Chapter 13

ROBUST PARAMETRIC
STABILIZATION

This chapter discusses the problem of robust stabilization of plants subject to para-
metric uncertainty. First, we consider a family of minimum phase plant transfer
functions of denominator degree n and numerator degree m. We show that a single
feedback compensator of order n—m— 1 which is stable and minimum phase can al-
ways be designed to robustly (simultaneously) stabilize this family under arbitrarily
large perturbations in the numerator and denominator coefficients. Next we show
that it is sometimes possible to use standard synthesis techniques of H., optimal
control to design a robustly stabilizing compensator. The obvious technique is to
overbound the frequency domain image sets induced by the parametric uncertainty
with H., norm bounded uncertainty. This is made possible in the case of linear
interval plants by exploiting the extremal property of the generalized Kharitonov
segments. We show this by simple numerical examples for single-input single-output
interval plants. If the sizes of the intervals are not fixed apriors, this technique can
always be used to find an appropriate size of interval perturbations for which robust
stabilization is possible. The issue of robust performance is not explicitly dealt with
but can be handled in the same manner, when it is measured in the H., norm.

13.1 INTRODUCTION

The techniques described thus far are mostly directed towards analyzing the robust
stability of control systems under various types of uncertainty. The underlying
assumption in this type of analysis, is that a controller has already been designed
by some means. The purpose of calculating worst case stability and performance
margins is therefore to evaluate the proposed controller against a competing design.
In practice, this analysis tool can itself serve as the basis of controller design as
shown in various examples.

A different approach to robust controller design is to prespecify a desired level
of performance or stability margin and attempt to find a controller from the entire
set of stabilizing controllers that attains this objective. This is usually referred to
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as synthesis.

In optimal synthesis, one searches for the best controller that optimizes a single
criterion of performance. The optimization problem must be formulated so that it 1s
both physically meaningful as well as mathematically tractable. An important op-
timal synthesis problem closely related to robust control is the H., control problem.
Here, one attempts to minimize the H., norm of a “disturbance” transfer function
over the set of all stabilizing controllers. An elegant theory of H,, based synthesis
has been developed. It can be used to design for robust stability and performance
by minimizing the norms of suitable transfer functions. The underlying theory is
based on the Small Gain Theorem which provides for robust stability under norm
bounded perturbations.

At the present time there does not exist a comprehensive and nonconservative
theory of synthesis for systems subject to real parameter uncertainty. However
partial results are available and design techniques can be developed based on what
has been learnt so far. The purpose of this chapter is to explore these ideas in an
elementary way.

In the next section we describe a procedure to synthesize a fixed order controller
that is guaranteed to robustly stabilize a prescribed family of single-input, single-
output minimum phase plants. The parametric perturbations affecting the plant
are otherwise essentially arbitrary. Moreover, 1t is shown that the controller itself
can always be stable and minimum phase and the order of the controller need be
no higher than n — m — 1, where the plant has n poles and m zeroes.

Then we describe how H, theory might be exploited to design controllers that
provide robustness against parameter uncertainty. The essential link with the para-
metric theory is that we are able to “tightly” fit the level of unstructured disc-like
uncertainty required to cover the actual parametric uncertainty. Once this is done,
the H,, machinery can take over to produce an answer. We describe the approach
using Nevanlinna-Pick interpolation as well as the state space formulation of H,
theory with illustrative numerical examples of robust parametric stabilization.

13.2 SIMULTANEOUS STRONG STABILIZATION

In this section stability will mean Hurwitz stability. We show how an infinite family
of single input single output (SISO) plants can be simultaneously stabilized by a
single stable, minimum phase controller, provided that each member in the family
represents a minimum phase plant. Consider the standard unity feedback system
of Figure 13.1, where the plant is a single input single output system described by
the transfer function

n(s)  no+nis+...4+n,s"
d(S) o d0+d]5+...+d(15q ’

G(s) =
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C(s) ) Gls) >

Figure 13.1. Unity feedback system

Let F,, be a compact set of polynomials n(s) satisfying the following three proper-
ties.

Property 13.1.
Al) for all n(-) € F,, n(-)is stable.
A2) for all n(-) € F,, n()is of degree r (fixed degree).

A3) The sign of the highest coefficient of any polynomial n(-) in 7, is always the
same, either always positive or always negative.

Let also F; be a family of polynomials satisfying the following three properties:
Property 13.2.
B1) for all d(-) € Fy, d(-) is of degree ¢ (fixed degree).

B2) F; is bounded, that is there exists a constant B such that:

for all d(-) € Fy, forall j€[0,q], |d;]<B.

B3) The coefficient of order q of any polynomial d(-) in F; is always of the same
sign and bounded from below (or from above). That is,

3 b > 0 such that for all d(-) € Fy, d, >b>0,

or
35 < 0 such that for all d(-) e Fy, d, <b<0.

Now, assuming that r < ¢, consider the family P of proper SISO plants described
by their transfer functions

P = {G(s) = %, where n(s) € F,, d(s) € fd} .

Then we have the following result.
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Theorem 13.1 (Simultaneous Strong Stabilization)

i) g =r: There exists a constant compensator that stabilizes the entire family of
plants P.

i) g > r: There exists a proper, stable and minimum phase compensator C(s) of
order ¢ — r — 1 that stabilizes the entire family of plants P.

First, we can assume without loss of generality that we have,
forall n(-) € F,, n, >0, (13.1)

and
for all d(-) € Fq, dy > 0.

Then we can also assume, still without loss of generality, that the family F; is
itself compact, otherwise it would be enough to replace F; by the family of interval
polynomials F/, defined by:

dy€[-B,B], dy €[-B,B], ---, d,_y € [-B,B], d, € [b, B].

Given this, the proof of this result now depends on some general properties of such
compact stable families as F,,, and of such compact families as Fy.

Property 13.3. Since the family F,, contains only stable polynomials, and since
they all satisfy Property A3 and (13.1), then any coefficient of any polynomial n(-)
in F, is positive. Moreover, since the set F,, is compact it is always possible to find
two constants @ and A such that,

for all n(-) e F,, forall j€[0,7], 0<a<n; <A (13.2)

Now, F,, being compact, it is always possible to find a closed bounded curve C
included in the left-half plane that strictly contains all zeroes of any element in 7, .
For example it is well known that in view of (13.2), any zero z, of an element n(-)
of F,, satisfies:

A
|zn] < 14 —.
a

Hence, it 1s always possible to choose C as in Figure 13.2.
Once again by a compacity argument we can write:

inf [inf |n(5)|] =a, > 0.
n()EFn |s€EC

Proof. We proceed by contradiction. If a, = 0, then it is possible to find a
sequence of polynomials ny(s) in F,, such that for each & > 0,

3 2z, € C such that |ng(z)| < —. (13.3)

=] —
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Figure 13.2. A possible choice for C

But, C being compact in the complex plane, it is possible to find a subsequence
Zg(k) that converges to 2o € C. Moreover, ny;)(-) is now a sequence of elements of
the compact set F,,, and therefore it is possible to find a subsequence nyey(1))(-)
that converges to ng(-) € F,. Then we have by (13.3),

1
Inscuen o)l < garmsy (13.4)

Passing to the limit as k& goes to infinity in (13.4), one gets:
no (Z()) =0.

But this is a contradiction because C is supposed to strictly enclose all the zeroes
of any polynomial in F,. &

Property 13.4. Since the family F; is bounded we have that for any d(-) in Fy,
for all s, |d(s)| < B(1+1|s|+ -+ |s]?) = ¢(s).
Let
B4 = sup é(s).

seC
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Then G4 is finite (because C is compact and ¢(-) is continuous) and we have that

sup [sup |d(5)|] < B4. (13.5)
d(eFq Lsec

We can now proceed and prove i) and ii) of Theorem 13.1.

Proof of Theorem 13.1.i) Let C be a closed bounded curve enclosing every zero
of each element in F,, and let «,, and 33 be defined as in (13.3) and (13.5). Then,
if we choose € such that 0 < [e[ < 3=,

for all n(-) € F,, and forall d(-) € Fy

we have that

for all s €C, |ed(s)| < |e|lfBs < ap < |n(s)]. (13.6)

Hence, by Rouché’s Theorem, we conclude from (13.6) that, for this choice of e,
n(s) + ed(s) has the same number of zeroes as n(s) in C, namely r. But since

n(s) + ed(s) is itself of degree r it is stable. &

Remark 13.1. In this case one can notice that the Property B3 of the family Fy
is not needed.

Proof of Theorem 13.1.ii) Let us first suppose that ¢ = 4+ 1. Again let C be
a closed bounded curve enclosing every zero of each element in F,, and let «,, and
B4 be defined as in (13.3) and (13.5).
If we start by choosing €1 such that 0 < ¢; < %—Z, and any p such that 0 < p < €,
then

for all n(-) € F,, and for all d(-) € Fy

we have
forall s€ ¢, |ud(s)| < jufhs < an < [n(s)].

Again we conclude by Rouché’s Theorem that for any such p, n(s) + pd(s) has
already r zeroes inside C. Moreover it is also possible to find €2 such that for any p
satisfying 0 < g1 < €5, we have that every coefficient of n(s) + ud(s) is positive.

If we now choose any € such that

0 < € < min(ey, €3),

we have that n(s) +ed(s) is of degree less than or equal to r+ 1, has r stable roots,
and all its coefficients are positive. But this implies that n(s) + ed(s) is necessarily
stable.

We now proceed by induction on n = ¢ —r. Suppose that part ii) of the theorem
is true when ¢ = r4+p, p > 1. Let F, and F,; be two families of polynomials
satisfying Properties Al, A2, A3, and B1, B2, B3, respectively, and let us suppose
that g=r+p+ 1.
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Now consider the new family F) of polynomials n'(s) of the form,
n'(s) = (s + 1)n(s), where n(s) € F,.

Obviously F/, is also a compact set and each element of F), satisfies Properties Al,
A2, A3, but now with ' =+ 1. Hence by the induction hypothesis it is possible
to find a stable polynomial n/.(s) of degree less than or equal to p— 1, and a stable
polynomial d/(s) of degree p — 1 such that,

for all n(-) € F,, and for all d(-) € Fy

we have that
n(s)(s + 1)n’(s) + d(s)d.(s) is stable . (13.7)

Now, let n.(s) = (s + 1)n.(s), and consider the new family of polynomials F;,
described by (13.7). That is F}, consists of all polynomials n/(-) of the form

() = n(s)n.(s) + d(s)d.(s)

where n(s) is an arbitrary element in F,, and d(s) is an arbitrary element in Fj.
The new family of polynomials F/ consists of all polynomials d’(-) of the form

@(s) = sd.(s)d(s),

where d(s) is an element of F,;. Clearly the family F), is compact and satisfies Prop-
erties A1, A2, A3 with v/ = r+ 2p, and F is also a compact family of polynomials
satisfying Properties B1, B2, B3 with ¢/ = r+ 2p+ 1. Hence, by applying our result
when n = 1, we can find an € > 0 such that

for all n'(-) € F,,, and forall d'(:)e F},
n'(s) + ed'(s) is stable.
But, in particular, this implies that,
for all n(-) € F,, and forall d(-) € Fy,

n(s)n.(s) + d.(s)d(s) + esd.(s)d(s) = n(s)n.(s) + (es + 1)d.(s)d(s) is stable.
Therefore, the controller defined by

Clsy="els) o mel®)
46 ot D)
is an answer to our problem and this ends the proof of Theorem 13.1. &

In the following sections we discuss first the problem of robust stabilization against
unstructured perturbations, the related interpolation problems, and the use of this
theory to solve robust stabilization problems under parameter uncertainty. We
begin with a description of the Q parametrization.
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13.3 INTERNAL STABILITY AND THE Q PARAMETERIZA-
TION

In this section we derive some conditions for the internal stability of a feedback
system in terms of the so-called Q parameter. This convenient parametrization
allows stabilizing controllers to be determined for the nominal system, and also for
perturbed systems.

Consider the standard single loop feedback configuration shown in Figure 13.3.

V9

(2 + €1 €2 )

Figure 13.3. General closed-loop system

We assume that the controller and plant are both single-input single-output systems
and are represented by the proper, real, rational transfer functions C(s) and G(s)
respectively. We first discuss the problem of stabilizing a fixed plant G(s) = Gy(s)
with some C(s). Throughout this chapter stability refers to Hurwitz stability unless
specified otherwise. As usual we assume that there are no hidden pole-zero cancella-
tions in the closed right half plane (RHP) in G(s) as well as in C(s). Let H denote
the 2 x 2 transfer matrix between the virtual input v = [vy,v2]" and e = [e1, es]’.

We have

i (l—I-GoO)_] —Go(l—i-CGo)_l

H = = [ O+ GOyt (14 CGy)~!

H€1,7J1 H€1,7)2 ] (138)

H€277J1 Hézwz

The closed loop system in Figure 13.3 is internally stable if and only if all the el-
ements of H are stable and proper, or equivalently, H., functions. This condition
for stability is completely equivalent to that of stability of the characteristic poly-
nomial. It guarantees that all signals in the loop remain bounded as long as the
external virtual inputs at v; or vy are bounded.

The controller appears nonlinearly in . A “linear” parametrization of the
feedback loop can be obtained by introducing the parameter

Q(s) := %. (13.9)
The controller
C(s) & (13.10)

T 1= Go(5)Q(5)
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and it can be seen that C(s) is proper if and only if )(s) is proper. In terms of the
parameter Q(s)

_ | 1=GoQ@ —Go(1—-GoQ)
H= QO f_GOQO (13.11)

and therefore the necessary and sufficient conditions for internal stability of the
feedback system are the following:

Stability Conditions
1) Q(s) € Hoo;
2) Go(5)Q(5) € Hoo;
3) Go(s)(1 = Go(s)Q(5)) € Heo.
To proceed, we make the simplifying standing assumptions:
1) Gy(s) has no poles on the jw axis;
ii) The RHP poles v;, ¢ =1,...0 of Go(s) are nonrepeated.
The stability conditions 1)-3) can then be translated into the equivalent conditions:
') Q(s) € Heo;
2) Qlar) =0, =1,
3) Golo)Q(ay) =1, i=1,---,1

The search for a proper, rational stabilizing compensator C(s) is thus reduced
to the equivalent problem of finding a real, rational, proper function ((s) which
satisfies the above conditions. Once a suitable Q(s) is found, the compensator can
be recovered from the inverse relation (13.10) above. Therefore we can parametrize
all stabilizing compensators for Go(s) by parametrizing all functions QX(s) which
satisfy the above conditions. This is what we do next.

Let a denote the conjugate of o and introduce the Blaschke product

B(s) =TI [Z :rz] (13.12)
and let R
Q(s) := B(s)Q(s). (13.13)

With this choice of Q(s) condition 2’) is automatically satisfied for every stable
Q(s). Now let R
Go(s) := B(s)Go(s) (13.14)
so that B

G()(S)

B(s)

Go(5)Q(s) = B(5)Q(s) = Go(s)Q(5). (13.15)
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We note that B(s) € Ho, and ég(s) € H., so that conditions 1) and 2) for
internal stability are satisfied if and only if (s) € H.,. The remaining stability
condition 3') now becomes

Qo) = =

l§

e = (13.16)

If Go(s) is given, so are o and BZ and therefore the problem of stabilizing the
nominal system by some C/(s) is reduced to the interpolation problem:
Find a function Q(s) € Hs, satisfying

Qo) =06, i=1,--- 1L (13.17)

Once a Q(s) € Ho, satisfying (13.17) is found, Q(s) = B(s)Q(s) satisfies the
stability conditions 1), 2) and 3), and hence the corresponding C(s), which can
be determined uniquely from (13.10), is guaranteed to be proper and stabilizing.
It is straightforward to find a stable proper Q(s) that satisfies the interpolation
conditions (13.17). We also remark that the assumptions regarding the poles of
Go(s) can be relaxed by placing some more interpolation conditions on Q(s).

We shall see in the next section that in the problem of robust stabilization,
additional restrictions in the form of a norm bound will have to be imposed on

Q(s)-

13.4 ROBUST STABILIZATION: UNSTRUCTURED PERTUR-
BATIONS

We continue with the problem setup and notation established in the last section,
but suppose now that the plant transfer function is subject to unstructured norm
bounded perturbations which belong to an additive or multiplicative class.

Additive and Multiplicative Perturbations
Write G(s) = Go(s) + AG(s) with AG(s) specified by a frequency dependent mag-

nitude constraint as follows. Let r(s) be a given, real, rational, minimum phase (no
zeroes in the closed RHP), H., function. We introduce the definitions:

Definition 13.1. (Additive Perturbations) A transfer function G/(s) is said to
be in the class A(Gy(s), r(s)) if

i) G(s) has the same number of poles as Gy(s);
i) |G(jw) — Go(jw)| < |r(jw)|, |r(jw)| > 0, for all w €.

Similarly we can also consider multiplicative perturbations. Here we have G(s) =
(1 + AG(s))Ga(s) and a frequency dependent magnitude constraint is placed on
AG(jw) using a suitable real, rational, minimum phase H., function r(s).
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Definition 13.2. (Multiplicative Perturbations) A transfer function G(s) is
said to be in the class M(Gq(s), r(s)) if:

1)  G(s) has the same number of unstable poles as G (s);
2) G(s) = (14 M(s))Go(s) with |[M(jw)| < |r(jw)|, forall w € R.

Suppose now that a compensator C(s) which stabilizes Gy(s) is given. We first
establish the conditions for C'(s) to be a robust stabilizer for all plants in the class
A(Go(s),7(s)).

If C(s) stabilizes Go(s) we have

Go(jw)C(jw) +1#£0, forall welR (13.18)

and we also know that the Nyquist plot of Go(s)C(s) has the correct number of
encirclements of the —1 point.

Now let us consider what happens to the stability of the closed loop system when
Glo(s) is replaced by its perturbed version G(s) = Gy(s) + AG(s). Since Go(s) and
((s) have the same number of unstable poles, the only way that the closed loop
can become unstable is by a change in the number of encirclements of the —1 4 50
point by the Nyquist plot of G(s)C(s). In terms of frequency domain plots, this
means that the plots of Gy(jw)C(jw) and G(jw)C(jw) lie on opposite sides of —1.
Thus, stability of the perturbed system can be ensured if the perturbation AG(s)
is of small enough size that the plot of G(jw)C(jw) does not pass through the —1
point. This can be stated as the condition

1+ G(jw)C(jw) £ 0, forall we R (13.19)
or, equivalently as
(14 Golj)C )1+ (1 + Goljw)C(jw) ' Cw)AG(w)) # 0, for all w € k.
The above condition will hold as long as

sup |(1 4 Goljw)C (7)™ C () AG(jw)] < 1 (13.20)

It follows from this analysis that a sufficient condition for robust stability with
respect to the class A(Ggy(s),r(s)) is given by

[|(1 +G0(S)C(S))_IC(S)T(S)HOO <1 (13.21)

If the above condition is violated, a real rational admissible perturbation AG(s)
can be constructed for which the closed loop system with G(s) = Go(s) + AG(s) is
unstable. Thus, the condition (13.21) is also necessary for robust stability.
Analogous results hold for multiplicative unstructured uncertainty. By arguing
exactly as in the additive case we can show that a compensator C(s) which stabilizes

Go(s), stabilizes all plants G/(s) in the class M (pa(s), r(s)) if
|Ga(s)C(s)(1 + Go(s)C(s))" ' r(s)||., < 1. (13.22)



Sec. 13.4. ROBUST STABILIZATION: UNSTRUCTURED PERTURBATIONS 549

Henceforth we focus on the additive case since similar results hold for the mul-
tiplicative case. We see that the robustness condition (13.21) is equivalent to

|Q(s)r(s)]|,, < 1. (13.23)

Using the fact that ||B(s)||cc =1 we can write (13.23) as

1Qs)r ()], < 1. (13.24)
Now introduce the function }
u(s) .= Q(s)r(s). (13.25)

The robust stability condition can now be written as

[Ju(s)|]., < L. (13.26)
The interpolation conditions (13.17) on Q(s) translate to corresponding ones on
u(s):

u(e;) = Qo )r(ay) = % =5, i=1,..1 (13.27)

In these terms, the robust stabilization problem is reduced to the following:

Interpolation Problem

Given complex numbers «;, 5;, ¢ = 1,---,[ find, if possible, a real rational function
u(s) which satisfies the conditions

a) lu(s)lle <1
U(CVZ')IBZ', i= 1a"'al'

The solution of the above problem is described in the next section (Nevanlinna-
Pick Interpolation).
In summary the robustly stabilizing controller C'(s) is determined from the steps:

Step 1 Determine the RHP poles «v; of Gy(s), B(s) and Go(s);
Step 2 Determine
i=1..-.1

b bl

)
A= F

Step 3 Calculate a real rational H., function u(s) with ||u(s)||c < 1 solving the
Interpolation Problem

u(ai):@;, i:1,~~~,l

by using the Nevanlinna-Pick theory, described in the next section;
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Step 4 Calculate Q(s) from

Step 5 Determine C(s) from

Qe
1 —Go(s)Q(s)

In Step 3, Q(s) must be an H,, function and this requires, since B(s) € Hu, that

C(s)

Z(—:’)) e H.. (13.28)

Since u(s) € Hy, it follows that Q(s) € H, if T(l—s) € H.,. We have already assumed

that r(s) has no finite RHP zeros. The condition Tl—) € H., means that r(s) should

have relative degree zero, equivalently no zeros at ’inﬁnity. If it is necessary to let

7(s) have relative degree 1, say, we need then to let u(s) also have relative degree 1,

so that we have :f%f)) € H.,. This translates to an additional interpolation condition

u(oo) = 0.

on u(s).
In the next section we describe the solution of the Interpolation Problem for-
mulated above.

13.5 NEVANLINNA-PICK INTERPOLATION

In the previous section we established that robust stabilization against additive
unstructured perturbations can be achieved provided we find a real rational function
u(s) with Ho, norm [Jul|e < 1 which satisfies the interpolation condition

we;) =08, i=1,...1; Re[o;]>0, |8]<L (13.29)

Once u(s) is obtained, we can find the robustly stabilizing controller C'(s) using the
Steps outlined in the previous section.

A real, rational, function u(s) with ||ul|lc < 1 is also called a strictly bounded
real (SBR) function. To get a proper controller, u(s) needs to have relative degree
at least as large as r(s). Thus u(s) needs to be proper if r(s) has relative degree 0
and strictly proper (u(oo) = 0) when the relative degree of r(s) is 1.

A complex, stable, proper, rational function u(s) with [|u(s)||cc < 1 is called
a Schur function. The problem of finding a Schur function u(s) satisfying the
interpolation conditions given above is known as the Nevanlinna-Pick problem (NP
problem) and is outlined below without proofs. Once a Schur function u(s) is found,
an SBR function satisfying the same interpolation conditions can easily be found.
First, we have the condition for the existence of a solution.
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Theorem 13.2 The Nevanlinna-Pick problem admits a solution if and only if the
Pick matriz P, whose elements p;; are given by

(13.30)

15 positive definite,

If the Pick matrix is positive definite a solution exists. The solution is generated
by successively reducing an interpolation problem with % interpolation points to
one with £ — 1 points. The problem with one point has an obvious solution. This
1s the Nevanlinna algorithm and is described next.

Consider the linear fractional transformation mapping u;(s) to u;_;(s)

pin + u(s) (—7)

S+ ;1

) = (o) uw

(13.31)
s+ a; g

The inverse transformation 1s

wi(s) = 4108 = pio (”a‘”). (13.32)

S l=pquioa(s) \s — @

Let us denote these transformations compactly as
u(8) =Ty, uimq(8);  wioq(s) = Tt u; (s). (13.33)

It can be seen that
ti—1(i—1) = pi—1, forall w(s). (13.34)

Moreover, it can be shown that u;_;(s) is Schur if u;(s) is Schur and conversely
that w;_1(s) Schur and w;_1(cv;—1) = p;—1 imply that u;(s) is Schur.

Now suppose that i = 2, ui(s) = u(s), p1 = £ in (13.31). We see that u(ay) =
By regardless of us(s) and the remaining / — 1 interpolation conditions on u; (s) are
transferred to us(s):

)

e} Tm(ﬁz) = P2
(w1 (as))

15,(B3) = pa3

us(on) =1, (wi (o)) = T, (Br) = oy

Thus, the original problem of interpolating { with a Schur function w; (s) is reduced
to the problem of interpolating [ — 1 points with a Schur function wus(s). In this
way, a family of solutions u(s), parametrized in terms of an arbitrary initial Schur
function w41 (s), can be obtained.
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The above calculations can be organized by forming the Fenyves array as shown
in Table 13.1.

Table 13.1. Fenyves array

1 [65) 3 N aq |
pr prz prs e P | ui(s)
P2 P23 .. P2 Uz(S)
Pl ui(s)

where u(s) = u(s), p1 = B and py ; = 5

pi = Pi—1,i — Pi-1 o + Q1
LT —
T=Piapic1i o — o

;o l<i<l (13.35)

and _
Pi—1,j — Pi-1 a1+al—1; 1<Z<]Sl (1336)

A Y
An existence condition equivalent to that of the positive definiteness of the Pick
matrix is the following.

Theorem 13.3 The Nevanlinna-Pick problem admits a solution if and only if the
modulus of all the elements of the Fenyves array is less than one: |p;| <1, |p; ;] < 1.

The algorithm given generates a Schur function u(s) = ug(s) + jus(s) which
satisfies the interpolation conditions. It can be shown that if the complex elements
in the set «; appear along with their conjugates and the corresponding [3; are also
conjugated, then ug(s) is a real Ho, function with ||ug(s)||e < 1 which also satisfies
the interpolation conditions. The above algorithm can also be suitably modified to
handle the case when the nominal model has a pole at the origin. We show this in
the examples.

In the next section we discuss how robust stabilization against parametric un-
certainty might be attempted using the theory for unstructured perturbations.

13.6  OVERBOUNDING PARAMETRIC UNCERTAINTY BY UN-
STRUCTURED UNCERTAINTY

In this section our objective is to show how the frequency domain uncertainty in-
duced by parametric uncertainty can be “covered” by overbounding with a suitable
bounding function r(s). Once this is accomplished, the preceding theory of robust
synthesis under norm bounded perturbations (Section 13.4) can be applied to the
problem. If the procedure is successful the resulting controller robustly stabilizes
the system under the given parametric uncertainty set.
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Counsider the feedback system shown in Figure 13.4.

Figure 13.4. A unity feedback system

Suppose the system consists of a plant G(s, p) containing a parameter p which varies
in an uncertainty set £2(¢) about a nominal value p”. The parametric uncertainty
set Q(e) is defined by:

Qe) ={p:llp—p"l| <€}

Thus, the size of the uncertainty set Q is parametrized by ¢, and we shall loosely
refer to (e) as a set of plants. Ideally one would like to find the largest such set
in the parameter space of the plant that can be robustly stabilized. This means
that the free parameter ¢ needs to be increased and the set 2 enlarged until the
Maximum €, €max 18 reached for which the entire family of plants is stabilizable. It is
also necessary to find at least one compensator C(s) that will robustly stabilize the
family of plants for any ¢ < €.x. This problem of finding €5 is as yel unsolved.
However, we shall show that by using the extremal properties of the generalized
Kharitonov segments and the techniques from H,., synthesis, we can determine an
€ < €max such that a robustly stabilizing controller C*(s) can be found for the
family of plants Q(e*).

Norm-bounded Uncertainty and Parametric Uncertainty

Our objective is to determine a bounding function r(s) which bounds the frequency
domain uncertainty induced by parametric uncertainty. To be specific, let us con-
sider the parametric uncertainty to be modelled by an interval plant denoted by

G (s):

G (s) := {G(s) L G(s) = Zgg - Zzgzz i : 1228 } (13.37)

where

n;(€) € [n) — wie, n + wye], di(e) € [df —wje, df + wje].

Here ¢ is the plant order and ¢, = 0,...,q. The size of the plant coefficient
perturbations are parametrized by the free parameter € and the weighting factors
w; and w; which are chosen to reflect scaling factors and the relative importance of
the perturbations. The perturbation set () is a box in the coefficient space of the
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plant, each side of which has a length of 2w;e. The center of this box corresponds
to the nominal coefficient values, n.°® and d.°.
The Bode uncertainty magnitude band induced by parametric uncertainty is

|G (ju) — Goljw)] = |AG(juw). (13.38)
We seek a stable, proper, real rational, minimum phase function r(s) for which
|AG (jw)| < |r(jw)|, forall w e R (13.39)

We know from Chapter 8 that at each frequency, the maximum magnitude in the
complex plane template G¢(jw) will correspond to a point on one of the extremal
segments of G°(s) which we denote as Gg(s). We can therefore search over the
extremal segments G&(s) at all frequencies and calculate exactly the maximum
perturbation é(e,w) induced at the frequency w. In other words

8(e,w) = max |AG*(jw)|.

GeGe

Figure 13.5. Parametric uncertainty converted to H., uncertainty for an interval

plant G(s)
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Figure 13.5, which shows the polar plot for an arbitrary G(s), is drawn to
illustrate this overbounding for a prescribed value of e.

In Figure 13.5 the uncertainty image set is induced by the variation of parameters
within the e-sized box in parameter space. These image sets are enclosed within a
band which represents the minimum and maximum magnitudes at each frequency.
The curves Gy, and Gy are formed by the minimum and maximum magnitude
points of G(s) at each frequency. The curve (G5 denotes the plot for the nominal
plant. At each frequency, the largest distance between the nominal point and a
point on the boundary of the uncertainty set is the maximum additive unstructured
perturbation magnitude, §(w) at that frequency. A circle drawn with its center
at the nominal point and of radius §(w) represents “the H., uncertainty at that
frequency and €.” The figure shows such sets for five frequencies. At frequency wy,
for example, the center of the circle is named Gy (w4) and its radius is 8(w4) which is
equal t0 AGmax(wa). The conservativeness introduced by replacing the parametric
uncertainty by the H, uncertainty circles is obvious from Figure 13.5. Figure 13.6
shows the bigger and more conservative uncertainty band. It covers the uncertainty
circles with radius é(w) at each frequency.

Figure 13.6. H,, uncertainty circles of radius é(w)
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With this computation in hand we can proceed to the choice of a bounding
function 7(s). The simplest choice of r(s) is a constant

r(s)=r=25(¢) = max 8(e,w) (13.40)

we

which equals the radius of the largest such uncertainty circle over all frequencies.
Figure 13.7 shows the uncertainty band for the above choice of r(s).

Figure 13.7. Uncertainty band when r = é(¢)

Here, the circles of different sizes at different frequencies are all replaced by
the biggest circle. In Figure 13.7 this is the circle at frequency ws. The choice
of constant r(s), although simple, gives a more conservative bounding of AG(s),
which eventually means a lower value of ¢,,,,. This conservativeness can often be
minimized by introducing poles and zeros in r(s) and shaping it such that |r(jw)]
approximates §(¢,w) at each w as closely as possible from above:

[r(jw)| > 6(e,w), forall weR.
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We describe by examples how the H., synthesis methods may be applied to
interval plants. Let us start with an example for a stable nominal plant.

Example 13.1. Let the nominal plant be

s+1
s34+ 852 4+ 225+ 20

with poles at —2, —3 &£ j, all in the LHP. The perturbed plant is written as

Go(s) =

s+ a
3 +bs?+es+d

G(s) =
and the perturbation of the coefficients about the nominal is given by
E[l—el+e, be[8—€68+¢], c€[22—¢€,22+¢], d€[20—¢20+¢].

Since it is assumed that the number of unstable poles of the plant should remain
unchanged, it is required that ¢ be less than some ¢; which is such that the entire
family of plants is stable. This initial bound, €; on € can be found by checking the
Hurwitz stability of the denominator Kharitonov polynomials:

Kau(s) =5+ (8+¢€)s” + (22— €)s + (20 — ¢)
Kap(s) =5+ (84 €)s” + (22 + €)s + (20 — ¢)
Kas3(s) =% + (8 — €)s? + (22— €)s + (20 + ¢)
Kga(s) =82 + (8 —€)s* + (224 €)s + (20 + ¢).

From the Routh-Hurwitz table for K4 (s),Ka2(s),Kq3(s), Kaa(s), it can be shown
that e; = 6.321, i.e., the entire family of plants will be stable as long as € < 6.321.
Now, for each ¢, all the extremal segments will have to be searched at each w to
get 8(e,w) = mza( |[AG*(jw)|. Then
GeGe

8(e) := max é(e, w).

wER.

The next task is to find a suitable bounding function r(s). Once an r(s) is obtained,
a robustly stabilizing compensator can be synthesized for the interval plant with
parameter perturbations in that ¢ — box. This can be done for any ¢ < 6.321.

For a constant r(s) we must have

r(s) = r = 6(e).

To proceed let us set € = 6. For this choice of € the numerator and denominator
Kharitonov polynomials are:

I(rﬂ (S) = I(HQ(S) =5 — 5, I{WQ(S) = [(n4(5) =5+ 7
Ka(s) = 57+ 1457 + 165 + 14, Kio(s) = s7 4 14s” + 28s + 14
Kaa(s) = 57 4+ 25 4+ 165 + 26, Kaa(s) = s7 4 257 + 285 + 26.
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The numerator and denominator Kharitonov segments are

(s,)
(s,4)
Saz(s,A) =
(s,A)
(s,4)

S, A

(
(1
(1
(1
(

1 — X EKp1(s) + AR,3(s)
— N E g (5) 4 AK go (5
+ AKus
— M Kga(8) + AK
1— AN Kg3(s) + AKqa(s

)

)
~NEKa

)

)

+ (12X — 5)
s +145 + (12X + 16)s + 14

+ (14 — 12X)s” + 165 + (14 + 122)
s +(14— 12X)s? + 28s + (14 + 12))
5% + 257 + (16 4 12X)s + 26,

s

s

(s)
(s)
(s)
(s)

where A € [0, 1]. The extremal plants are

Gi(s,A) =
G4(S,/\) =
G7(S,/\) =

G10(S, A) =

1.6

K,1(s)
Sd1 (S, /\) '
Kpi(s)
Sd4 (S, /\)’
Kp3(s)
Sdg (S, A)J
Sn(s,A)
I(dQ (S) '

Ga(s, ) = % Gs(s, ) = %
Gs(s,A) = ;;%S(SA)) Ge(s,A) = ;;%S(SA))
N = G G = TR

Gri(s,A) = %3(3)) Gis(s, A) = SXSQA))'

Maximum Perturbation

Figure 13.8. Maximum perturbation é(¢,w) vs w for ¢ = 6 (Example 13.1)
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By searching through these extremal segment plants we get the plot of the max-
imum perturbation é(€,w) at each w as shown in Figure 13.8. The maximum value
8(6) of 8(6,w) is found to be 1.453. Therefore we choose r = 1.453 to proceed with
our synthesis. Since there are no unstable poles in Gy(s) there are no interpolation
constraints. So, for the stable plant case, the controller can be parametrized in
terms of an arbitrary Schur function u(s). Let us pick u(s) =« = 0.3 < 1. Then

U 0.3
@= r 1.453 0.207
and
C(s) = —2 u(s)

TI1-GoQ  7(s) — Gol(s)u(s)
_0.207(s” + 85 + 225 4 20)
T 83 48524 21.793s + 19.793°

This C(s) stabilizes the interval plant G(s) with coefficients varying in the intervals
a€[=5,7, be2,14], c€[16,28], de€ [14,26].

The above example shows that for an interval plant which is built around a stable
nominal plant it is always possible to come up with a robustly stabilizing compen-
sator so long as the coefficient perturbation, €, is less than €.

Next we consider an example of a nominal plant with a single unstable pole.

Example 13.2. Let the nominal plant be

s +4 _ bs44

Go(s) = (s—3)(s+5)  s2+2s—15’

and the interval plant be
_ 9s+a
G(S)_52+bs+c’
where
a€d—cd+¢], bE[2—¢€2+¢, c€[-1b—¢—15+¢€].

Using the Routh-Hurwitz criterion on the denominator Kharitonov polynomials, it
can be shown that the number of unstable zeros of Ky (s), ¢ =1,2,3,4 (and hence
the number of unstable poles of the family of plants) does not change for any € < 15.
The Blaschke product 1s

- 5(3)+4

Go(3) = “Grnaty - 03



560 ROBUST PARAMETRIC STABILIZATION Ch. 13

We have to find a Schur function u(s) such that

and it is necessary that
lu(3)] < 1.

Here, if the design is to be done with a constant r, it is necessary that » < 0.396
for a robust stabilizer to exist. Therefore 6(¢) = 0.396.

As before we now generate the 6 —e graph relating unstructured perturbations to
structured perturbations. This involves generating the extremal set and searching
over it at each frequency for the largest perturbation é(e,w) for each value of e.
The details of this calculation are left as an exercise (Exercise 13.3). By further
maximizing this perturbation over w, we obtain 6(¢). The plot §(¢) vs € is shown in
Figure 13.9.

0.5

045 .

04+ .

035+ :

03F 8

= 025F .

0.2+ .

0.1+ 4

0.05+ .

Figure 13.9. é(¢) vs ¢ (Example 13.2)

The value of € corresponding to é(¢) = 0.396 comes out to be equal to 2.83. Hence
the maximum € for which the plant can be robustly stabilized, with a constant r is

2.83.
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To proceed let us choose the constant function r(s) =
Hence u(3) &~ 1 = u(s). Now

~ U 1
Q= R T —2.532
. 2532(s—3
Q) = Bt = 2D
and therefore,
q(s) _2.532(s+5)

) = =G m06) ~ G=1580) "

This C(s) stabilizes G(s) with

r = 6(2.83) = 0.396.

a€[1.2,68, be[-0848], ce[-178,-122].

This can be verified by checking if C'(s) stabilizes the extremal segments of G(s).
Now suppose that we wish to tolerate a larger amount of parametric uncertainty,
corresponding to, say € = 4. For this value of ¢ we verify that the maximum
perturbation over all frequencies is 6 = 0.578. If a constant r(s) = r were attempted
we immediately fail to design a robust controller because of the required constraint

r < 0.396.

0.7

Maximum Perturbation

02+

Figure 13.10. Maximum perturbation vs frequency for e

=4 (Example 13.2)
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In this case it is obviously advisable to take the frequency information into
account and attempt to design a rational function r(s) that is loop-shaped to ap-
proximate §(¢,w) from above. This can be done from the plot of §(4,w), as in
Figure 13.10. One such r(s) is:

_ 252(s+06)
S P sy L

Figure 13.11 shows the plot of both |r(jw)| and §(4,w) and |r(jw)| is seen to ap-
proximate §(4,w) from above.

0.8

02+ : |

Figure 13.11. Maximum perturbation and r(s) vs frequency for ¢ = 4 (Exam-
ple 13.2)

Then
7(3) —2.52x%x 3.6

W3 = Ze) T i3xsax0sms 9T

Since r(s) is of relative degree 1, another interpolation condition on u(s) is u(co) = 0
so that a proper controller is obtained.
Now, the second row of the Fenyves array will be

us(o0) = u(co) +0.987 [s+3
T 11 0.98Tu(oo) |5 — 3

] = 0.987.
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Hence the Fenyves array is as shown in Table 13.2.

Table 13.2. Fenyves array

3 o} |
-0.987 0 u(s)
0.987 | us(s)

Since the elements of the Fenyves array are of modulus less than 1, hence an SBR,
function wu(s) exists which interpolates to

u(3) = —0.987, wu(oc0) =0.

This can also be verified by checking for the non-negative definiteness of the Pick
matrix. Here

a1 =3, ay; =00, and
G =—=0.987, By =0
so that the Pick matrix is

. 2
[1 0.987 0] [4.305><10—3 0
P= 6 - 0 0
0 0

Since P is symmetric and has non-negative eigenvalues, it is non-negative definite.
This also confirms the existence of u(s).

Now, us(s) can be parametrized in terms of an arbitrary Schur function us(s),
le.,

a(s) = 0.987+u3(s)(—212§) | 0.987 — us(s)
2 - - .
1+ 0.987 (s—oo) us(s) L= 0.98Tug(s)

s+o0o

Choosing uz(s) = 0, we get us(s) = 0.987. Then the next interpolation condition
is u(3) = —0.987. This is satisfied by taking u(s) as given below

—0.987+0.987 (52) 999535
u(s) = = ‘
1= 0.957 (253) us(s) 220574

Then
Cu(s)  —91.0853(s + 1.3)(s + 2.4)
7(s) o (s+0.6)(s +229.574) '
. 91.0853(s+ 1.3)(s + 2.4)(s — 3)
4(s) = BOY) = =566 1 3)0s + 220.574)




564 ROBUST PARAMETRIC STABILIZATION Ch. 13

Therefore, the robust stabilizer is

Cloy = — Q) _ 9LOSS(s +1.3)(s 4 24)(s +5)
T T Go(5)Q(s) (5 — 217.47)(5 + 2.687)(s + 0.53)

for the interval plant

G(s) =

In general larger values of € can be obtained by increasing e in steps, and for each e,
an attempt can be made to find a u(s) which is Schur and satisfies the interpolation
constraints. Then a robust stabilizer can be obtained from this u(s).

bs+a

m, a € [0,8], b € [_2,6], cE [_19, _11]

Example 13.3. (Robust Stabilization of Two-Phase Servomotor) A two-
phase servomotor is very rugged and reliable and is commonly used for instrument
servomechanisms. Its transfer function, with the control voltage E. as the input
and the displacement of the motor shaft © as the output, is given by

O(s) K.
E.(s)  Js2+(f+ K,)s

(13.41)

where
J is the equivalent moment of inertia of the motor shaft,
f 1s the equivalent viscous-friction coefficient of the motor shaft,
K. and K,, are positive constants.

K,, 1s the negative of the slope of the torque-speed curve and K, gives the variation
of the torque with respect to F, for a given speed. In the low-speed region, the
variation of torque with respect to speed and control voltage, is linear. However,
at higher speeds this linearity is not maintained. The above transfer function of
the servomotor is derived for low-speed operating regions. The following example
shows the robust stabilization of a servomotor whose parameters K. and K, vary
due to the nonlinearity.

O(s) K.
E(s)  s[Js+ (f + Kp)]

1s the transfer function of the servomotor. Let the nominal values of the parameters
be

G(s) =

K, = 0.0435 [oz — in./V],

K, = 0.0119 [oz — in./rad/sec],
J =17.77x 107" [oz — in. — sec?], and
£ =0.005 [oz — in./rad/sec].



Sec. 13.6. OVERBOUNDING PARAMETRIC UNCERTAINTY 565

These values are scaled up by 102, so that the nominal transfer function is

43.5

Gol) = S0 777 1 16.9)°

Now let K, and K,, vary in the intervals

K, € [43.5 — €,43.5 + €],
K, €[11.9 = 0.7¢, 11.9 + 0.7€].

If K =f+ K,, then
K €[16.9—0.7¢,16.9 4+ 0.7¢],
and
B K,
- s(Js+K)’

The block diagram in Figure 13.12 shows the closed-loop system with the interval
plant G(s) being the servomotor, C'(s) the stabilizing controller to be designed, and
a position sensor of gain K, in the feedback loop. Let us choose K, = 1 so that we
have a unity feedback system.

G(s)

E. 0
- C(s) G(s) .

K,

Figure 13.12. A feedback system (Example 13.3)

Since Gy(s) does not have a pole in the RHP, it is necessary that 16.9 — 0.7¢ > 0.
This implies € < 24.143 in order to guarantee that no plant in the family has a pole
in the RHP. The pole at the origin is assumed to be preserved under perturbations.
Hence the uncertainty bound r(s) must also have a pole at s = 0. So, we can write

where /(s) is a minimum phase H,, function. Here B(s) = 1. Let

) 435
Gols) = 5Gols) = g — 1597 ond
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Now an SBR function u(s) needs to be found such that u(s) interpolates to
/ /
oy~ PO PO
Go(0) 2574
u(oo) =0,

and it is necessary that |u(0)| < 1 which implies |#/(0)| < 2.574. For a constant 7/
we will have ' = 2.574. From the plot of & vs € as shown in Figure 13.13, we have
€max = 9.4.

25

Figure 13.13. é vs ¢ (Example 13.3)

Therefore, choosing ' = 2.574, we have u(0) = 1. A u(s) which will interpolate
to these two points can be chosen as

u(s) - s j— 1
So
o u(s) 1
W)= =7 = 5aerny ™
Q(s) = sQ(s) ’

T 2574(s+ 1)
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Therefore
q(s) _0.777s 4+ 16.9

T 1-Go(s)Q(5)  25+455
which should stabilize G(s) for e = 9.4, i.e.,

C(s)

K, €[34.1,529], and K, €[5.32,18.48].

A controller for perturbations greater than ¢ = 9.4 can be obtained by choosing
poles and zeros in #/(s) that is, loop-shaping #’(s) appropriately and redoing the
interpolation.

The controller that results on applying the techniques described above depends
on the procedure and is not guaranteed to succeed if the level of parametric un-
certainty € 1s specified apriori. However, it always produces a controller which
robustly stabilizes the system against parametric uncertainty for small enough e.
The technique can be extended, in an obvious way to linear interval systems as well
as multilinear interval systems using the extremal image set generating properties
of the generalized Kharitonov segments, established in Chapters 8 and 11. We leave
the details of this to the reader.

13.7 ROBUST STABILIZATION: STATE SPACE SOLUTION

In this section, we describe, without proof, the state-space approach to solving a
standard H,, problem, which is to find an output feedback controller so that the
H., norm of the closed-loop transfer function is (strictly) less than a prescribed
positive number +. The existence of the controller depends upon the unique stabi-
lizing solutions to two algebraic Riccati equations being positive definite and the
spectral radius of their product being less than 2.

w z
_— —_——
G
U Yy
C

Figure 13.14. A feedback system

The feedback configuration is shown in Figure 13.14 where G is a linear system
described by the state space equation:

= Ax+ Biw+ Byu
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Z = Cll‘ + Dllw + D12U
y=Chz + Dyyw+ Dasu

The following assumptions are made:
Assumption 13.1.
1) (A, By) is stabilizable and (C1, A) is detectable.
2) (A, By) is stabilizable and (C4, A) is detectable.
3) DT,[Cy Dy = [0 1),

oo Jon=[1]

Assumptions 1 and 2 together simplify the theorem statement and proof and also

imply that internal stability is essentially equivalent to input-output stability (7%, €

RHe). Assumptions 3 and 4 simplify the controller formula. It is also assumed that

Dyy = D5y = 0. This assumption is also made to simplify the formulas substantially.
Considering the Riccati equation

ATX + XA+ XRX -Q =0, (13.42)

where R and @ are real symmetric matrices and X = Ric(H) denotes the solution
of the Riccati equation associated with the Hamiltonian matrix:

= [ g G ] . (13.43)

The solution to the H., optimal control problem is given by the following the-
orem.

Theorem 13.4 There exists a compensator C(s) such that
[T ($)]loo <7
if and only of
1) Xoo = Ric(Hy, ) > 0; 2) Yy, = Rie(Js) > 0; 3) p(XooYoo) < 7%

where

i By BT 7]

Ho=| 4 —z BB, (13.44)
—cTc,  —AT ]
I leNes T

T i T

Jo=| 4 GG ] (13.45)

B, BT 4]
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and p(-) denotes the spectral radius of a matriz.
When the above condition holds, a controller is given by

Cls)i= | e ek (13.46)
where
. B BT X,
A, = A+ 17172 4 By Fog + Zog Lo Cs:
Lo ==Y, C7;
Fo =—-BI'X.;
Yoo Xoo ) ™

ro= (1= 2y

2]

The following example uses the above method to synthesize a robust controller.
Example 13.4. Given the augmented plant
A B B 1 0 -1
G(S) = Cl DH D]2 = 0 0 02 .
Cz D21 D22 -1 1 0

Let v be chosen as 1. In the MATLAB Robust Control ToolBox, the function hin-
fkgjd, uses the above method to check stabilizability and generate the compensator.
Using this function,

125

0-1]’

LEif

X=008>0, Y=2>0,

H

J

and their eigenvalues,

and the spectral radius of their product,
p(XY)=0.16 <y* =1.

Hence, the given system is stabilizable and the MATLAB function hinfkgjd gives

the following compensator
B, | | —-3.381 =2
D.| | 2381 0 |’

cw=|

-
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or equivalently 1769

C) = 33t

It is found that
0.952(1 — s)

5%+ 2.381s + 1.381’

TZH) =

and
[|[Tow |loo = 0.69 < 1.

We know that the closed loop system configuration shown in Figure 13.4 is a special
case of the general feedback configuration shown in Figure 13.14. Figure 13.15 shows
the same closed loop system, but with the plant block being broken into the nominal
plant Gy block and the perturbation block AG. The notation for signals used in
Figure 13.15 is the same as in Figure 13.14. Here, z is the state vector of the
nominal plant; u is the controlled input; z is the error signal and y is the measured
variable vector which is contaminated by the disturbance w.

AG ——m

Figure 13.15. Closed-loop system configuration

Although Figure 13.15 shows the nominal plant and the perturbation as separate
blocks, the perturbation is basically inherent to the plant and the error signal z is
due to the plant perturbation. It is assumed that the compensator C(s) stabilizes
the nominal system. In order to minimize the effect of external disturbances, C(s)
should be such that the error signal z should not respond excessively to the external
disturbance w. This translates to ||T,y (8)]|cc < 7, Where 7 is some given number.
The transfer function T, (s) is given by
C(s)(AG)

T,(s) = T4 ()G (s)” (13.47)
For this configuration, the block AG is uncontrollable and it makes sense to mini-
mize the H., norm of the transfer function from w to u:

C(s)

(13.48)



Sec. 13.7. ROBUST STABILIZATION: STATE SPACE SOLUTION 571

Then, assuming a strictly proper plant, the state space equations will be

&= Az + Bau (13.49)
y=Chz + w, (13.50)
Here we have By and () as zero vectors, Do = 1 and D as unit vectors so

assumptions 2, 3 and 4 hold here.
We already know that ||[AG(s)||co < 7. From the Small Gain Theorem, a neces-
sary and sufficient condition for robust stability of our system is

I(1 + Go(s)C(s)) T C(s)r]|ee < 1 (13.51)
= [T )l < =7 (13.52)

Now, with the help of Theorem 13.4, we can find Jin, the minimum value of ~
that corresponds to the maximum value of 7, 1.y, for which the system is robustly
stabilizable. Once 7.« 1s found, the corresponding €, can be found from the r
vs. € plot of the plant. The controller C*(s) obtained for ry,,y is one that stabilizes
the family of plants G, __ .

Example 13.5. Let the interval plant be

_20(s* +as—9)
Gls) = s3+bs24+s+¢’
where
a€8—¢68+¢, be[-4—¢,—4+¢€], c€[6—¢6+4¢,
and the nominal plant
_20(s* +8s5-9)
T3 —4s2+s5+6°
Checking the Kharitonov polynomials of the denominator of G(s), it is found that

the number of unstable poles remains unchanged as long as € < ¢ = 4.
The state-space matrices for Gy are

Go (5)

4—-1-6
A=|10 0 |;

01 0

[0 1
Blz 0 5 BQI 0 5

0 0

Oy =[000]; Cb=[-20 — 160 180];
D11 =0; Dia=1; D=1, Dsp=0.

Now, an initial value of 7 is chosen arbitrarily and = is decreased in steps with the
stabilizability condition being checked at each step, until a ¥ = 4, 1s reached after
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which one of the conditions of Theorem 13.4 fail. Here 7, is found to be 0.333 so
that r., 18 3. It was found that the spectral radius p for v = 0.333 was

p=0.105 <v* =0.111.

The compensator corresponding to v = 0.333 is

C*(s) 2.794s% + 19.269s + 16.475
s) = .
s3 4+ 24.531s5% 4 202.794s + 544.101

Now €max needs to be found from the r vs. € plot. Again, the extremal segments of
((s) are searched to obtain r for each €. From the plot of » vs. € in Figure 13.16,
we have €., = 0.4.

10

0 I L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

€

Figure 13.16. r vs ¢ (Example 13.5)

Therefore, C*(s) stabilizes the entire family G(s) where
a€[7.6,84], be[-44,-3.6], c€[5.6,6.4].

The following example repeats Example 13.2 using the 2-Riccati equation.
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Example 13.6.

Bs+4 b5+
(5—3)(s+5) s2+25—15

Go (8) =

The interval plant is
bs+a

G(S):sz—l—bs—l—c
with the intervals being
a€[d—cd+e, beE[2—¢,24¢], c€[-15—¢,—15+¢].

Here the system and input-output matrices are:

—2 15
=[]

o=l w=[]

Cr=[0 0 Co=[-H —4f
DH IOJ D12 = 1, D21 = 1, D22 IO

Since we already know from Example 13.2 that r.,.. = 0.395, we put Yy, =
1/0.395 = 2.532 and check if the conditions of the Theorem are satisfied. The
conditions were found to be satisfied with the spectral radius p(X., Y, ) = 6.382 <
v? = 6.386. Since we require that

P(XooYoo) <77,

and the value £ is close to 1 we may conclude that rp,x = 0.395. The controller

obtained 1s
s+5

52 4+ 11090s — 18070°

C*(s) was found to stabilize all the extremal segments for the family of plants
corresponding to € = €5 = 2.83.

C*(s) = 28000

13.8 A ROBUST STABILITY BOUND FOR INTERVAL SYS-
TEMS

In this section we derive a bound on the parameter excursions allowed in an interval
plant for which closed loop stability is preserved, with a given fixed controller. The
result described here does not require the restriction that the number of unstable
poles of the open loop system remain invariant under perturbations. The derivation
is tailored to exploit an H,., technique which can be used to maximize this bound
over the set of all stabilizing controllers.

Consider the feedback configuration of Figure 13.17.
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C(s) 1 G(s)

Figure 13.17. Interval Control System

Let L(s) = C(s)G(s) denote the loop gain, Gy(s) the nominal plant and C(s)
the fixed controller stabilizing Go(s). Let

Ci(s) = gg Gols) = ggg G(s) = gzg (13.53)
N(s) = N.(s)N,(s), No(s) = NC(S)N]?(S) (13.54)

and
D(s) = De(s)Dy(s),  Do(s) = Do(s)D,)(s). (13.55)

We investigate the stability of the feedback system when the loop gain is perturbed
from its nominal value Ly. Writing
_ NG
M= Dy

Lo(s) = (13.56)

We make the following standing assumption:
Assumption 13.2. The polynomials D(s) and N(s) have the same degrees as the
nominal polynomials Dq(s) and Ny(s), and Lo (s) is proper.

bet Dys) No(s)
Dy (s) + No(s) Dy(s) + No(s)

denote the sensitivity and complementary sensitivity functions respectively.

So(s) = and Ty(s) = (13.57)

Theorem 13.5 (Robust Stability Criterion)
The closed loop system remains stable under all perturbations satisfying

(D(jw) = Do(Gw))/ Do (jw)

L |(V(Gw) = Now))/No(jw) ’
Wi (jw) ]

Wy (jw)

2 ‘

<1 s
)
for all w € [—o0, ] if

[W7 (jw)So (jw)|” + [Wa(jw)To (jw)|” < 6, for all w € [—o0, 0]

where Wi (s) and Wa(s) are given stable proper rational functions.
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Proof. The perturbed and nominal closed loop characteristic polynomials are
respectively,

D(s)+ N(s) and Dg(s) + No(s).
Applying the Principle of the Argument to the proper rational function

o(s) = D(s) + N(s)
~ Do(s) + No(s)

leads to the conclusion that the perturbed closed loop system is stable if and only
if the image of ¢(s) does not encircle the origin as s traverses the imaginary axis
Jw. Now let us rewrite o(s) in the form

o(s) = D(s) + N(s)
Do(s) + No(s)
D(s) Dy (s) N(s) No(s)
Do(s) Do(s)+ No(s)  Na(s) Da(s) + No(s)
So(s) To(s)

=1+ [ 1 s+ [ - e

Obviously a sufficient condition for the image of this function to not encircle the
origin 1is that

D(jw) ” N(w) -
|5t 1| o+ [y = | <
for w € [—o0, o0] or equivalently
(D(w) = Dy(jw))/Do(jw) - - ,
(V(jw) = No(jw))/No(jw) s - ,
W) Wo(jw) Ty (jw)| < 1 (13.59)

From the Cauchy-Schwarz inequality we have
‘ (D(jw) = Do(jw))/ Do (jw)

Wl (_](.d)
(N (jw) = No(jw))/No(jw)

W2 (_](.d)

‘(D(jw) — Do (jw))/ Do (jw)
Wi (jw)

Wi (jw)So (Jw)+

Wa (jw)To (jw)

< ’ n ‘(N(J'W) — No(jw))/No (jw)

Wo(jw)

)

(1w G)Sh )l + [Wa )T () ”)
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Thus the conditions given in the theorem guarantee that (13.59) holds. This prevents
any encirclements of the origin by the Nyquist locus of o(s) which proves that
stability is preserved. &

Suppose now that a controller stabilizing the nominal plant is given and that

sup (193 G)So(G0)|” + [Wa (@) Ty (jw)|*) = &. (13.60)
we

The theorem derived above shows that the smaller ¢ is, the more robust the
feedback system is. An interpretation of this is that robust stability 1s obtained if
a weighted sum of the input and output signals (1 and y») as in Figure 13.18 can
be tightly bounded.

Yo

W2 (S)

Y1
_i)—~ C(s) » G(s) y Wils) ——

Figure 13.18. Interpretation of robust stability

We shall now relate ¢ to the allowable parameter excursions in the plant family
G(s), assuming specifically that G(s) is an interval plant.

We first introduce an obvious but useful property of interval polynomials from
which our result will follow. Let

p(8) = po + P15+ pas® + -+ py s

denote a real polynomial, p the vector of coefficients and II be the box in the
coefficient space defined as

p7€[p?_w7€ap?+wze]a i:0a1a2a"'aq

where p? and w; are the nominal value and a weight, respectively. Then interval
family of polynomials is defined as

p(s,e) = {p(s, €) =po + 15+ pasi+ - +p,s7p€ H} (13.61)

Let p%(s) be the nominal polynomial with coefficients p! for i = 0,1,2,---,¢ and
let K]f (s,€), i = 1,2,3,4 denote the Kharitonov polynomials associated with the
interval family p(s, €).
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Lemma 13.1 For each w,

SUIR[ |p(jw,€) —po(jw)| = nax |K§(jwa €) _Po(jw)|
Pe e

= |K;;(jw, €) —po(jw)| for any ¢ = 1,2,3,4
=€ |K;(jw, 1) = p°(jw)| (13.62)

Proof. The proof of this lemma follows from the fact that the image set p(jw, €),
at each w is a rectangle with corners equal to the images of the Kharitonov poly-
nomials and moreover the distance from the center to each corner is equal. &

In fact it is easy to see that

sup |p(jw,e) —po(jw)| —€ |w0 + wow? + waw® -+ jw(wy + waw? + wsw? - |
pell

Now let us bring in the interval plant parametrized by p:

G(s) = n(s)

_ o ngtngs+ ot ngst
_{G(S)— o dist ot dyet
n; € [ny,nfl,d; € [dy ,df], i=0,1,2,--, ¢}

7 ) K3

where ' ' ' '
ni € [nf —wyp,nd +whpl, and d; € [df —wip, df +wip]

and dj, n) are nominal values. For convenience, we let Kp (s,p) and Ky, (s, p)
denote any of the Kharitonov polynomials of D,(s) and N, (s), respectively. Our
problem is to determine how large p can be without losing stability.

Suppose that the weighting functions W, (s) and Wy(s) are selected to satisfy

I{Dp(]w’l)_DZ())(] ) .

DI(jw) < Wi (jw) (13.63)
KNp(jw,l)—N;(jw) )

N (jw) < W (jw)l .- (13.64)

Theorem 13.6 Let weighting functions Wi(s) and Wa(s) be selected satisfying
(13.63) and (13.64), and let C(s) be a stabilizing compensator for the nominal
plant Go(s). If

| W )So () + W) To(o)? |, = (13.65)
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then C(s) robustly stabilizes the interval plant G(s) for all p < ppax where

1
fimax = = (13.66)
Proof. Recall that
O(s) = gg Go(s) = gg((;) G(s) = gzg (13.67)
and
N = NNy s), No(s) = Nels) N2(s), (13.6%)
D(s) = Ds)Dy(),  Dols) = D(s)D(s). (13.69)
From Lemma 13.1 we know that for a fixed w
D(jw, ) — Do(jw) [Kp,(jw, 1) — DS (jw)]
‘ Do) |- D} () ‘
N(jw, 1) — No(jw) [Kn, (jw, 1) = ND(jw)]
‘ NoGe) |- N (j) ‘
for D,(s) € D,(s) and N,(s) € N,(s). Now
D) = Do) _ | K e 1= Db .
Dp(S)e]I:))p(S) Dy (jw) - Dg(jw) <#lM)
w“ N (jw) = No(jw) K, (jw, 1) = Ny (jw) ”
Np(s)d%p(s) No(jw) NO () < 1 [Wa(jw)| .

Therefore the condition (13.58) for robust stability given in Theorem 13.5 is satisfied
if

1
P4t < 5 (13.70)
It follows that )
ﬂmax = E
&

Remark 13.2. It is clear that i,y can be increased (and therefore larger param-
eter excursions allowed) by choosing C(s) to make & small. There are techniques
available in the H,, control literature for designing the controller C(s) to minimize
& over the set of all stabilizing controllers for G(s). The details of this procedure
are omitted and we refer the reader to the literature.
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Summary

In this chapter we have presented two synthesis results concerning the robust sta-
bility problem. These results are but two steps towards the solution to the general
robust synthesis problem, but so little is known about this solution that every step
is of interest. We have shown here that a minimum phase interval plant can always
be stabilized by a stable controller of order n —m — 1 regardless of the magnitude
of the perturbations. Many problems are still to be solved in this domain. For
example, it would be interesting to extend the robust state feedback stabilization of
Chapter 5 to the case when (A, B) are not in controllable companion form. Another
open problem of particular interest is the following. In view of the generalization
of Kharitonov’s theorem given in Chapter 7, consider a Single-Input Single-Output
interval plant and find the necessary and sufficient conditions for the existence of
a stabilizing controller. Moreover, if stabilization 1s possible, give a constructive
method for finding the controller. If the four Kharitonov polynomials associated
with the numerator of the interval plant are stable, then every plant in the family 1s
minimum phase, and the problem is reduced to that of Section 13.2 of this chapter
and 1t 1s always possible to find a solution. On the other hand, if these Kharitonov
polynomials are not all stable, there will not always be a solution and the solution
if it exists certainly need not be a ‘high-gain’ controller as in Section 13.2.

The multivariable versions of the problems of robust stabilization under additive
and multiplicative unstructured uncertainty described in this chapter are fully de-
veloped and well documented in the literature. This theory is based on the YJBK
parametrization of all stabilizing controllers, inner outer factorization of transfer
matrices and on minimal H., norm solutions to matrix interpolation problems.
These results are thoroughly treated in textbooks on H, control theory. Moreover
they relate only indirectly to robustness under parametric uncertainty and since our
purpose is only to demonstrate by examples the use of H., techniques in robust
parametric problems we omit their treatment here. We have also omitted various
other techniques such as robustness under coprime factor perturbations as devel-
oped in the H., literature, which can certainly be profitably used in parametric
uncertainty problems. In the specific case of coprime factor perturbations, we could
relax the assumption of constant number of RHP poles in the family of uncertain
plants, and the absence of jw axis poles in the nominal plant Go(s). Establishing
connections between parametric and nonparametric uncertainty, and extending ro-
bust parametric results to multivariable systems, is an area of ongoing research. The
simple examples given here may be the beginnings of a much more sophisticated
framework.

13.9 EXERCISES

13.1 Find a robust stabilizing controller that stabilizes the following interval plant.

n(s) ass® + a1 s + ag

A S A A g
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where the parameters vary as follows:

a2€[1a2]a a1 €[2a4]a Qo €[1a3]a

Bs €12, pBel-1,2, pel0b1], G el[-151]
13.2 Repeat Exercise 13.1 with the following interval plant.

a5 + 15+ ag

G =
(s) Bast + G383 + Fo5? + s + Bo
where
o € [1,3], o] € [05, 15], o € [25,35],
Ba € [-3,-1], Bs € [-2,2], B € [-1.5,1.5)],

B €10.5,-0.5], B €[-1.5,-0.5].

13.3 Consider the plant
5s+a

s2+bs+ec
and suppose that the parameters vary within the intervals

G(s) =

a€Ed—ecd+e], be2—¢2+4¢, ce€[-15—¢—-1b+¢].

Plot the relationship between parametric uncertainty € and maximal unstructured
uncertainty é(e,w). What is the constant 6(e) which corresponds to the parametric
uncertainty € = 2.

Answer: Fore=2 6=0.27.

13.4 Example 13.1 used a constant r to represent the unstructured perturbation
[|AG(jw)||. Repeat this example with a rational function r(s) that loopshapes the
uncertainty function 8(e,w).

13.5 Using the same nominal plant and controller transfer functions as in Exam-
ple 13.1, solve the following problem:

1) Compute the maximum allowable perturbation €q,, by using the method de-
scribed in Section 13.8. Choose the weight functions W (s) and Ws(s) to be
both 1.

2) Using GKT (Chapter 7), compute €,y.
3) Compare these two results and discuss the difference.

13.6 Repeat Example 13.1 by using the 2 Riccati equation method described in
Section 13.7.



Sec. 13.10. NOTES AND REFERENCES 581

Hint: MATLAB function hinfkgjd is needed to solve this problem. The function
is a part of MATLAB Robust Control ToolBox.

13.7 In Example 13.1 the constant r was used to bound the structured uncertainty.

1) Rework this problem with a rational function r(s) that is loopshaped to bound
the uncertainty function &(w).

2) Let us call the controller obtained from Example 13.1 C4(s) and the solution
of 1) Cs(s). With these respective controllers, compute the true maximum
structured uncertainty bound ey,

Hint: Once the controller is given, the true €,,, can be found by applying GKT.

13.8 Let the nominal plant be

Gio(s) = 30s + 10 _ 30s+ 10
T 5+ 2)(s—3)(s—2) °—3s2 —4ds+ 12

and the interval plant
305+ a

$3 +bs2+es+d

G(s) =
with the intervals being
a€[10—€,104¢], be[-3—¢,—3+¢], c€[-4—¢—-4+4¢], d€[12—¢,12+¢].

Find a robust stabilizing controller and the corresponding value of .

13.10 NOTES AND REFERENCES

The results on simultaneous strong stabilization given in this chapter are based on
Chapellat and Bhattacharyya [60]. The problem treated in Section 13.2 has also
been treated by Barmish and Wei [18]. The problem of simultaneous stabilization of
a discrete set of plants has been considered by Vidyasagar and Viswanadham [235]
Saeks and Murray [200] and Blondel [41]. Property 13.3 may be found in the book
of Marden [175]. Rantzer and Megretski have given a convex parametrization of
robust parametric stabilizers [196]. The section on Nevanlinna-Pick interpolation
is adapted from Dorato, Fortuna and Muscato [85]. A proof of the Nevanlinna
algorithm for the matrix case, as well as multivariable versions of the unstructured,
additive, multiplicative and coprime factor perturbation problems are thoroughly
treated in Vidyasagar [231]. The application of H, techniques for robust parametric
synthesis is adapted from S. Bhattacharya, L.H. Keel and S.P. Bhattacharyya [28].
The state space solution of the H,, optimal control problem via Riccati equations,
Theorem 13.4, is due to Doyle, Glover, Khargonekar and Francis [91]. The proof of
Theorem 13.2 can be found in Walsh [236]. Theorem 13.5 is due to Kwakernaak [157)
and the result of Theorem 13.6 is due to Patel and Datta [186].



