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Linear Time Invariant Systems

A general LTI system may be described by the linear constant
coefficient differential equation:

an
dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a1

dy(t)

dt
+ a0y(t)

= bm
dmu(t)

dtm
+ bm−1

dm−1u(t)

dtm−1
+ · · ·+ b1

du(t)

dt
+ b0u(t). (1)

Introducing the differentiation operator

Dk {f (t)} :=
dk f (t)

dtk
(2)

(1) may be written as

a(D) {y(t)} = b(D) {u(t)} (3)
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Linear Time Invariant Systems (cont.)

where

a(D) = anD
n + an−1D

n−1 + · · ·+ a1D + a0

b(D) = bmD
m + bm−1D

m−1 + · · ·+ b1D + b0.
(4)

The solution of (1) or (3) is greatly facilitated by using the Laplace
transform. Moreover several fundamental concepts of system
theory such as transfer functions, poles and zeros, block diagram
algebra, realization theory and frequency response are based on the
Laplace Transform. The Laplace Transform was introduced by
Pierre-Simon Laplace in 1787. However its use in Engineering was
popularized by Oliver Heaviside, one hundred years later. The next
few sections describe the Laplace transform and its applications to
system analysis.
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Linear Time Invariant Systems (cont.)

Pierre-Simon Laplace
(23 March 1749 ∼ 5 March
1827)

Oliver Heaviside
(18 May 1850 ∼ 3 February
1925)
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Definition of the Laplace Transform

The Laplace transform of a function f (t), with the property,

f (t) = 0, t < 0 (5)

is defined by

L−{f (t)} = F (s) =

∫ ∞
0−

f (t) e−stdt (6)

where t is real and s is complex. When (5) is satisfied we will say
that f (t) is causal. The Laplace transform of a function f (t)
exists if the integral in (6) exists for some values of s. For
example if f (t) = eαt , α real, then (6) exists if Re s > α. In this
case the complex plane region Re s > α is called the region of
convergence. More generally if σ0 is the minimum real value, such
that the integral ∫ ∞

0−
|f (t)| e−σ0tdt (7)
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Definition of the Laplace Transform (cont.)

converges, that is, is finite, then the region

Re s > σ0 (8)

s-plane

σ0
Re

Im

Region of
Convergence
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Definition of the Laplace Transform (cont.)

is a region of convergence. If there exists a region of
convergence, the Laplace transform is said to exist, otherwise it
does not exist. The function et

2
, for example, does not have a

Laplace transform as there are no values of s for which (6) is finite.

Remark
The lower limit 0− in the integral in (6) is used to accommodate,
or allow, impulses at the origin as inputs to dynamic systems. In
some books the value at 0+ is also used with corresponding
changes in the formulas.

The inverse Laplace transform can be shown to be

L−1{F (s)} =
1

2πj

∫ σ+j∞

σ−j∞
F (s) estds = f (t) (9)

where σ > σ0 and is otherwise arbitrary. Although (9) holds true
formally, the inverse Laplace transform is most commonly obtained
from tables of Laplace transforms rather than the cumbersome
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Definition of the Laplace Transform (cont.)

integration involved in evaluating the integral in (9). Implicitly this
utilizes the uniqueness of the Laplace transform and its inverses.
Thus we denote

f (t)↔ F (s) (10)

as a Laplace transform pair, with the understanding that f (t) and
F (s) are alternative mathematical representations of the “same”
signal.
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Properties of the Laplace transform
1. Linearity

If f (t) and g(t) are causal signals with

f (t)↔ F (s)

g(t)↔ G (s)
(11)

then, for arbitrary a, b real or complex,

af (t) + bg(t)↔ aF (s) + bG (s). (12)

Note however that, in general

f (t)g(t) = F (s)G (s). (13)

The proof of (12) is straightforward using the definition of the
Laplace transform.
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Properties of the Laplace transform
2. Time Shifting

Let U(t) denote the unit step function:

1

t

Figure: Unit Step U(t)

U(t) =


1, t ≥ 0,

0, t ≤ 0−.

(14)
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Properties of the Laplace transform (cont.)
2. Time Shifting

Consider a causal function f (t)U(t).

f (t)U(t)

t

Figure: Causal function
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Properties of the Laplace transform (cont.)
2. Time Shifting

If f (t) is shifted to the right by T seconds, we obtain
f (t − T )U(t − T ) =: g(t), the shifted version of f (t)

T

g(t)

t

Figure: Shifted function
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Properties of the Laplace transform (cont.)
2. Time Shifting
The Laplace transform of the shifted function g(t) is:

G (s) =

∫ ∞
0−

f (t − T )U(t − T )e−stdt

=

∫ ∞
T

f (t − T )U(t − T )e−stdt. (15)

With t − T =: λ, we have

G (s) = e−s T
∫ ∞
0−

f (λ)u(λ)e−sλdλ

= e−s TF (s). (16)

Therefore, if
f (t)U(t)↔ F (s), (17)

then
f (t − T )U(t − T )↔ e−s TF (s). (18)
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Properties of the Laplace transform
3. Differentiation

If f (t) is a continuous signal and g(t) =
d f (t)

dt
its derivative, the

Laplace transform of g(t) is:

G (s) =

∫ ∞
0−

d f (t)

dt
e−s tdt

= f (t) e−s t
∣∣∞
0−
− (−s)

∫ ∞
0−

f (t)e−stdt︸ ︷︷ ︸
F (s)

= −f (0−) + sF (s). (19)

Therefore

L−
{
d f (t)

dt

}
= sF (s)− f (0−). (20)
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Properties of the Laplace transform (cont.)
3. Differentiation

From (20), it follows that

L−
{
d2f (t)

dt2

}
= sL−

{
d f (t)

dt

}
− ḟ (0−)

= s2F (s)− sf (0−)− ḟ (0−) (21)

and similarly, it follows recursively that

L−
{
dk f (t)

dtk

}
= skF (s)− sk−1f (0−)− sk−2ḟ (0−)

− · · · − dk−1f (0−)

dtk−1
for k = 0, 1, 2, · · · . (22)
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Properties of the Laplace transform
4. Final Value Theorem
If f (t) ↔ F (s) and if f (∞) exists, then we show below that

f (∞) = lim
s→0

s F (s). (23)

To prove (23) consider

L−
{
d f (t)

dt

}
=

∫ ∞
0−

d f (t)

dt
e−s tdt = sF (s)− f (0−) (24)

so that ∫ ∞
0−

d f (t)

dt
dt = lim

s→0
s F (s)− f (0−) (25)

and
f (∞)− f (0−) = lim

s→0
s F (s)− f (0−) (26)

which implies (23).
Note that it is important to be sure that f (∞) exists otherwise the
right hand side of (23) may yield a value that is not equal to
f (∞). To see this, consider the following example.



17/52

Properties of the Laplace transform (cont.)
4. Final Value Theorem

Example

If f (t) = et , F (s) =
1

s − 1
and

lim
s→0

sF (s) = lim
s→0

s

s − 1
= 0 (27)

whereas
lim
t→∞

et =∞. (28)
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Properties of the Laplace transform
5. Initial Value Theorem

If f (t)↔ F (s) is a Laplace transform pair the initial value theorem
states that

f (0+) = lim
s→∞

s F (s) (29)

provided the left hand side of (29) exists. To prove (29) note that

the Laplace transform of
d f (t)

dt
is:

s F (s)− f (0−) =

∫ ∞
0−

d f (t)

dt
e−s t dt

=

∫ 0+

0−

d f (t)

dt
e−s t dt +

∫ ∞
0+

d f (t)

dt
e−s t dt

= f (0+)− f (0−) +

∫ ∞
0+

d f (t)

dt
e−s t dt (30)
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Properties of the Laplace transform (cont.)
5. Initial Value Theorem

so that

s F (s) = f (0+) +

∫ ∞
0+

d f (t)

dt
e−s t dt. (31)

Taking limits in (31) as s →∞, we have

lim
s→∞

s F (s) = f (0+) +

∫ ∞
0+

df

dt

(
lim
s→∞

e−st
)
dt

= f (0+) (32)

proving (29). Note that if F (s) is rational the right hand side
exists only if F (s) is strictly proper.
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Properties of the Laplace transform (cont.)
5. Initial Value Theorem

Example

If

F (s) =
1

s
+

1

s − 1
(33)

we have
s F (s) = 1 +

s

s − 1
(34)

lim
s→∞

s F (s) = 2 (35)

and
f (t) = U(t) + et (36)

giving
f (0+) = 1 + 1 = 2 (37)

verifying (29).
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Properties of the Laplace transform
6. Convolution

Let

f1(t)↔ F1(s)

f2(t)↔ F2(s)
(38)

then

F1(s)F2(s) =

∫ ∞
0−

{∫ t

0−
f1(τ) f2(t − τ) dτ

}
e−s t dt. (39)

The function

g(t) :=

∫ t

0−
f1(τ) f2(t − τ) dτ (40)

is called the convolution of f1(t) and f2(t), and is usually denoted
as f1(t) ∗ f2(t). Thus, (39) states that

L− {f1(t) ∗ f2(t)} = L− {g(t)} = F1(s)F2(s). (41)
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Properties of the Laplace transform (cont.)
6. Convolution
Proof.
To prove (41) observe that, since f1(t − τ) = 0 for τ > t,

L− {g(t)} =: G(s) =

∫ ∞
0−

(∫ t

0−
f1(t − τ) f2(τ) dτ

)
e−s t dt

=

∫ ∞
0−

(∫ t

0−
f1(t − τ) e−s t dt

)
f2(τ) dτ. (42)

Now ∫ ∞
0−

f1(t − τ) e−s t dt = e−s τ F1(s) (43)

so that substituting (43) in (42)

G(s) =

∫ ∞
0−

e−s τ F1(s) f2(τ) dτ

= F1(s)

∫ ∞
0−

f2(τ) e−s τ dτ

= F1(s)F2(s) (44)

proving (41).
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Properties of the Laplace transform (cont.)
6. Convolution

Example

If f1(t) = et and f2(t) = e−t we have

f1(t) ∗ f2(t) =

∫ t

0
eτ e−(t−τ) dτ

=

[∫ t

0
e2 τ dτ

]
e−t

=

[
e2 τ

2

∣∣∣∣t
0

]
e−t

=

[
1

2
e2 t − 1

2

]
e−t

=
1

2
et − 1

2
e−t . (45)
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Properties of the Laplace transform (cont.)
6. Convolution

Example (cont.)

On the other hand

L−
{

1

2
et − 1

2
e−t
}

=
1

2

[
1

s − 1
− 1

s + 1

]
=

1

2

2

(s + 1)(s − 1)

=
1

s + 1

1

s − 1

= L− {f1(t)} L− {f2(t)}
= F1(s)F2(s) (46)

verifying (39).
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Properties of the Laplace transform (cont.)
6. Convolution

Example

Let f1(t) = δ(t), and let f2(t) be arbitrary. Then

f1(t) ∗ f2(t) = L−1− {F1(s)F2(s)}
= L−1− {1 · F2(s)}
= f2(t) (47)

The left hand side of (47) is∫ t

0
δ(τ) f2(t − τ) dτ = f2(t). (48)

Thus, convolution with a unit impulse leaves the function
unchanged.
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Properties of the Laplace transform (cont.)
6. Convolution

Example

Let f1(t) = U(t)(unit step) and f2(t) be arbitrary. Then

f1(t) ∗ f2(t) =

∫ t

0
U(τ) f2(t − τ) dτ

=

∫ t

0
1 f2(t − τ) dτ

=

∫ 0

t
f2(λ) (−dλ)

=

∫ t

0
f2(λ) dλ. (49)

Thus convolution with a unit step is equivalent to integrating the
function for t ≥ 0.
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Properties of the Laplace transform
Summary

Property Time Domain Laplace Domain

Linearity a f (t) + b g(t) a F (s) + b G(s)

Time Shifting f (t − T )U(t − T ) e−s TF (s)

Differentiation
dk f (t)

dtk
sk F (s)− sk−1f (0−)− · · · − dk−1 f (0−)

dtk−1

Final Value f (∞) lim
s→0

s F (s)

Initial Value f (0+) lim
s→∞

s F (s)

Convolution f (t) ∗ g(t) F (s)G(s)
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Laplace Transforms of Some Common Signals
1. Step

A step of height A can be written as AU(t).

A

t

Figure: A step function

The Laplace transform of AU(t) is

L− {AU(t)} =

∫ ∞
0−

Ae−stdt

= A
e−st

−s

∣∣∣∣∞
0

=
A

s
. (50)
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Laplace Transforms of Some Common Signals
2. Ramp

A ramp signal with slope R is shown below

1

R

t

Figure: A ramp function

and can be written as R t U(t).

L− {R t U(t)} = R

∫ ∞
0−

t U(t) e−st dt

= R t
e−st

−s

∣∣∣∣∞
0

+
R

s

∫ ∞
0−

e−st dt =
R

s2
. (51)
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Laplace Transforms of Some Common Signals
3. Exponential

If f (t) = eα t U(t)

L− {f (t)} =

∫ ∞
0−

eαt e−st dt

=
1

s − α
= F (s). (52)

We note that α in (52) may be real or complex and this fact can
be utilized to obtain the Laplace transform of exponentially
weighted sinusoids. For instance, consider

f (t) = eσ t cos ω t

= eσ t

[
e jωt + e−jωt

2

]
=

1

2

[
e(σ+jω) t + e(σ−jω) t

]
. (53)
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Laplace Transforms of Some Common Signals
(cont.)
3. Exponential

Using (52) with α = σ + jω and α = σ − jω respectively, we get

F (s) =
1

2

[
1

s − σ − jω
+

1

s − σ + jω

]
=

(s − σ)

(s − σ)2 + ω2
. (54)

Similarly, it can be shown that

L−
{
eσt sinω t

}
=

ω

(s − σ)2 + ω2
. (55)
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Laplace Transforms of Some Common Signals
4. Time weighted exponential

Consider the function

f (t) = t eαt U(t). (56)

When α is real and α = −2, for example,

t

f (t)

0

Figure: f (t) = t e−2 t U(t)
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Laplace Transforms of Some Common Signals
(cont.)
4. Time weighted exponential

The Laplace transform of f (t) is:

F (s) =

∫ ∞
0−

t eαt e−st dt

=

∫ ∞
0−

t e−(s−α)t dt

=
t e−(s−α)t

−(s − α

∣∣∣∣∣
∞

0−

−
∫ ∞
0−

e−(s−α)t

−(s − α)
dt

= 0− 0 +
1

s − α

∫ ∞
0−

e−(s−α)t dt

=
1

(s − α)2
(57)
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Laplace Transforms of Some Common Signals
(cont.)
4. Time weighted exponential

Similarly it can be shown that

L−
{
t2eαt

}
=

2!

(s − α)3
(58)

and, indeed, by induction, that

L−
{
tk eαt

}
=

k !

(s − α)k+1
, k = 0, 1, 2, · · · . (59)

As an application of (56) consider the function

f (t) = (t cos ω t) U(t)

=
( t

2
e jωt +

t

2
e−jωt

)
U(t) (60)

when ω = 1, for example,
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Laplace Transforms of Some Common Signals
(cont.)
4. Time weighted exponential

t

f (t)

0

Figure: f (t) = (t cos t) U(t)
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Laplace Transforms of Some Common Signals
(cont.)
4. Time weighted exponential
so that

F (s) =
1

2

[
1

(s − jω)2
+

1

(s + jω)2

]
=

s2 − ω2

(s2 + ω2)2
. (61)

Similarly, it can be seen that

L− {(t sinω t)U(t)} = L−
{(

t e jωt

2j
− t e−jωt

2j

)
U(t)

}
=

1

2j

[
1

(s − jω)2
− 1

(s + jω)2

]
=

2ω s

(s2 + ω2)2
. (62)

The above formulas are related to the phenomena of resonance
which occurs when a system with j ω axis poles is excited by a
sinusoidal signal of the same frequency.
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Laplace Transforms of Some Common Signals
5. Pulse
Consider the pulse shown below.

A

tT

Figure:

It is described by

f (t) = A [U(t)− U(t − T )] (63)

and we have

L− {f (t)} =: F (s) =
A

s

[
1− e−s T

]
. (64)
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Laplace Transforms of Some Common Signals
6. Impulse

Consider the pulse of area AT

tαT

A

α

Figure: Pulse with area AT

and the family of pulses of height
A

α
and width αT with α

decreasing from 1 ↓ 0.
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Laplace Transforms of Some Common Signals
(cont.)
6. Impulse

T/3 T/2 T

A

2A

3A α = 1/3

α = 1/2

α = 1

α→ 0

Impulse
of strength

AT (AT δ(t))
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Laplace Transforms of Some Common Signals
(cont.)
6. Impulse

The Laplace transform of a typical pulse in this sequence is:

L−
{
A

α
[U(t)− U(t − αT )]

}
=

A

α

1

s

[
1− e−α s T

]
=

A

α s

[
1− 1 + αT s +

α2 T 2 s2

2!
− α3 T 3 s3

3!
+ · · ·

]
= AT +

A

2!
T 2 α s − A

3!
T 3 α2 s2 + · · · (65)

As α→ 0, we obtain an impulse of strength AT :

lim
α→0

A

α
[U(t)− U(t − αT )] := AT δ(t). (66)
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Laplace Transforms of Some Common Signals
(cont.)
6. Impulse
From (65), with α→ 0, we have

L− {AT δ(t)} = AT . (67)

δ(t) denotes an impulse of unit strength and we have from (67),
with AT = 1,

L− {δ(t)} = 1. (68)

From the above analysis it is easy to see that∫ ∞
0−

f (t) δ(t − t0)dt

= lim
T→0

∫ t0+T

t0

f (t)

[
U(t0)− U(t0 − T )

T

]
dt

= f (t0), (69)

which is called the time-sifting property of the impulse function.
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Laplace Transforms of Some Common Signals
7. Periodic Functions

Consider the periodic function

T T T

f1(t) f1(t − T ) f1(t − 2T )

t

· · ·

Figure: A periodic function
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Laplace Transforms of Some Common Signals
(cont.)
7. Periodic Functions

which can be described as

f (t) = f1(t) + f1(t − T )U(t − T )

+ f1(t − 2T )U(t − 2T ) + · · ·
+ f1(t − kT )U(t − k T ) + · · · .

(70)

Then

F (s) = F1(s) + e−s TF1(s) + e−2 s TF1(s) + · · ·+ e−k T sF1(s) + · · ·

= F1(s)
[
1 + e−s T + e−2 s T + · · ·+ e−k T s + · · ·

]
= F1(s)

1

1− e−s T
. (71)
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Laplace Transforms of Some Common Signals
(cont.)
7. Periodic Functions

Example

Consider the periodic triangular wave

0 1 2 3 4 5 · · ·

T = 2 secs

f (t)

f1(t) f1(t − T ) f1(t − 2T )

t

· · ·

Figure: Periodic triangular wave
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Laplace Transforms of Some Common Signals
(cont.)
7. Periodic Functions

Example (cont.)

We write
f (t) = f1(t) + f1(t − T )U(t − T ) + f1(t − 2T )U(t − 2T ) + · · · ,
where

f1(t) = t [U(t)− U(t − 1)]

= t U(t)− t U(t − 1). (72)

To Laplace transform (72) we rewrite it as

f1(t) = t U(t)− (t − 1)U(t − 1)− U(t − 1) (73)

so that

F1(s) =

[
1

s2
[
1− e−s

]
− e−s

1

s

]
. (74)
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Laplace Transforms of Some Common Signals
(cont.)
7. Periodic Functions

Example (cont.)

From (71) it follows that

L− {f (t)} =: F (s) = F1(s)
1

1− e−2 s
(75)

with F1(s) given by (74).
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Laplace Transforms of Some Common Signals
Summary

Function Symbol Laplace
Transform

Unit
Step U(t)

1

s
Unit

Impulse δ(t) 1

Ramp t
1

s2

Exponential eαt U(t)
1

s − α
Time Weighted
Exponential tk eαt U(t)

k!

(s − α)k+1

Pulse A [U(t)− U(t − T )]
A

s

(
1− e−sT

)
Periodic f1(t)

Functions +f1(t − T ) F1(s)
1

1− e−sT

+f1(t − 2T )
+ · · ·
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Exercises

Exercise 1

Find the region of convergence of the Laplace transforms of the
following causal functions:

a) et + e2 t + e3 t

b) sin t

c) U(t)− U(t − 1) (U(t): unit step.)

d) t5 et .
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Exercises

Exercise 2

Find the Laplace transforms of the functions:

a)

1

1 2 3 t

b)

1

1

e−t
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Exercises (cont.)

c)

1

π
sin t

d)

1 1 1 1
Unit impulse train

1 2 3 4 5 6 7 t

· · ·
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Exercises

Exercise 3

Find the inverse Laplace transforms of:

a)
1

s

[
1− e−s

]
b)

1

(1− e−s)

c)
e−2 s

(s + 1)(s + 2)

d)
s3

(s + 1)2
.
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Exercises

Exercise 4

Find the Laplace transforms of:

a) (et)2

b)
1

(et)2

c) sin2 t

d) t2 cos2 t

e) sin t cos t

f) t sin t cos t.


