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Laplace Transform |



Linear Time Invariant Systems

A general LTI system may be described by the linear constant
coefficient differential equation:

d"y(t) d"y(t) dy(t)
an den n—1 din—1 + + a1 dt + aoy(t)
du(t) d™Lu(t) du(t)
= by bm1——— + -+ bi—— + bou(t). (1
gim 1 g1 +o+ b1 ar + bou(t). (1)

Introducing the differentiation operator

k
D*r(e)) = T 110 @

(1) may be written as

a(D){y(t)} = b(D) {u(t)} (3)



Linear Time Invariant Systems (cont.)

where

a(D) =a,D" + a,,,an_l + -4+ a1D+ ag

b(D) = byyD™ + by 1D™ L 4+ by D + by. )
The solution of (1) or (3) is greatly facilitated by using the Laplace
transform. Moreover several fundamental concepts of system
theory such as transfer functions, poles and zeros, block diagram
algebra, realization theory and frequency response are based on the
Laplace Transform. The Laplace Transform was introduced by
Pierre-Simon Laplace in 1787. However its use in Engineering was
popularized by Oliver Heaviside, one hundred years later. The next
few sections describe the Laplace transform and its applications to
system analysis.



Linear Time Invariant Systems (cont.)

Pierre-Simon Laplace
(23 March 1749 ~ 5 March Oliver Heaviside

1827) (18 May 1850 ~ 3 February
1925)



Definition of the Laplace Transform
The Laplace transform of a function f(t), with the property,
f(t)y=0, t<0 (5)

is defined by

o
L_{F(1)} = F(s) = / F(t) e tdt (6)
where t is real and s is complex. When (5) is satisfied we will say
that f(t) is causal. The Laplace transform of a function f(t)
exists if the integral in (6) exists for some values of s. For
example if f(t) = e®!, « real, then (6) exists if Res > . In this
case the complex plane region Res > « is called the region of
convergence. More generally if o¢ is the minimum real value, such
that the integral

| ie)e e (7



Definition of the Laplace Transform (cont.)

converges, that is, is finite, then the region

Res > oy
Im ‘
| Tl

/Convergence

s-plane




Definition of the Laplace Transform (cont.)

is a region of convergence. If there exists a region of
convergence, the Laplace transform is said to exist, otherwise it
does not exist. The function etz, for example, does not have a
Laplace transform as there are no values of s for which (6) is finite.

Remark

The lower limit 0~ in the integral in (6) is used to accommodate,
or allow, impulses at the origin as inputs to dynamic systems. In
some books the value at 0" is also used with corresponding
changes in the formulas.

The inverse Laplace transform can be shown to be
1 o+joco
LYF(s)) = — / F(s)e™ds = £(t) 9)
27TJ o—joo

where o > ¢ and is otherwise arbitrary. Although (9) holds true
formally, the inverse Laplace transform is most commonly obtained
from tables of Laplace transforms rather than the cumbersome



Definition of the Laplace Transform (cont.)

integration involved in evaluating the integral in (9). Implicitly this
utilizes the uniqueness of the Laplace transform and its inverses.
Thus we denote

f(t) < F(s) (10)

as a Laplace transform pair, with the understanding that 7(t) and
F(s) are alternative mathematical representations of the “same”
signal.



Properties of the Laplace transform
1. Linearity

If f(t) and g(t) are causal signals with

f(t) < F(s)
£(1) ¢+ G(s) Y

then, for arbitrary a, b real or complex,
af(t) + bg(t) <> aF(s) + bG(s). (12)

Note however that, in general

f(t)g(t) «» F(s)G(s). (13)

The proof of (12) is straightforward using the definition of the
Laplace transform.



Properties of the Laplace transform
2. Time Shifting

Let U(t) denote the unit step function:

»
>

t

Figure: Unit Step U(t)

1,t>0,
u(t) = (14)



Properties of the Laplace transform (cont.)
2. Time Shifting

Consider a causal function f(t) U(t).

f(r)U(t)h\

| t

Figure: Causal function



Properties of the Laplace transform (cont.)
2. Time Shifting

If f(t) is shifted to the right by T seconds, we obtain
f(t—T)U(t— T) =: g(t), the shifted version of f(t)

A

g(t) lﬁﬁ—\‘\_\

«——> t
T

Figure: Shifted function



Properties of the Laplace transform (cont.)
2. Time Shifting

The Laplace transform of the shifted function g(t) is:

G(s) = /Oo f(t— T)U(t — T)e *'dt
_ /OO F(t— T)U(t — T)e *tdt. (15)
;
With t — T =: A, we have

G(s) =T / T O u(n)e A

=e STF(s). (16)

Therefore, if
f(t)U(t) < F(s), (17)

then
f(t—T)U(t— T) < e > TF(s). (18)



Properties of the Laplace transform
3. Differentiation

df(t
If (t) is a continuous signal and g(t) = dE ) its derivative, the
Laplace transform of g(t) is:
< df(t) _
G(s) = ———Le *ldt
()= [ e
= f(t) e_5t|g<i - (—s)/ f(t)e *'dt
0-
—_——
F(s)
= —f(07) + sF(s). (19)

Therefore

c {dfjgt)} — SF(s) — £(07). (20)



Properties of the Laplace transform (cont.)
3. Differentiation

From (20), it follows that

d?f(t)) df(t) .
R EAC) S LTS
= s2F(s) — sf(07) — £(07) (21)

and similarly, it follows recursively that

k .
c {d d’;ﬁt)} — S5F(s) — sKLF(07) — sK2F(07)

d (0
O NP PR



Properties of the Laplace transform
4. Final Value Theorem

If f(t) <> F(s) and if f(o0) exists, then we show below that
f(c0) = lim s F(s). (23)
s—0

To prove (23) consider

c {‘”(t)} - /OO ) sty — or(s)— F(0°)  (24)

dt - dt
so that o 4 f(t
/_ dg )dt:sngmosF(s) _f(0) (25)
and
f(oo)—f(O*):sli_rQ)sF(s)—f(O*) (26)

which implies (23).

Note that it is important to be sure that f(oo) exists otherwise the
right hand side of (23) may vyield a value that is not equal to
f(o0). To see this, consider the following example.



Properties of the Laplace transform (cont.)
4. Final Value Theorem

Example
1
If f(t) =¢, F(s) = ] and
lim sF(s) = lim —— =0 (27)
erQJS 5= sm) s—1
whereas
lim ef = cc. (28)

t—00



Properties of the Laplace transform
5. Initial Value Theorem

If f(t) +> F(s) is a Laplace transform pair the initial value theorem
states that

F(0) = lim sF(s) (29)

provided the left hand side of (29) exists. To prove (29) note that

df(t
the Laplace transform of di) is:

sF(s)— f(07) = /oo dzgf) ¢St dt

ot o)
f f
[ g [0
- dt 0+ dt

(09 - fo)+ [ e 0




Properties of the Laplace transform (cont.)
5. Initial Value Theorem

so that oy
sF(s) = f(O*) + / w e Stdt. (31)
o+ dt

Taking limits in (31) as s — oo, we have
o df
; _ + i H —st
sll)ngosF(s)—f(O )+/0+ dt(llm e )dt
= f(0T) (32)

proving (29). Note that if F(s) is rational the right hand side
exists only if F(s) is strictly proper.



Properties of the Laplace transform (cont.)
5. Initial Value Theorem

Example
If ) )
F(S):g—i-s_l (33)
we have s
sF(s):1+s_1 (34)
shj;o sF(s)=2 (35)
and
f(t) = U(t) + €' (36)
giving
fof)y=1+1=2 (37)

verifying (29).



Properties of the Laplace transform
6. Convolution

Let

f(t) « Fi(s)

f(t) <> Fa(s) (38)

then

Fu(s) Fa(s) = /Oo {/t f(7) ot — 1) dT} estdr. (39
The function .
g(t) = / f(r) h(t —71)dr (40)

is called the convolution of f1(t) and f(t), and is usually denoted
as fi(t) = fo(t). Thus, (39) states that

L {A(t) « (1)} = L {g(t)} = Fi(s) Fa(s)- (41)



Properties of the Laplace transform (cont.)

6. Convolution
Proof

To prove (41) observe that, since fi(t — 7) = 0 for 7 > t,

L {g(t)} = G(s) :/w( At — 1) () dT) e tdt

0—

- /io ( Oi fl(th)e*“dt) f(7) d.

fift—7)e *tdt=e""" Fi(s)

0—

so that substituting (43) in (42)

proving (41).

(42)

(43)

(44)



Properties of the Laplace transform (cont.)
6. Convolution

Example
If f1(t) = e’ and f(t) = e~ ' we have

= et — —e % (45)



Properties of the Laplace transform (cont.)
6. Convolution

Example (cont.)
On the other hand

]‘t 1—t _
£{26—2e }—

1 1

[s -1 s+ 1]
2

(s+1)(s—1)
1 1
Tst+1ls—1
=L {A(t)} L {H(t)}
= F1(s) Fa(s) (46)

Nl N =

verifying (39).



Properties of the Laplace transform (cont.)
6. Convolution

Example
Let f1(t) = d(t), and let f(t) be arbitrary. Then

fi(t) * H(t) = L2 {Fi(s) F(s)}
= L1 Fy(s)}
= f(t) (47)

The left hand side of (47) is
t
/ 5(7) Bt — ) dr = h(t). (48)
0

Thus, convolution with a unit impulse leaves the function
unchanged.



Properties of the Laplace transform (cont.)
6. Convolution

Example
Let f1(t) = U(t)(unit step) and f(t) be arbitrary. Then

t) * fo(t /U ) 6(t — 7)dr
_/ 1H(t—7)dr
0
0
— [ A (-
- / " H0) A (49)
0

Thus convolution with a unit step is equivalent to integrating the
function for t > 0.



Properties of the Laplace transform

Summary
Property Time Domain Laplace Domain
Linearity af(t)+ bg(t) aF(s)+ bG(s)
Time Shifting  f(t— T)U(t—T) e *TF(s)
. . d* f(t) . 1oy d*71f(07)
Differentiation ik sS“F(s)—s"f(07)—---— T
Final Value f(o0) Slir?)s F(s)
Initial Value f(0™) lim s F(s)
S§— 00

Convolution f(t) = g(t) F(s) G(s)




Laplace Transforms of Some Common Signals

1. Step
A step of height A can be written as A U(t).

A

»
!

t

Figure: A step function

The Laplace transform of A U(t) is

L {AU)} = /0 " Ae e

o0

(50)



Laplace Transforms of Some Common Signals

2. Ramp

A ramp signal with slope R is shown below

Figure: A ramp function

and can be written as Rt U(t).

o0

L_{RtU(t)} = R/ tU(t)e ' dt

efst

=Rt

—S o S

< R [™ R
+/ e_Stdtzfz.

S

(51)



Laplace Transforms of Some Common Signals
3. Exponential

If £(t) = e*t U(t)
L_{f(t)} = /Ooo et et dt
1

= —— = F(s). (52)

We note that « in (52) may be real or complex and this fact can
be utilized to obtain the Laplace transform of exponentially
weighted sinusoids. For instance, consider

f(t)=e’Tcoswt
_ oot glwt 4 e Jwt
2
_ % [er¢ 4 elrie)e] (53)



Laplace Transforms of Some Common Signals

gcont.)

Exponential

Using (52) with & = 0 + jw and a = 0 — jw respectively, we get

1 1 1
F(s) = — .
2|s—0c—jw s—o+jw
:& (54)

(s —0)2+w?
Similarly, it can be shown that

L_{e sinwt} = ( 2 (55)

s—0)2+w?



Laplace Transforms of Some Common Signals
4. Time weighted exponential

Consider the function
f(t) = te® U(t). (56)

When « is real and o = —2, for example,

f(t)

0! t

Figure: f(t) = te 2t U(t)



Laplace Transforms of Some Common Signals

cont.)
. Time weighted exponential

The Laplace transform of f(t) is:

F(s) = / te* et dt

- / te (=)t gt

te—(s—a)t|™ _/oo e—(s—a)t "
- —(s—a)

1 /Oo e (-t gy
S— —

oo,

—0-0+

(s — a)?

(57)



Laplace Transforms of Some Common Signals

cont.)
. Time weighted exponential

Similarly it can be shown that

2!

L£_{t?e*} = 58
{t7e™'} (s — )3 (58)
and, indeed, by induction, that
k!
k jat | __ —
£ {tke }_(s—a)kH’ k=0,1,2,---.  (59)
As an application of (56) consider the function
f(t) = (tcoswt) U(t)
_ E jwt E —jwt
- (24 + e ) U(t) (60)

when w = 1, for example,



Laplace Transforms of Some Common Signals

Scont.)

. Time weighted exponential

f(t)

~

IRy

Figure: f(t) = (t cos t)



Laplace Transforms of Some Common Signals

cont.)
. Time weighted exponential
so that
1 1 1 s — w?
A9 =3 oo * Gror) ~ e

Similarly, it can be seen that

L {(tsinwt) U(t)} = £ { (tit - te;wt> U(t)}

o A
2 [(s—jw)? (s+jw)?

2ws
:m. (62)

The above formulas are related to the phenomena of resonance
which occurs when a system with jw axis poles is excited by a
sinusoidal signal of the same frequency.



Laplace Transforms of Some Common Signals
5. Pulse

Consider the pulse shown below.

A
v >
T t
Figure:
It is described by
f(t)=A[U(t)— U(t—T)] (63)

and we have

PEPS

L_{f(t)) = F(s) = [1 e T} . (64)



Laplace Transforms of Some Common Signals
6. Impulse

Consider the pulse of area AT

AA
«

»

aT t

Figure: Pulse with area AT

A
and the family of pulses of height — and width aT with «
@
decreasing from 1 | 0.



Laplace Transforms of Some Common Signals

(()cont.)

. Impulse

A A
3A =1/3
/ a=1/ / Impulse

of strength

2 a=1/2
/ AT (AT 5(t))
A /az

a—0

T/3 T/2 T

v



Laplace Transforms of Some Common Signals

(()cont.)

. Impulse

The Laplace transform of a typical pulse in this sequence is:

c. {2 [U(t) - U(t — a T)]}

:Al[l_e_asr}
oS
A 2T2 2 3T3 3
— 2l 1taTs &S 18
as 2! 3!
A A
=AT+=T?as—=T3a%s +... (65)

2! 3!

As o — 0, we obtain an impulse of strength A T:

lim 2 [U(t) = Ut — aT)] == AT 8(8). (66)

a—0



Laplace Transforms of Some Common Signals

(()cont.)

. Impulse
From (65), with & — 0, we have

L_{ATH(t)} =AT. (67)

d(t) denotes an impulse of unit strength and we have from (67),
with AT =1,
L_{(t)}=1. (68)

From the above analysis it is easy to see that

OOf(t) o(t — to)dt
o

i /to+T f(t) |:U(t0) — U(to - T) dt

T—0 to

= f(to), (69)

which is called the time-sifting property of the impulse function.




Laplace Transforms of Some Common Signals
7. Periodic Functions

Consider the periodic function

() A(e—T) A(t—2T)

Figure: A periodic function



Laplace Transforms of Some Common Signals
cont.)

. Periodic Functions

which can be described as

f(t)=nAa(t)+A(t—T)U(t—T)
+ A(t—2T)U(t —2T) + - -- (70)
+A(t—kT)U(t—kT)+ -

(71)



Laplace Transforms of Some Common Signals

cont.)
. Periodic Functions

Example
Consider the periodic triangular wave

f(t) A(t—T) A(t—2T)
oL
/\ /\ ”.T:2sec5

o 1 2 3 4 5 -

Figure: Periodic triangular wave



Laplace Transforms of Some Common Signals

cont.)
. Periodic Functions

Example (cont.)

We write
f(t)=mt)+At—-T)U(t—-T)+ A(t-2T)U(t—2T)+---,
where

f(t) = ¢ [U(t) — U(t - 1)]
=tU(t)—tU(t—1). (72)

To Laplace transform (72) we rewrite it as
A(t)=tU(t)—(t—1)U(t—-1)—-U(t—1) (73)

so that . .
Fi(s)= |5 [1—e°| —e°—|. 74
s) = | [1— e e (74)



Laplace Transforms of Some Common Signals

cont.)
. Periodic Functions

Example (cont.)
From (71) it follows that

L {f(t)} = F(s) = Fi(s)

with Fi(s) given by (74).

1—e2s

(73)



Laplace Transforms of Some Common Signals

Summary
Function Symbol Transtorm
- 1
Shap u(t) B
InthnuiItse 5(t) 1
1
Ramp t 2
Exponential et U(t) 5 '
—a
Time Weighted k ot k!
Exponential te U(t) (5 — a)k+1
Pulse A [U(t)— U(t—T)] *(1—eﬁ7
Periodic fi(t) 1
Functions +A(t—T) Fi(s) T

+hi(t—2T
20




Exercises

Exercise 1
Find the region of convergence of the Laplace transforms of the
following causal functions:
a) ef +e2t 3t
b) sint
c) ( ) — U(t — 1) (U(t): unit step.)
)



Exercises

Exercise 2

Find the Laplace transforms of the functions:

v



Exercises (cont.)

Unit impulse train




Exercises

Exercise 3

Find the inverse Laplace transforms of:
1
1S

) 1-e

1
Vi e
s+ 1)(s+2)
3

c)

(s +1)%

d)



Exercises

Exercise 4

Find the Laplace transforms of:




