Kiz 1(s) - - Kiz1 50 (5)
+F[(S)S[7] (5) . '8177‘1(5) + Fl+1]Cl+171 (5) o 'ICI+1,7‘1+1
oot () K (8) - Koo () (11.24)

Ap(s) = U2, AL(s). (11.25)
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The parameter space subsets corresponding to AL (s) and Ag(s) are denoted by
II; and

Iy = UH,. (11.26)
=1

Let IIk denote the parameter vector set corresponding to the case where each
polynomial P;;(s) set to a corresponding Kharitonov polynomial. We write

A(s) ={o(s,p) : peIl}
Ag(s) ={6(s,p) : pellg}
Ag(s) = {é(s,p) : pellk}

In this section, we show that for the family A(s) in (11.22) the worst case
parametric stability margin over the uncertainty box IT occurs, in fact, on the set
;.

Let || - - -|| denote any norm in R" and let P, denote the set of points u in R"
for which 6(s,u) is unstable or loses degree (relative to its degree over IT). Let

= inf ||p —
p(p) = il [jp —ul,

denote the radius of the stability ball (measured in the norm || - ||) and centered at
the point p. This number serves as the stability margin associated with the point
p. If the box IT is stable we can associate a stability margin with each point in TI.
A natural question to ask is: What is the worst case stability margin in the norm
[| - || as p ranges over II? The answer to that question is provided in the following
theorem.

Theorem 11.5 (Extremal Parametric Stability Margin)

inf p(p)= 1inf p(p). 11.27
inh (p) o (p) (11.27)

Proof. Since A(jw) and Ag(jw) have the same boundary,
inf p(p) = inf inf —u

ink (o) = infint o=,

= inf{lfall: 6(jer,p+2) = 0, pETL, w €[00, o]}

= inf{Jll] - 6w, p +2) = 0, p € Thy, w € [~o0, +oc])

= inf inf ||p—nu|l, = mf p(p). 11.28

nt g =l = int o) (1129

&

Example 11.3. Consider the system in Example 11.2 with nominal values

a)=-3, ay =2, b)=35.
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We compute the maximum parametric stability margin €* around the nominal values
as follows:

as € [ag —e,ag—I—e], ag € [ag _Eaa8+€]a b2 € [bg _Eabg+€]'
From the four vertices given in Example 11.2, we have six segments bounding the
convex hull of the images. To check the stability of these segments, we apply the
Segment Lemma (Chapter 2) with incremental steps of . This gives ¢ = 0.63.

The image set of the characteristic polynomial with ¢* is shown in Figure 11.5. The
figure shows that the image set is almost touching the origin and thus ¢* = 0.63 1s

the parametric stability margin.

2500

2000 -

1500 -

1000 -

Imag

g,
/

7
2
7
1
g

A4

AN

A

NNRNANY
.
TR

AN

N

N

500

N
N

NN

AN
RN
N

Z

N

2

N
N
N}

277

_500 L L L L
-1000 -800 -600 -400 -200 0 200 400

Real

Figure 11.5. Image set for ¢ = 0.63 (Example 11.3)

11.4 MULTILINEAR INTERVAL SYSTEMS

In the rest of this chapter, we will be dealing with transfer functions containing
interval parameters with multilinear dependency. The transfer function in question
could be embedded in a feedback control system and we will be interested in de-
termining robust stability as well as worst case stability margins and performance
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measures of such systems. We begin by first focussing on a multilinear interval sys-
tem, namely one whose transfer function is a ratio of multilinear polynomials with
independent parameters. To be specific we will consider single-input, single-output,
proper, stable systems with transfer function of the form

Here
v(8) = Hi(s)La1(s)Lro(s) -+ Luy (8) +- + Hi () L1 (8) L2 () - Ly, ()

where the polynomials H;(s) are fixed and the polynomials L;; (s) € L;; (s) are inde-
pendent real interval polynomials. Let 1 denote the ordered set of coefficients of the
interval polynomials; 1 varies in a prescribed axis parallel box A; the corresponding
family of polynomials v(s) is denoted by I'(s). Similarly we suppose that

6(s) = Fi(s)Pr1(s)Pra(s) -+ Prpy(s) + oo + Fin(8) P (8) P (8) -+ P, (8)

where the polynomials F;(s) are fixed, the polynomials P;;(s) are real interval poly-
nomials with the vector of coeflicients denoted by p varying in the prescribed box
IT. The resulting family of polynomials (s) is denoted A(s). We also denote ex-
plicitly the dependence of é(s) on p and of v(s) on 1 by writing (s, p) and v(s,1)
whenever necessary. We make the standing assumption.

Assumption 11.1.
A1) Parameters p and 1 are independent.
A2) y(s,1) and é(s, p) are coprime over (p,1) € IT x A.
A3) 6(jw,p) # 0 for all p € IT and each w > 0.

Later in this section we show how to deal with the situations when assumption Al
does not hold. To display the dependence of a typical element G(s) of G on 1 and
p we write it as G(s,p,l):

G(s,p,l)= % (11.29)

We form the parametrized family of transfer functions
L'(s)

G(s) = {G(s.p.) « (b1 € (I xA)) = L7

(11.30)

In order to apply frequency domain methods of analysis and design to the family
of systems G(s) it is necessary to obtain the image set G(jw). We first show how
the boundary of this set can be evaluated. We proceed as in the linear case by
determining an extremal multilinear interval family of systems Gg(s) . Introduce
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the Kharitonov polynomials and segments associated with the Pj;(s) and L;;(s)
respectively, and construct the extremal polynomial manifolds Ag(s) and Tg(s)
and the vertex sets Ak (s) and I'k(s) as in Section 11.2. Let Iy, Ag and Ik, Ak
denote the corresponding manifolds and vertices in IT and A respectively:

Ie(s) = {7(s,]): 1€ AR}, Tk (s) ={y(s,]) :1€ Ak}
Ag(s) ={é6(s,p) :pe g}, Ak(s) = {6(s,p) :p e Ik}.
The extremal set Gg(s) is then defined as

Gg(s) == {;((j”;)) :(leAg, pellg)or (1€ AR, p€ HK)} . (11.31)

Using our compact notational convention we can write

o) = (o) V(22

Theorem 11.6 Under the Assumption 11.1,

0G(jw) C Gg(jw)
for allw € [0,00).

Proof. The Assumption A3 guarantees that the set G(jw) is well defined. The
proof of the theorem now follows from the boundary properties of the sets Ag(jw)
and I'g (jw), and the independence of the parameter p and 1. We know that

e -o(52)

< 0€d(T(jw) — zA(jw))
&0 € (Tk(jw) — zAp(jw)) U(Te(jw) — zAk(jw))

e e () v (aaly) = et

[ )

The proof given above and the formula for the boundary parallels the linear case
treated in Chapter 8.
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Now suppose that G(s) is part of the control system shown in Figure 11.6.

r e U )

F(s) + G(s) >

Figure 11.6. A unity feedback system

Define transfer functions:

W) )
=00 =T (11.32)
’(s) = @ = I'(s s s 6(5) 71
1) = 0 = PG, 6= s = Ty (199)
s = o T To(s) = W) o L) gy )

or(s) 14 F(s)G(s)’ r(s) 14 F(s)G(s)

As G(s) ranges over the uncertainty set G(s), these transfer functions vary in
corresponding sets.

) = {F( G(s) € G(s)}
:{ e ¢ O €8]
- { = 5((55))(; ol L G(s) € G(s)} (11.35)

y (D) e als
TY(s) = {1—|—F(5) Gy ¢ G eGl )}.

It turns out that the boundary of the image set, at s = jw, of each of the above
sets is generated by the extremal set Gg(s). Introduce the extremal subsets:

T (s) :={F(s)G(s) : G(s) € Gg(s)} (11.36)
Ti(s) == {HF(IW : G(s) € GE(S)} (11.37)

Tg(s) == {% : G(s) € GE(S)} (11.38)

TY(s) := {% : G(s) € GE(S)} ) (11.39)
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Theorem 11.7 For every w > 0,

(a) OT?(jw) C Th(jw)
(b) 0T (jw) C Ti(jw)
(¢) 0T*(jw) C Tg(jw)
(d) OTV(jw) C Tg(jw)

The proof of the above relations can be carried out in a manner identical to the
proof of Theorem 8.3 in the linear case (Chapter 8) and is therefore omitted. In
fact, all the boundary results related to the Nyquist and Bode envelopes proved in
Chapter 8 carry over to the multilinear case with the corresponding extremal set
Gr(s). In the following subsection we show that these boundary results hold for a
much larger class of functions of G(s).

11.4.1 Extensions of Boundary Results

In defining our multilinear interval system we had assumed that the numerator
and denominator parameters of G(s) are independent. However for closed loop
transfer functions this assumption of independence does not hold. Nevertheless
the boundary generating property of the set Gg(s) still holds for these closed loop
transfer functions. It is natural to attempt to generalize this boundary generating
property to a large class of functions where dependencies between numerator and
denominator parameters occur. Such dependencies invariably occur in the transfer
functions associated with multiloop control systems. We begin with a multilinear
function Q(s) of several transfer functions G*(s),i = 1,2---,q. Let us assume that
each G*(s) itself lies in a multilinear interval family of systems G'(s) defined as in
this section, with independent parameters in the numerator and denominator. We
also assume that the parameters in G?(s) are independent of those in G7(s), i # j.
Note that if we regard ()(s) as a rational function its numerator and denominator
polynomials contain common interval parameters. Let

Q(s) :={Q(s) : Gi(s) € G'(s), i=1,2---q}.
We wish to determine the complex plane image set of the family Q(s) evaluated at
s = jw:
Q(jw) = {Qw) : G'(s) € Gi(s), i=1,2---q}.
Let Gi,(s) denote the extremal subset of G'(s) and introduce
Qr(jw) ={Q(jw) : G'(s) € Gig(s), i=1,2---q}.
Then we can state the following boundary result.

Theorem 11.8
0Q(jw) C Qu(jw). (11.40)
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Proof. Let us introduce the complex numbers s; = G*(jw) and the corresponding
sets

2= (G (jw) 1 G'(5) € Gi(s). i= 12+ q).

Since sums and products of complex plane sets satisfy the following boundary prop-
erties

ANZi+2;)C0Z+02;,  (i#])
0(Z; - 2;) COZ -0Z;,  (1#7)

and
dZ; C G (jw), i=1,2---q.

the multilinearity of the function Q(s) gives us the conclusion stated. &

We can generalize the above property even further. Let Q(s) be as above and con-
sider a linear fractional transformation (LFT) T(Q(s)) defined by arbitrary func-
tions A(s), B(s), C(s) and D(s)

T(Q(s)) := Qu(s) :

Introduce the set

Let us now impose the restriction
A(jw)D(jw) - B(jw)C(jw) # 0. (1141)

Under the above restriction T(Q(jw)) is a LFT of Q(jw) and thus carries boundaries
onto boundaries. Thus we know that the boundary of Q;(jw) is also generated by
the extremal systems Gi(s).

Theorem 11.9 Let Q(s) be as defined above and let T(Q(s)) be an LFT. Then,
assuming (11.41) holds

IT(Q(jw)) C T(QE(jw)).

Remark 11.2. We remark that any LFT of ()1 (s) as well as sums and products of
LFT’s continue to enjoy the boundary generating property of the extremal systems.
In this way a large class of transfer functions occurring in closed loop systems can

be handled.
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Computation of Gg(jw)

As we have seen, the determination of the set G(jw) reduces to evaluating Gg (jw),
a set of smaller dimension. Nevertheless, Gg(jw) is still a multilinear function of
the uncertain segment parameters. The only way to exactly evaluate this set is
by gridding over the uncertainty box. In general this procedure is computationally
expensive or even infeasible. Fortunately, as we have seen earlier, the “concave”
property of the image set of multilinear interval polynomials given by the Mapping
Theorem allows us to overbound Gg(jw) by a ratio of unions of convex polygons.

Recall that I (o) T (i)
Gp(jw) = [ XV« )u (Ei]“) 11.42
o) = (5aror) ¥ (e (2
From the Mapping Theorem we have

Ie(jw) C co Ik (jw)
Ag(jw) C co Ak (jw).

Now consider G (jw) defined by replacing T'g(jw) and Ag(jw) by co I'k(jw) and
co Ak (jw) respectively. In other words,

= . { Tk(w) co 'k (jw)
i) = (o A ) U (Bt (1143)

It is clear that Gg(jw) overbounds Gg(jw):
Gg(jw) C Gg(jw). (11.44)

The evaluation of G, (jw) is relatively easy because it consists of a union of one-
parameter families of transfer functions of the types
AU (jw) 4 (1= A)Us(jw) U(jw)

or

V(jw) AVi(Gw) + (1= A)Va(jw)

The union of these one-parameter families gives rise to Gg(jw) which overbounds
the boundary of G(jw). The tightness of the approximation can be improved as we
have seen before, by introducing additional vertices in the parameter set II x A.
The guaranteed gain and phase margins of a control system containing parameter
uncertainty may be obtained from these overbounded sets as shown in Figure 11.7.
The image at s = jw of each of the transfer function sets associated with the
feedback system considered in Figure 11.6 can be overbounded by replacing G(jw)
by Gg(jw), and in fact we can do the same for any linear fractional transformation
of G(s). An example of this calculation follows.
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1 (o
\\\ A(jw*)
(a) (b)

Figure 11.7. Guaranteed gain and phase margin using overbounded sets

Example 11.4. (Nyquist, Bode and Nichols Envelopes of Multilinear
Systems) The purpose of this example to show how to construct the frequency
domain envelopes (Nyquist, Bode and Nichols envelopes) of the multilinear interval
family. Let us recall the system given in Example 11.1:

o = (s+2)(s? + s+ 1)(6.6s* + 13.55* 4+ 15.55 + 20.4)
NANGAE A (s + 1)(s% 4 @25 +4s 4 an)(s? 4 bas”® + 3.5s + 2.4)

where

as € [a7,at] = [-3.625, -2.375],  an € [ay, af] = [1.375,2.625]
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by € [by,b3] = [2.875,4.125).

From Theorem 11.6, it is enough to consider Gg(jw). Since this particular example
has parameters only in the denominator, we have

0 (F(jw)G(jw)) C F(jw)Ge(jw)
(54 2)(s* + 54 1)(6.65> + 13.55” 4+ 15.55 + 20.4)|=j
- Ag(jw)

where Ag (jw) consists of the six line segments joining the following four vertices:

§° + b3 s + 355+ 2.4)|s2jw

—|—a25 +4s+ ay )(s® )
)(5 + b3 5" + 355+ 2.4)|s=j0
)(s? )
)(s° )

$3 —I—a s +4s+ a7
s3 —|—a25 +4s+ af
s3 —|—a25 —|—45—|—a0

0]
(s +b+52+355+24|5_]w
7+ by 52 +3.5s+24)|szju-

AA/_\/_\

Figures 11.8, 11.9, and 11.10 are obtained accordingly.

‘o)

=
=

_9 L L L L
-2 0 2 4 6

Real

Figure 11.8. Nyquist envelope (Example 11.4)
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Figure 11.9. Bode magnitude and phase envelopes (Example 11.4)
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Figure 11.10. Nichols envelope (Example 11.4)

11.5 H_ STABILITY MARGIN

In this section we use the boundary results derived above to efficiently deal with
many frequency domain measures of performance and, in particular, to determine
worst case performance over the parameter set associated with a multilinear in-
terval systems. As in Chapter 8 we will use the standard notation: C, := {s €
C': Re(s) > 0}, and Hoo(Cy) will represent the space of functions f(s) that are
bounded and analytic in C, with the standard H., norm,

I/llec = sup [f(jw)]-
weR

Let us consider the multilinear interval family of systems G(s) defined earlier (see
(11.30)) and let us assume that the entire family is stable. To determine the un-
structured stability margin of control systems containing the family G(s) we need to
determine the supremum of the H,, norm of certain transfer functions over G(s).
Since the H., norm-bounded perturbations provide uniform perturbations at all
frequencies, it is desirable to shape this perturbation by introducing a weight. Let
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the weight W(s) be a scalar stable proper transfer function

To start with, let us look at two specific robust stability problems involving mixed
parametric-unstructured uncertainty:

Problem I:  Consider the configuration in Figure 11.11, where W(s) is a stable
proper weight, G(s) is a stable multilinear interval family of systems, and
AP is any H,, perturbation that satisfies [|[AP|| < «. Find necessary and
sufficient conditions for stability of the family of closed loop systems.

G(s)

AP W(s)

Figure 11.11.

Problem II:  Consider the feedback configuration in Figure 11.12, where W(s) is
a stable proper weight, AP is any H, perturbation that satisfies [|[AP|| < a,
and C(s) is a controller that simultaneously stabilizes every element in the
set G(s). Find necessary and sufficient conditions for stability of the family
of closed loop systems.

Figure 11.12.
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The above problems are generalized versions of standard H., robust stability
problems where a fixed plant is considered. Here, the worst case solution is sought
over the parameter set IT x A. As in the case treated in Chapter 9 (linear case),
we solve this problem by using the Small Gain Theorem and determining the worst
case over the uncertainty set. The solution is accomplished by showing that the
H., norms in question attain their supremum value over the extremal set of transfer
functions Gg(s) C G(s) defined in (11.31). We can now state the main result of
this section.

Theorem 11.10 (Unstructured Stability Margins)
1) The configuration of (Figure 11.11) will be stable if and only if o satisfies
1

< =
= sup,e gy, IVl

0"

2) The configuration of Problem II (Figure 11.12) will be stable if and only if

satisfies
1 *

< = o
TSP Gy WO+ 9C) 7l

The proof of this theorem follows from the boundary properties proved in the last
section. To state this in more detail, we use the following lemma.

Lemma 11.2 (Extremal A, Properties)

Problem I:  sup [|[Wyl|lec = sup [|[W9l|oo,
,(JEG gEGE

Problem II :  sup |[WC(1+¢C) e = sup |[WC(1+gC) oo
9eG 9 Gy

Proof. We first consider the following:
sup ||glleo = sup {le]: 0 = c6(jw, p) +7(jw,1), p€ 1L, 1€ A, w € [-o0, +oc]}
9€GEg
= sup {[e]: 0 = eb(jw,p) +7(jw, 1) ,
(p,1) € (Ig x K(A)) U (K(II) X Ag), w € [=o0,+oc]}

= sup g/
gGGE

Using arguments identical to the above, we conclude that

sup [[Wylleo = sup [[Wylo,
gGG gEGE

sup [[WC(1+gC) oo = sup |[WC(1+9C)|no-

9eG 9eGg
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Proof of Theorem 11.10 Consider the configuration of Figure 11.11. From the
Small Gain Theorem the perturbed system is stable if and only if

1

<————=al.

sup, .G [IWalleo
From the Lemma 11.2, it follows that G can be replaced by Gg. A similar argument
works for the configuration of Figure 11.12. &

Remark 11.3. The quantities o and o serve as unstructured ., stability mar-
gins for the respective open and closed loop parametrized systems treated in Prob-
lems I and II.

Remark 11.4. In practice we can further replace Gg(s) by the image set over-
bounding polytopic family Gg(s), and obtain lower bounds on these margins from
Gg(s). We can also obtain upper bounds on these margins from the set of Kharitonov
vertex systems of the family. Furthermore, the extremal results stated above also
hold for any LFT of G(s).

11.6  NONLINEAR SECTOR BOUNDED STABILITY MARGIN

We now consider the effect of nonlinear perturbations on the multilinear interval
family G(s) defined in the last section (see (11.30)). The nonlinear perturbations
will consist of all possible nonlinear gains lying in a sector [0, k]. In other words,
we consider the configurations in Figures 11.13 and 11.14.

Figure 11.13.

The gain block ¢ consists of all nonlinear time-varying gains ¢(¢, o) satisfying
$(t,0)=0 forallt>0 and 0<od(t,o) < ko’

This implies that ¢(¢,0) is bounded by the lines ¢ = 0 and ¢ = ko. Such non-
linearities are said to belong to a sector [0, &]. G(s) will be assumed to lie in the
multilinear interval family G(s). The problem is to determine the largest size of
the sector k for which robust stability 1s guaranteed. This is the multilinear version
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Figure 11.14.

of the robust Lur’e problem treated in Chapter 9. As before, the solution depends
on the strict positive realness (SPR) properties of the family in question. First we

have the following.
Lemma 11.3 (Extremal SPR Properties)
1) Let G(s) be the multilinear interval family defined in (11.30) and assume that
G(s) is stable. Then
inf inf Re(W(jw)G(jw)) = inf inf Re(W(jw)G(jw)).
Juf, lnf Re(W(jw)Gljw)) = nk  inf Re(W(jw)G(jw))

2) If C(s) is a controller that stabilizes the entire family G(s), then

inf inf Re (W(jw)C(jw)G(jw)(1+ C(jw)G(jw))™") =
ceGuweR
inf inf Re (W(jw)C(jw)G(jw)(1 + C(jw)G(jw))™).
GGGEWGR
The proof of this lemma immediately follows from the boundary property given in
Theorem 11.7.
Theorem 11.11 (Nonlinear Stability margin)
1) Let k* > 0 be defined by:

1
sup<k : — 4 inf inf Re(W(jw)G(jw >0}
p{t s 1+ int it Re(W ()G
then the closed loop system in Figure 11.13 1s absolutely stable for all nonlinear

gains ¢ lying in the sector [0, k*].
2) Let k* > 0 be defined by:

inf inf Re (W(jw)C(jw)G(jw)(1 + C(jw)G(jw))™") > 0}

k L +
su L=
P k’ GEGEWER'
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for the controller C, then the closed loop system in Figure 11.14 s absolutely
stable for all nonlinear gains ¢ lying in the sector [0, k*].

Proof. From standard results on the Lur’e problem, stability is preserved for all
k satisfying

1
T + inf_ inf Re(W(jw)G(jw)) > 0.

GeGueR
By Lemma 11.3 we may replace G(jw) by Gg(jw) in the above inequality. This
proves 1). The proof of 2) is similar. &

Example 11.5. (Stability Sector for Multilinear Interval Systems) Con-
sider the system used in Example 11.1. We plot the frequency domain image of the
closed loop system transfer function

M(s) := {% cG(s) € GE(S)} .

Figure 11.15 shows that the nonlinear sector is given by + = 20.5012.

150
100 - .
o0
g s0f 1
1/k:
O .
-50 :
-50 0 50 100 150

Real

Figure 11.15. Frequency domain image of M(jw) (Example 11.5)



Sec. 11.7. INTERVAL PLANTS AND DIAGONAL REPRESENTATION 489

11.7 INTERVAL PLANTS AND DIAGONAL REPRESENTATION
OF PERTURBATIONS

In the robust control literature it has become customary to represent system per-
turbations in a signal flow diagram where the perturbations are “pulled” out and
displayed in a feedback matrix A with independent diagonal or block-diagonal en-
tries A; as shown below in Figure 11.16.

Ay

Figure 11.16. System with uncertainties represented in feedback form

M(s) is a suitably defined interconnection transfer function matrix of appropriate
size and A is a block diagonal matrix containing all the perturbations affecting
the system dynamics. In general this would include real parametric uncertainty
as well as norm-bounded uncertainty blocks with the latter representing either ac-
tual unmodelled dynamics or fictitious performance blocks. The popularity of this
representation is due to the fact that almost all types of uncertainties including
parametric and unstructured uncertainties can be accurately and explicitly repre-
sented in this framework. Moreover, the feedback representation allows us to use
the Small Gain formulation and thus convert robust performance problems into
robust stability problems.

Although this formulation does not add anything to the the rich structure of
interval systems already developed, it is nevertheless instructive to interpret the
solution given by the Generalized Kharitonov Theorem in the linear and multilin-
ear cases in this framework. We begin in the next subsection with the diagonal
representation of a single interval system. This is subsequently extended to the
case of multiple interval systems and multiple norm-bounded perturbation blocks.
This type of mixed perturbation problem arises in systems with several performance
specifications. We show how the boundary properties of the extremal systems G(s)
established in the GKT play a role in the solution of these problems.
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11.7.1 Diagonal Feedback Representation of an Interval System
Let G(s) be a interval plant

N
G(s) = {98 . (N(s) x D(s) € (N(5) x D(s))} (11.45)
where N(s) and D(s) are interval polynomial families. Referring to the notation
defined in Chapter b, the four Kharitonov polynomials associated with the interval
polynomial D(s) can be written as follows:

Kp(s) = Dl (s) + Dot (9)

K3 (s) = DR (s) + Dopx (5)

K3 (5) = Dasx (s) + Dita (s) (11.46)
K (s) = Dvai (s) + Dinx(5).

We know that, as far as frequency domain properties at s = jw are concerned,
the interval polynomial D(s) can be replaced by the following reduced 2-parameter
family:

Dr(s) = {D(s) : D°(s) + A1 D.(s) + A2 D,(s) A € [-1,1]} (11.47)
where
D.(s) = (DRI (s) — DRt (5)
Dy(5) = & (DR () = DY (s))
and

1
D(s) = 5 [DR53(5) + DR (5) + Di(s) + DR ()]

is the nominal polynomial. Similarly N(s) can be replaced by:
Nr(s) = {N(s) : N°s) +AsNe(s) + AaNo(s), A €[-1,1]}. (11.48)

It is clear from the above that an interval plant is completely characterized in the
frequency domain by the 4-parameter family Gg(s):

Gr(s) = {g 8 : (N(s) x D(s)) € (Ng(s) x DR(S))} . (11.49)

This is essentially what we proved in the first step of the proof of GKT given in
Chapter 7. In the second step we proved further that it suffices to test stability of
the extremal set Gg(s). The polynomial set Gg(s) corresponds to the vertices of
the 4-dimensional box representing Gg(s) while the 32 segments Gg(s), correspond
to the exposed edges of the same box.
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Now write y(s) = G(s)u(s),
_ NO(s) + A3 Ne(s) + AaN,(s)
Y = B8 2 Duls) T he D, ()"
This may be rewritten as follows:
y(s) = [D(5)] 7 L(N(s) + AaNe(5) + ANy (5)) uls)
— (0 D.(5) + A2 Dy () (s} (11.50)
or, suppressing s, as
y=[(D°)"'N° + A3(D°)" ' Ne + Ag(D°)"' N, ] w
— [M(D°)"'D, + X(D°) D, ] y. (11.51)
Corresponding to (11.51), we have the block diagram shown in Figure 11.17.
U y
[DO]—WNO @ .
z w w z
a2 DN, (D' Dy fe—] Ay o
z w w z
Lo Ao, (D11 D, l—] Ay
Figure 11.17. Four parameter structure
This input-output relation may be written as follows:
z1 -D, -D, N, N, N° wy
29 —De —Do Ne No NO Wo
z | = (D)) 0 0 0o 0 D° w3 (11.52)
z4 0 0 0 0 DO W4
Yy _De _Do Ne No NO (7
with
w; = Nz, 1=1,2,3,4. (11.53)

Let z := [21, 29, 23, 24]7 and w := [wy, ws, w3, ws]” . The above equations can then

be rewritten as

2(s) = My (s)w(s) + Mio(s)u(s)
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N
—
@
~—
Il

Moy (s)w(s) + Maa(s)u(s)
w(s) = Az(s).

where
Mll(s) Mlz(S)
M(S) — .
le(S) MZZ(S)
_—[DO]_IDe —[DO]_1D0 [DO]_lNe [DO]—INO [DO]—INO-
—[DO]_IDe _[DO]—IDO [DO]—lNe [DO]—INO [DO]—INO
— 0 0 0 0 1 (11.54)
0 0 0 0o 1
[DO]—ID [DO]—IDO [DO]—lNe [DO]—INO [DO]—INO
and

Xy
_ AR ._ Ao
A=A" = s
Aa

Consequently, we have the configuration shown in Figure 11.18.

A
Az
/\3 h
Aq
w V4
S A A,
U )

Figure 11.18. 4-parameter feedback representation of an interval system

The result established in Step 2 of the proof of GKT given in Chapter 7 tells us
that robust stability of the four parameter feedback structure given in Figure 11.18
1s further equivalent to that of a reduced set of one-parameter extremal feedback
structures in which each structure contains a single perturbation block. In Fig-
ure 11.19 we display a typical such extremal system structure where Ay is the only
perturbation block and the remaining A’s are set to the vertex values 4+1 or —1.
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Figure 11.19. A typical element of the extremal set Gg(s)

This is denoted in the equations by writing A2 = A5, A3 = A% and Ay = A}. The
system equations assume the form

[m] _ [Mh(S) M{Z(S)] [wl] (11.55)

y M3 (s) Maa(s) | | w
M(s)
with
w) = A2
where

Mi,(s) = My (s)
M3y (s) = Mas(s)

(L+A5[D")"'D,)~'[D17' D,
(1+ XD L D) DTN + A5[D° TN, + X5 [D°TEN,.

The interval plant G(s) can always be replaced by the above set of one-parameter
structures Gg(s) regardless of the rest of the feedback system. If the intervals
in which the parameters vary are not fixed apriori one can also determine their
maximum permissible excursion using the same framework. The only difference in
this case is that the Kharitonov polynomials, and therefore the system M’ defined
from them, have parameters which depend on the dilation parameter ¢ as shown
below in Figure 11.20.

M

M'(e,s)

Figure 11.20. An element of Gg(e, s)
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The limiting value €* of ¢ is determined as the smallest value of ¢ for which the
control system containing one of the one parameter structures representing Gg/(e, s)
acquires a pole on the imaginary axis. Thus €* can be found using several methods
which include the Segment Lemma and the Bounded Phase Conditions of Chapter
2. Of course, by restricting attention to the class of controllers which satisfy the
vertex conditions given in GK'T we get further simplification in that all the X’s can
be frozen at vertices, and €* can be found from the vertex systems.

The above discussion may be summarized by stating that if G(s) is an interval
plant contained within a control system structure, we can always replace it with the
set of one-parameter extremal systems Gg(s) for the purposes of determining worst
case performance and stability margins and for carrying out worst case frequency
response analysis. This observation holds also for linear interval systems and poly-
topic systems as defined in Chapter 8. In the case of multilinear interval systems we
can again replace the plant set G(s) by the corresponding set of extremal systems
Gg(s) which now consist of a set reduced dimensional multilinear systems in terms
of the interval parameters A;. This can in turn be replaced by a polytopic family
using the Mapping Theorem. Finally, an extremal one-parameter family can be
constructed for this polytopic system as shown in this chapter.

11.7.2 Interval Plant with /7, Norm-Bounded Uncertainty

Now let us consider the mixed uncertainty system in Figure 11.21.

A
Az
/\3 h
Aq
w z
> M ‘
U )
A

Figure 11.21. 4-parameter representation of interval system with unstructured
uncertainty
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It consists of an interval plant with an unstructured perturbation block A lying
in a H ball of specified radius. As before, the interval plant can be represented
n terms of four feedback parameters around a suitable interconnection transfer
matrix M(s). We can now represent all the perturbations, parametric as well as
unstructured, in feedback form around a suitably defined system P(s). Thus, we
have the structure shown in Figure 11.22 with an appropriate P(s).

A
Ay
oy
w z
_— P —
U Y

Figure 11.22. Feedback representation of mixed uncertainties

Moreover, by using the result of Chapter 9 on extremal values of H,, norms, this
four-parameter system can be reduced to the extremal set of single parameter un-
certainty problems. A typical element of this extremal set is shown in Figure 11.23
with an appropriate P’(s).

A
M
w z
P/
u4> 4@/»

Figure 11.23. A typical element of the extremal set of systems

By eliminating the feedback loop associated with A this can also be represented as
the structure shown in Figure 11.24.
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PI(S, Al)

Figure 11.24. Equivalent representation of an extremal system

11.7.3 Multiple Interval Systems and Unstructured Blocks

Let us now consider the general configuration given in Figure 11.25.

Ay

Figure 11.25. System with uncertainties represented in feedback form

M(s) is an interconnection transfer function matrix of suitable dimensions and
AY(s) is a diagonal matrix containing all the unstructured system perturbations.
The unstructured perturbations can be considered by introducing the class of per-
turbations D"(r) defined as

Ay
D“(?”) — AU — . Al c Al (1156)
A,

where Ay is a ball in the space of H,, real rational functions, denoted by RH,,
with radius 1

Ay ={A : A€ RH., ||Allw <1}

Parametric perturbations or uncertainty can be modeled by letting interval transfer
functions represent each physically distinct subsystem. These individual systems
can then be “pulled out” and represented in feedback form as described earlier. The



Sec. 11.7. INTERVAL PLANTS AND DIAGONAL REPRESENTATION 497

result of doing this is the general representation of the system shown in Figure 11.26.

Figure 11.26. Feedback representation of multiple interval plants and unstruc-
tured uncertainties

In this representation, the AV block represents multiple norm-bounded uncertain-
ties, and the AP block accounts for parameter perturbations modeled as the set of
independent interval systems G'(s) arranged in diagonal form:

Gy
D (q) = LG EGH). (11.57)
Gy

From the discussion of the last subsection we can immediately replace each interval
system by a four-parameter set. Further we can also replace each interval system
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Gi(s) by the corresponding extremal set G¥:

Gy
D{ () = L G, € Gl . (11.58)
Gy
For carrying out frequency domain analysis, the system in Figure 11.26 can there-

fore be replaced by Figure 11.27 where AYF belongs to the mixed complex-real
perturbation class DY? defined as

AU
A
DY (r;4q) = , : (11.59)
Aaq
M/
: A :
: A, :
! A !
| E
pUP

Figure 11.27. Feedback representation of mixed complex-real block diagonal un-
certainties

This representation can be used to formulate a variety of robust stability and per-
formance problems. We illustrate this by considering two specific examples.

Example 11.6. Consider the control system shown in Figure 11.28. In this sys-
tem there are two independent subsystems containing parametric uncertainty which
are modelled by the interval systems G (s) € G!(s) and G5(s) € G*(s). Unstruc-
tured perturbations are represented by the block A, and appropriate scalings have
been introduced to allow A; to belong to Ay, the H., ball of radius unity. The
specifications on the system performance are stated as the following requirements:
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z3 wWs
. A
r Z1 Z2 Wwa Y
D— G S D s
} W !
E U 24 E
I C - !
l ---------------------------------- i AQ i'* ----------------- ‘If

Figure 11.28. Robust performance problem (Example 11.6)

1) Robust Stability —The system must be stable for all Gy(s) € G'(s), Ga(s) €
Gz(S), Al c A] and

2) Robust Performance  The worst case H,, norm of the closed loop transfer
function be bounded by unity:

sup ||TTU(G1JG2;A1)||00 < 1;
G G2 A,

where T, is the transfer function from r to y.

This problem can be cast in the framework developed above, and treated as a robust
stability problem by introducing a fictitious performance block A, € A, connected
between r and y as shown in Figure 11.28. The equations describing the system in
Figure 11.28 are

k2 [0001 —1 Wy
2 1000 0 wo
Z3 = 1000 0O Ws
Z4 0110 0 r
y] lo1100 ]| w
w1_ _G] 0 0 0O 21
Wo 0G2 0 0 0 Z9
Ws = 0 OAl 0 0 z3
r 0 0 A, 0 Z4
w|l oo o0 o0cC]|y
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The “feedback” perturbations belong to the class

DG(z):{[G1 GQ] : GleGl,GQEGZ}

D”(Q):{[Al Az] : Al,AQEAl}

and the interconnection matrix is

[
SO = o
—_—o o o
—_—o o o
coo o~
cooco

Example 11.7. We consider the system in Figure 11.29.

Z9 Wo
Wi A
21 w1 Yy
= " G g &> g
u

® C
ws Z3

A, Ws

Figure 11.29. Robust stability problem (Example 11.7)

Parameter uncertainty is represented by the interval system G1(s) € G!(s) and un-
structured uncertainty consists of two independent blocks Ay, Ay € Ay, Wi(s) and
W5 (s) represent frequency weightings and consist of fixed stable, proper minimum
phase transfer functions. The system equations are

2 00 —1 =17 [w
Z9 _ 0 0 —W1 —W1 Wo
z3 o W2 W2 0 0 Ws

y| |11 0 0 ||u
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Wy G1 0 00 1
Wa _ 0 Al 0 0 29
Ws o 0 0 Az 0 Z3
u 00 0C Yy

This configuration fits the general structure developed above with the “feedback”
perturbation classes being

DY (1) = {G; : G; € G'}
and
U Ay
D" (2) = A DAL AY €A
2
and the interconnection matrix

0 0 -1 -1

0 o -w -W
Wy, W, 0 0

1 1 0 0

M =

11.7.4 Extremal Properties

We have shown that parameter uncertainty can be modelled by interval systems
and that both parametric and norm-bounded uncertainty can be represented in
feedback form. Moreover, each interval system can be replaced, as far as worst case
frequency domain analysis is concerned, by the corresponding reduced 4-parameter
family.

Let us now consider the system in Figure 11.26. Suppose that a stabilizing
controller for the nominal system has been connected between y and u. The con-
troller is stabilizing when the feedback perturbation is zero. Let M(s) denote the
interconnection matrix with the controller attached. We now wish to determine if
the control system is robustly stable under the feedback perturbations given. This
is a real-complex mixed perturbation robust stability problem with the diagonal
“feedback” perturbation matrix (see Figure 11.27)

Ay

DUVP = { pUP = DA EA ML

A4rn

We make the standing assumption that the McMillan degree of the system remains
invariant under the perturbations. The first observation we can make is obvious.
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Theorem 11.12 The system in Figure 11.26 is Hurwitz stable for all DF € D% (m)
and all D¥ € DY (r) if and only if the system in Figure 11.27 is Hurwitz stable for
all DYP ¢ DVP,

The above theorem actually applies more generally. For instance a more general
formulation could allow for repeated interval system blocks.

As a further simplification in the above result, we can replace each interval
system G'(s) by the corresponding set of extremal systems G (s). This corresponds
to replacing each set of 4 Als in Figure 11.27 by their exposed edges.

Theorem 11.13 The system in Figure 11.26 is Hurwitz stable for all DY € D% (m)
and all D* € DY(r) if and only if the system in Figure 11.27 is Hurwitz stable for
all Dp € DE (m) and all D* € DY (r).

Proof. The proof of this result follows immediately from the fact that the char-
acteristic equation of the system in Figure 11.27 is a multilinear function of the
interval systems G (s). Therefore, by the result derived in Theorem 11.8, we can
replace each interval system Gi(s) by the corresponding extremal set Gi(s). &

Remark 11.5. The result stated above can be interpreted in terms of the worst
case norm-bounded stability margin of the system over the interval parameter un-
certainty set. For a prescribed DP | this stability margin is usually measured as a
norm of the smallest destabilizing diagonal perturbation matrix A. The norm cus-
tomarily used is the maximum singular value. The worst case value of this stability
margin as DY ranges over the interval systems can be found by restricting D? to
range over the extremal systems only. This is obviously a tremendous saving in
computational effort.
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11.8 EXERCISES

11.1 Consider the feedback system with a parallel structure in the forward path
as shown in Figure 11.30.

Pi5(s)
P11 (S)

Figure 11.30. Feedback system with parallel structure (Exercise 11.1)

Suppose that

Pi(s) = Pio(s) s’ + s+ ag
! _P]](S)_ 52 + aus + g

Py(s) = Pos(s) _ Bos® + Bis + o
T Poi(s) 24 Bas+ s

where the parameters vary as follows:
a; €[o7,of], and G €[67,67], i=0,1234

a) Use the multilinear GKT (Theorem 11.1) to write down all the manifolds which
are necessary to verify the robust Hurwitz stability of the closed loop system.

b) Write down all the manifolds which are necessary to verify the robust stability
of the closed loop system with respect to the stability region which is a circle
centered at —y with radius r where v > r > 0.

¢) One may observe that a significant reduction, in terms of the number of mani-
folds to be checked, is achieved for the case a) over b). Explain the reason.

11.2 Consider the feedback system shown in Figure 11.31.
Let

1 Po P1
Cloy =ty Pl =L p = L

with
q0 € [0.5,1.5], pg € [0.5,1.5], ¢ €[1.5,25], p; €[0.5,1.5].
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T?e~ C(s) s Pi(s) s Po(s) >

Figure 11.31. Feedback system (Exercise 11.2)

Using the polytopic approximation, plot the Bode magnitude and phase envelopes
of the open loop system and estimate from this the guaranteed gain and phase
margin of the family.

11.3 For the feedback system given in Exercise 11.2,

a) plot the Nyquist envelope of the closed loop transfer function by using the
polytopic approximation,

b) from the plot in a) determine the exact guaranteed gain and phase margin of
the system and compare with the estimates obtained in the previous exercise,

¢) suppose that a nonlinear feedback gain is connected as shown in Figure 11.32.

Figure 11.32. Feedback system with nonlinear gain (Exercise 11.3)

Determine the Lur’e sector for which the the closed loop system is robustly
absolutely stable.

11.4 Referring to the system given in Exercise 11.2, find the maximum value of
M-peak of the closed loop system. What can you say about the minimum value of
M-peak?

Hint: The maximum value of M-peak is obtained by selecting the peak value of
the upper curve of the magnitude envelope of the closed loop system. However,
the peak value of the lower curve does not necessarily serve as the minimum value
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of M-peak as 1t may not correspond to M-peak for some bona fide set of system
parameters. It can only be a lower bound on the minimum M-peak.

11.5 Referring to the system in Exercise 11.2, plot the magnitude envelope of the
error transfer function and determine the worst case amplitude of the error, with

respect to unit amplitude sinusoidal inputs, over the parameter set given.

11.6 Consider the feedback system shown below in Figure 11.33.

T?e~ C(s) s Pi(s) s Pa(s) >

Figure 11.33. Feedback system (Exercise 11.6)

Let
s+ Bo

52+ Gis+ 0

with the nominal values of the parameters being

s+ ag
s+ o

C(s) =2, Pi(s) = Po(s) =

ad=15 ol =5 =4 p =45 g =15

Determine the maximum parametric stability margin ¢ around these nominal val-
ues, i.e.the largest value of € for which the system remains robustly stable for the
parameter excursions

o €lef —ea)+¢, i=01 and G e[d - +¢, j=012

11.7 Referring to the system in Exercise 11.6 with ¢ being set to be the stability
margin obtained in Exercise 11.6,

a) plot the Nyquist envelope of the open loop multilinear interval system as well
as the Nyquist plot of the open loop nominal system,

b) plot the Bode magnitude and phase envelopes of the open loop family of systems
as well as the Bode plots of the nominal system.

11.8 In the system of Exercise 11.6, suppose that unstructured uncertainty A is
introduced as shown in Figure 11.34.

Find the maximum unstructured H,., uncertainty that can be tolerated by the
system.
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P (s) s Pa(s) -

Figure 11.34. Feedback system with unstructured uncertainty (Exercise 11.8)

11.9 Let C(s) be a fixed controller that robustly stabilizes an interval plant G(s)
with extremal set Gg(s). Define

M| GHGECET arGEee) T
—G(s)C(s) (1+G(5)C(s5)) " —G(s)C(s) (14 G(5)C(s))
and let
M(s) :={M(s) : G(s) € G(s)},
and

Mg (s) .= {M(s) : G(s) € Gg(s)} .

Consider the perturbation structure D(2) of all diagonal perturbations of the form
D = diag{A;,As} where ||Aj||. < 1. Let M(s) be any element in M(s), and
denote by M (jw) its evaluation at the jw-axis. Let 5(M) denote the maximum
singular value of M. We can define uD(Q)(M(jw) as follows:

1

DTy = M {e(D): D € D), det I+ M(j#)D) = 0}

Show that

sup suppD(Q)(M(jw)): sup suppD(z)(M(jw)).
weM w MeMg @

Hint: Replace A; in det (I + M(jw)D) = 0 by complex numbers §; and apply the
complex version of GKT (Chapter 7).
11.9 NOTES AND REFERENCES

The multilinear version of the Generalized Kharitonov Theorem given here is con-
tained in the papers by Chapellat, Keel, and Bhattacharyya [66] and Chapellat,
Dahleh, and Bhattacharyya [65]. The extremal properties with respect to various
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margins given in this chapter are described in the paper by Chapellat, Keel, and
Bhattacharyya [67]. The result on Hurwitz stability of interval polynomial matrices
(Theorem 11.2) is due to Kokame and Mori [150]. The method of constructing the
frequency template of a multilinear interval control systems given in Section 11.4.1
is described in Ahmad, Keel and Bhattacharyya [8]. Saeki [199] also obtained a
sufficient condition for robust stability of such classes of systems by applying the
Mapping Theorem to the Nyquist stability criterion. In Barmish and Shi [17] the
case m = 2, A(s) = Py1(8)P12(s) 4 Pai1(s) Pas, was treated and alternative necessary
and sufficient conditions for robust stability were derived. Kraus, Mansour and An-
derson [154] showed that testing for real unstable roots of a multilinear polynomial
could be achieved by examining the stability of a finite number of vertex polyno-
mials while checking for unstable complex roots in general involved examining the
real solutions of a set of simultaneous polynomial equations. In Zeheb [246] explicit
necessary and sufficient conditions are derived for the case of two parameters. The
representation given in Section 11.7 including Examples 11.6 and 11.7 are due to
Dahleh, Tesi and Vicino [72] and the result described in Exercise 11.9 is due to
Dahleh, Tesi and Vicino [70].



