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Solution of LTI Systems by Laplace
Transforms

In this section we describe how the Laplace transform can be used
to solve linear differential equations with constant coefficients.
Equations of this type arise in linear time invariant system (LTI
systems) relating the output y(t) to the input u(t), t ≥ 0.
Consider an LTI system

LTI
System

u(t) y(t)

Figure: LTI system
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Solution of LTI Systems by Laplace
Transforms (cont.)

where y(t) and u(t) are related by

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y

= bm
dmu

dtm
+ bm−1

dm−1u

dtm−1
+ · · ·+ b1

du

dt
+ b0u. (1)
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Solution of LTI Systems by Laplace
Transforms (cont.)

Given the known input

u(t), t ≥ 0 (2)

with zero initial conditions at t = 0−, the output

y(t), t ≥ 0 (3)

can be determined if the initial conditions, denoted by y(0−)

y(0−) :=
[
y(0−), ẏ(0−), ÿ(0−), . . . , yn−1(0−)

]
(4)

are known.
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Solution of LTI Systems by Laplace
Transforms (cont.)
Taking the Laplace transform of (1) and using the notation
y(t)↔ Y (s), u(t)↔ U(s), we have

an
[
snY (s)− sn−1y(0−)− sn−2ẏ(0−)− · · · − yn−1(0−)

]
+ an−1

[
sn−1Y (s)− sn−2y(0−)− · · · − yn−2(0−)

]
+ · · ·+ a1

[
sY (s)− y(0−)

]
+ a0Y (s)

= bm smU(s) + bm−1 s
m−1U(s) + · · ·+ b1 sU(s).

(5)

Introduce the polynomials

A(s) := ans
n + an−1s

n−1 + · · ·+ a1s + a0 (6)

B(s) := bms
m + bm−1s

m−1 + · · ·+ b1s + b0 (7)

P(s, y(0−)) := an
[
sn−1y(0−) + sn−2ẏ(0−) + · · ·+ yn−1(0−)

]
+ an−1

[
sn−2y(0−) + sn−3ẏ(0−) + · · ·+ yn−2(0−)

]
+ · · ·+ a1y(0−). (8)
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Solution of LTI Systems by Laplace
Transforms (cont.)

Now solving for Y (s) from (5) we obtain

Y (s) =
P (s, y(0−))

A(s)︸ ︷︷ ︸
Y0(s)

+
B(s)

A(s)
U(s)︸ ︷︷ ︸

Yu(s)

(9)

or
Y (s) = Y0(s) + Yu(s). (10)

Using the notation Y0(s)↔ y0(t), Yu(s)↔ yu(t) we have, from
(10), taking inverse Laplace transforms and using linearity of the
inverse transform,

y(t) = y0(t) + yu(t). (11)

In (11) we see that the total response y(t) is the sum of y0(t)
which depends only on the initial conditions y(0−), u(0−), (see
(9)) and yu(t) which depends only on the input u(t), t > 0.
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Solution of LTI Systems by Laplace
Transforms (cont.)

Therefore y0(t) is called the initial condition response and yu(t)
is called forced response. Alternatively y0(t) is also called the
zero input response and yu(t) is the zero state response, that
is, the response to u(t) under zero initial conditions. Finally,
B(s)

A(s)
=: G (s) is called the system transfer function, and the

roots of A(s) and B(s) are called the poles and zeros of the
system.
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Solution of LTI Systems by Laplace
Transforms (cont.)

Example

Consider the R LC circuit.

R L

+

−

y(t)C

−

+

u(t)

Figure: An RLC circuit
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Solution of LTI Systems by Laplace
Transforms (cont.)

Example (cont.)

Assuming zero output current (also known as the no loading
condition)

u(t) = R C ẏ(t) + LC ÿ(t) + y(t). (12)

Taking the Laplace transform of (12), we get

U(s) = R C
[
s Y (s)− y(0−)

]
+ LC

[
s2 Y (s)− s y(0−)− ẏ(0−)

]
+ Y (s) (13)

so that

Y (s) =
R Cy(0−) + LC s y(0−) + LC ẏ(0−)

A(s)︸ ︷︷ ︸
Y0(s)

+
B(s)

A(s)
U(s)︸ ︷︷ ︸

Yu(s)

(14)
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Solution of LTI Systems by Laplace
Transforms (cont.)

Example (cont.)

where

A(s) = s2 LC + s R C + 1

B(s) = 1
(15)

and the system transfer function is:

G (s) =
1

s2 LC + s R C + 1
. (16)

For given initial conditions y(0−) and a specific input u(t), t ≥ 0
one must take the inverse Laplace transform of (14) to obtain the
response y(t). This is discussed next.
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Solution for System Response

In this section we describe the procedure to calculate the system
response y(t) of an LTI system using Laplace transforms.

LTI
System

u(t) y(t)

Figure: Input-Output Block Diagram

From the previous section we know that

Y (s) = Y0(s) + G (s)U(s) (17)

where Y0(s) depends only on the initial conditions y(0−) and
u(0−). We proceed through examples.
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Solution for System Response (cont.)

Example

Consider the R LC circuit

R L

+

−

y(t)C

−

+

u(t)

Figure: An RLC circuit

u(t) = RCẏ(t) + LCÿ(t) + y(t). (18)
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Solution for System Response (cont.)

Example (cont.)

Taking the Laplace transforms

U(s) = R C
(
s Y (s)− y(0−)

)
+ LC

(
s2 Y (s)− s y(0−)− ẏ(0−)

)
+ Y (s) (19)

so

Y (s) =
R C y(0−) + LC s y(0−) + LC ẏ(0−)

A(s)
+ G (s)U(s) (20)

Suppose that y(0−) = 1, ẏ(0−) = 1, LC = 1 and R C = 1, then
(14) becomes

Y (s) =
s + 2

s2 + s + 1
+

1

s2 + s + 1
U(s). (21)
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Solution for System Response (cont.)

Example (cont.)

The zero input response is

y0(t) = L−1−
{

s + 2

s2 + s + 1

}
= L−1−

{
s + 2

(s + 1
2)2 + (

√
3
2 )2

}

= L−1−

{
s + 1

2

(s + 1
2)2 + (

√
3
2 )2

}
+ L−1−


3
2

2√
3

√
3
2

(s + 1
2)2 + (

√
3
2 )2


= e−

1
2
t cos

√
3

2
t +
√

3 e−
1
2
t sin

√
3

2
t. (22)
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Solution for System Response (cont.)

Example (cont.)

The zero state response is

yu(t) = L−1−
{ 1

s2 + s + 1
U(s)︸ ︷︷ ︸

Yu(s)

}
. (23)

For u(t) = U(t) (unit step), U(s) =
1

s
and

Yu(s) =
1

s(s2 + s + 1)
. (24)
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Solution for System Response (cont.)

Example (cont.)

Expanding by partial fractions

1

s(s2 + s + 1)
=

A

s
+

B s + C

s2 + s + 1

=
(A + B)s2 + (A + C )s + A

s(s2 + s + 1)
(25)

so that by equating numerator coefficients in (25)

A = 1

A + C = 0 (C = −1)

A + B = 0 (B = −1).

(26)
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Solution for System Response (cont.)

Example (cont.)

Now

Yu(s) =
1

s
+
−s − 1

s2 + s + 1

=
1

s
−

s + 1
2

(s + 1
2)2 + (

√
3
2 )2
−

1
2

2√
3

√
3
2

(s + 1
2)2 + (

√
3
2 )2

(27)

and therefore

yu(t) = U(t)− e−
1
2
t cos

√
3

2
t − 1√

3
e−

1
2
t sin

√
3

2
t. (28)

Thus the total response y(t) is the sum y0(t) + yu(t) and is given
by

y(t) = U(t) +

(√
3− 1√

3

)
e−

1
2
t sin

√
3

2
t. (29)
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Solution for System Response (cont.)

Example

Consider the R C circuit

R

+

−

y(t)C

−

+

u(t)

Figure: An RC circuit I
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Solution for System Response (cont.)

Example (cont.)

The differential equation of the circuit is (voltage summation
around the loop)

u(t) = R C ẏ(t) + y(t). (30)

By taking Laplace transforms of (30)

U(s) = R C
[
s Y (s)− y(0−)

]
+ Y (s) (31)

and

Y (s) =
R C y(0−)

1 + R C s︸ ︷︷ ︸
Y0(s)

+
1

1 + R C s
U(s)︸ ︷︷ ︸

Yu(s)

. (32)
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Solution for System Response (cont.)

Example (cont.)

Suppose R C = 1 and u(t) = U(t), a unit step. Then

Y (s) =
y(0−)

s + 1
+

1

s(s + 1)
. (33)

Expanding the second term by partial fractions

Y (s) =
y(0−)

s + 1
+

1

s
− 1

s + 1
(34)

and therefore

y(t) = e−t y(0−) + U(t)− e−t (35)

is the total response.
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Solution for System Response (cont.)

Example (cont.)

If the input is instead an impulse, u(t) = δ(t) so that U(s) = 1,
we have

Y (s) =
y(0−)

s + 1
+

1

s + 1
(36)

and
y(t) = e−t y(0−) + e−t . (37)

Two important differences between the solutions in (35) and (37)
are the facts
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Solution for System Response (cont.)

Example (cont.)

(A), that in (35)
lim
t→∞

y(t) = 1 (38)

whereas as in (37)
lim
t→∞

y(t) = 0 (39)

(B), that in (35)
y(0+) = y(0−) (40)

whereas in (37)
y(0+) = y(0−) + 1. (41)

In general the presence of impulses in the input can cause
discontinuities in the initial conditions. This is why the L−
transform is preferred because y(0−) is known a priori but y(0+) is
not.
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Solution for System Response (cont.)

Example

Consider the R C circuit again with a different output, namely y(t)
is now the voltage across the resistor:

C

+

−

y(t)R

−

+

u(t)

Figure:
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Solution for System Response (cont.)

Example (cont.)

The system differential equation is:

y(t) = R C
d

dt
(u(t)− y(t)) = R C u̇(t)− R C ẏ(t) (42)

or
R C ẏ(t) + y(t) = R C u̇(t). (43)

Therefore

R C
[
s Y (s)− y(0−)

]
+ Y (s) = R C

[
s U(s)− u(0−)

]
(44)

and

Y (s) =
R C [y(0−)− u(0−)]

R C s + 1︸ ︷︷ ︸
Y0(s)

+
R C s

R C s + 1
U(s)︸ ︷︷ ︸

Yu(s)

. (45)
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Solution for System Response (cont.)

Example (cont.)

Now suppose R C = 1, and the input is a unit step. Then
u(0−) = 0 and

Y (s) =
y(0−)

s + 1
+

s

s + 1︸ ︷︷ ︸
G(s)

1

s
. (46)

Therefore
y(t) = e−ty(0−) + e−t . (47)
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Solution for System Response (cont.)

In (47) we note that there is no constant component in the output,
even though there is a constant input. Indeed we see that in (46),
the numerator of the transfer function cancels the denominator
originating from the step. This is a general property of zeros. They
block signals with poles located at the zeros from passing through
to the output.
Additionally we note from (47) that:

y(0+) = y(0−) + 1 (48)

that is, y(t) is discontinuous at t = 0. Here, even though u(t)
does not contain an impulse, the right hand side of (43) does
contain an impulse (u̇(t)) when u(t) is a step.
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Inverse Laplace transform using partial
fractions

In the last section we saw that the response of an LTI system can
be calculated by determining the inverse Laplace transform of a
rational function. In this section we discuss how this inverse can be
found by partial fraction expansion.
Suppose

R(s) =
N(s)

D(s)
(49)

denotes a rational function with N(s), D(s) being polynomials
with real coefficients and

degreeN(s) = m

degreeD(s) = n.
(50)

If

m < n (51)
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Inverse Laplace transform using partial
fractions (cont.)

R(s) is said to be strictly proper. If

m = n (52)

R(s) is said to be proper and if

m > n (53)

R(s) is improper. In general, R(s) can always be rewritten as

R(s) = R(s) + P(s) (54)

where R(s) is strictly proper and P(s) is a polynomial of degree
n −m (≥ 0.)
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Inverse Laplace transform using partial
fractions (cont.)

Example

R(s) =
s3 + 2s + 1

s + 1
(55)

=
A

s + 1︸ ︷︷ ︸
R(s)

+B + C s + D s2

=
D s3 + (C + D) s2 + (B + C ) s + A + B

s + 1

so that

D = 1, C + D = 0, B + C = 2, A + B = 1 (56)
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Inverse Laplace transform using partial
fractions (cont.)

Example (cont.)

and thus

R(s) =
−2

s + 1
+ 3− s + s2. (57)

Therefore

L−1− {R(s)} = L−1−
{
R(s)

}
+ L−1− {P(s)}

= −2 e−t + 3 δ(t)− δ̇(t) + δ̈(t). (58)
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Inverse Laplace transform using partial
fractions (cont.)

We see that the inverse Laplace transform of the polynomial part
consists of impulses and their derivatives.
Now suppose that R(s) is strictly proper. Writing N(s) and D(s)
in terms of their factors we can write

R(s) =
K (s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)
(59)

where zi , pj are in general complex and possibly repeated and
denote the zeros and poles of R(s) and m < n since R(s) is
assumed to be strictly proper.
We consider the partial fraction expansion of R(s) for several
different cases.
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Poles are distinct (pi 6= pj , i 6= j)

In this case the partial fraction expansion is

R(s) =
A1

s − p1
+ · · ·+ An

s − pn
(60)

and

Ai = R(s) (s − pi )|s=pi

=
K (pi − z1)(pi − z2) · · · (pi − zm)

(pi − p1)(pi − p2) · · · (pi − pi−1)(pi − pi+1) · · · (pi − pn)
(61)

Once the Ai ’s are obtained from (61), we have

L−1− {R(s)} = A1 e
p1 t + A2 e

p2 t + · · ·+ An e
pn t . (62)

Note that in (62) the exponents correspond to the poles of R(s).
The Ai are called the residues associated with the poles Pi

respectively.
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Poles are distinct (pi 6= pj , i 6= j) (cont.)

Example

R(s) =
s − 1

(s + 1)(s + 2)

=
A1

s + 1
+

A2

s + 2
(63)

where

A1 =
(s − 1)����(s + 1)

����(s + 1)(s + 2)

∣∣∣∣
s=−1

= −2, (64)

A2 =
(s − 1)����(s + 2)

(s + 1)����(s + 2)

∣∣∣∣
s=−2

= 3. (65)

Thus
L−1− {R(s)} = −2 e−t + 3 e−2 t . (66)
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Repeated Poles

a) If one pole is repeated, the partial fraction formula (60) has
to be modified. Suppose that

R(s) =
N(s)

(s − p)k
(67)

where degreeN(s) < k . Then it can be shown that the partial
fraction expansion of R(s) has the form:

R(s) =
A1

s − p
+

A2

(s − p)2
+ · · ·+ Ak

(s − p)k
. (68)

Multiplying by (s − p)k on both sides in (68) we have

R(s) (s−p)k = N(s) = Ak +Ak−1(s−p)+· · ·+A1(s−p)k−1. (69)

We have Ak by substituting s = p in (69) since the rest terms
become zeros.

Ak = N(s)|s=p . (70)
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Repeated Poles (cont.)

Next, we differentiate N(s) once and then we have

d

d s
N(s) = Ak−1 +2Ak−2(s−p)+ · · ·+(k−1)A1(s−p)k−2. (71)

By substituting s = p once again, we have

Ak−1 =
d

d s
N(s)

∣∣∣∣
s=p

. (72)

Thus we obtain Ak−j for j = 0, . . . , k − 1 by differentiating N(s) j
times and substituting s = p. This series of computations is
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Repeated Poles (cont.)

summarized as follows.

N(s)|s=p = Ak (73)

d

d s
N(s)

∣∣∣∣
s=p

= Ak−1 (74)

1

2

d2

d s2
N(s)

∣∣∣∣
s=p

= Ak−2 (75)

1

3 · 2
d3

d s3
N(s)

∣∣∣∣
s=p

= Ak−3 (76)

... (77)

1

j !

d j

d s j
N(s)

∣∣∣∣
s=p

= Ak−j , for j = 0, . . . , k − 1. (78)
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Repeated Poles (cont.)
b) If two or more poles are repeated, we show that the
treatment above also can be applied to find the numerator
constants. Suppose

R(s) =
N(s)

(s − p)k (s − q)l
. (79)

Then the partial fraction expansion gives

R(s) =
A1

s − p
+

A2

(s − p)2
+ · · ·+ Ak

(s − p)k

+
B1

s − q
+

B2

(s − q)2
+ · · ·+ Bl

(s − q)l
.

(80)

Introduce

RA(s) :=
R(s)

(s − q)l
, (81)

RB(s) :=
R(s)

(s − p)k
. (82)
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Repeated Poles (cont.)

In order to find Bl , we multiply (s − q)l on both sides of (80).

R(s)(s − q)l =
N(s)

(s − p)k
= RB(s)

= (s − q)l
(

A1

s − p
+ · · ·+ Ak

(s − p)k

)
︸ ︷︷ ︸

=:A(s)

+ Bl + Bl−1(s − q) + · · ·+ B1(s − q)l−1.

(83)

Then,

Bl =
[
RB(s)−

(
(s − q)lA(s) + Bl−1(s − q) + · · ·+ B1(s − q)l−1

)]∣∣
s=q

= RB(s)|s=q −
(
(s − q)lA(s) + Bl−1(s − q) + · · ·+ B1(s − q)l−1

)∣∣
s=q

= RB(s)|s=q .

(84)
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Repeated Poles (cont.)

For Bl−1, we differentiate RB(s) one time.

d

d s
RB(s) = l(s − q)l−1A(s) + (s − q)l

(
d

d s
A(s)

)
+ Bl−1 + · · ·+ (l − 1)B1(s − q)l−2.

(85)

Thus, when we substitute s = q in (85) we have

Bl−1 =
d

d s
RB(s)

∣∣∣∣
s=q

, (86)

as the rest of the terms in (85) become zeros. In particular, for
(s − q)lA(s), the multiplication by (s − q)l preserves the (s − q)
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Repeated Poles (cont.)

factor even after l − 1 times of differentiation of RB(s). This leads
us to the following general form:

1

j !

d j

d s j
RA(s)

∣∣∣∣
s=p

= Ak−j , for j = 0, . . . , k − 1, (87)

1

r !

d r

d sr
RB(s)

∣∣∣∣
s=q

= Bl−r , for r = 0, . . . , l − 1, (88)
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Repeated Poles (cont.)

Example

Suppose

R(s) =
s − 1

(s + 1)3(s + 2)
(89)

then the partial fraction expansion of R(s) is of the form

R(s) =
A1

s + 1
+

A2

(s + 1)2
+

A3

(s + 1)3
+

B

s + 2
. (90)

Clearly

B = R(s) (s + 2)|s=−2

=
(s − 1)����(s + 2)

(s + 1)3����(s + 2)

∣∣∣∣
s=−2

= 3 (91)
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Repeated Poles (cont.)

Example (cont.)

and

A3 = R(s) (s + 1)3
∣∣
s=−1

=
(s − 1)����

(s + 1)3

����
(s + 1)3(s + 2)

∣∣∣∣
s=−1

= −2. (92)

Since (90) must hold for ”almost all” values of s, we set s = 0 and
s = 1 to get

R(0) = −1

2
= A1 + A2 − 2 +

3

2
(93)

R(1) = 0 =
A1

2
+

A2

4
− 2

8
+

3

3
. (94)

Solving for A1 and A2 we get

A1 = −3, A2 = 3. (95)
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Repeated Poles (cont.)

Example (cont.)

Therefore

L−1− {R(s)} = −3 e−t + 3 t e−t − 2

2!
t2 e−t + 3 e−2 t . (96)
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Repeated Poles (cont.)

Example

Suppose

R(s) =
s − 1

(s + 1)3(s + 2)2
(97)

then the partial fraction expansion of R(s) is of the form

R(s) =
A1

s + 1
+

A2

(s + 1)2
+

A3

(s + 1)3
+

B1

s + 2
+

B2

(s + 2)2
. (98)
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Repeated Poles (cont.)

Example (cont.)

So

RB(s) =
s − 1

(s + 1)3
. (99)

B2 =
s − 1

(s + 1)3

∣∣∣∣
s=−2

= 3. (100)

B1 =
d

d s

s − 1

(s + 1)3

∣∣∣∣
s=−2

=
(s + 1)3 − 3(s − 1)(s + 1)2

(s + 1)6

∣∣∣∣
s=−2

= 8.

(101)
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Complex poles

If R(s) has a pair of complex conjugate poles we could use (60)
and get complex values for Ai . An alternative approach using real
values is as follows. Write the second order factor with complex
roots as

(s + σ)2 + ω2 (102)

and suppose

R(s) =
N(s)

(s + σ)2 + ω2
(103)

with degreeN(s) < 2. Then the partial fraction expansion of (103)
can be written without loss of generality as:

R(s) =
A (s + σ)

(s + σ)2 + ω2
+

B ω

(s + σ)2 + ω2
. (104)

The coefficients A and B can be found by equating coefficients in
(104). Once A and B are known

L−1− {R(s)} = A e−σ t cos ω t + B e−σ t sinω t. (105)
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Complex poles (cont.)

Example

Suppose

R(s) =
s − 1

(s2 + 3 s + 4)
. (106)

Write

s2 + 3 s + 4 = (s + σ)2 + ω2

= s2 + 2σ s + σ2 + ω2 (107)

so that

σ =
3

2
, ω =

√
7

2
. (108)
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Complex poles (cont.)

Example (cont.)

Now from (104)

R(s) =
A s + Aσ + B ω

(s2 + 3 s + 4)
=

s − 1

s2 + 3s + 4
(109)

so that A = 1 and
3 · 1

2
+

B
√

7

2
= −1 (110)

giving

B =
−5√

7
. (111)

Therefore

L−1− {R(s)} = e−
3
2
tcos

√
7

2
t − 5√

7
sin

√
7

2
t. (112)
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Forced Response of LTI Systems to
Exponential Inputs

Consider a Linear Time Invariant system described by the
differential equation connecting input u(·) to output y(·) :

an
dn y

d tn
+ an−1

dn−1 y

d tn−1
+ · · · a1

d y

d t
+ a0 y(t)

= bm
dm u

d tm
+ bm−1

dm−1 u

d tm−1
+ · · · b d u

d t
+ b0 u(t).

(113)

Write the operator

Dk :=
dk

d tk
, k = 1, 2, . . . (114)

so that (113) can be rewritten as

a(D) y(t) = b(D) u(t). (115)
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Forced Response of LTI Systems to
Exponential Inputs (cont.)

Now suppose that the input is the exponential signal

u(t) = es
∗ t . (116)

The es
∗t component of the forced response must be of the form

y(t) = C es
∗ t . (117)

Substituting (117) in (113) or (115) we see that

a(s∗)C es
∗ t = b(s∗) es

∗ t (118)

so that, assuming a(s∗) 6= 0,

C =
b(s∗)

a(s∗)
= H(s∗) (119)
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Forced Response of LTI Systems to
Exponential Inputs (cont.)

where

H(s) =
b(s)

a(s)
(120)

denotes the system transfer function. The above analysis shows
that the LTI system simply multiplies es

∗t by the gain H(s∗) to
generate the output y(t) = H(s∗) es

∗ t . Note that s∗ may be real,
imaginary or complex and this makes the above result very useful.
Note also that the forced response will also contain exponential
terms corresponding to the system poles, that is the zeros of
a(s) = 0. If the poles of H(s) are in the open LHP these
components decay exponentially as t →∞.
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Forced Response of LTI Systems to
Exponential Inputs (cont.)

Example

Consider an LTI system with transfer function

H(s) =
s + 1

s2 + s + 2
. (121)

Find the forced response of the system to the inputs:
a) etU(t), b) cos t U(t), c) et cos 2t U(t).
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Forced Response of LTI Systems to
Exponential Inputs (cont.)

Example (cont.)

Solution. In a) s∗ = 1, and the response is

y(t) = H(1) et =
1

2
et . (122)

For b) write

cos t =
1

2
e jt +

1

2
e−jt (123)

and

y(t) =
1

2
H(j) e jt +

1

2
H(−j) e−jt . (124)
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Forced Response of LTI Systems to
Exponential Inputs (cont.)

Example (cont.)

In c)

et cos 2t = et
e2jt + e−2jt

2
=

1

2
e(1+2j)t +

1

2
e(1−2j)t (125)

so that

y(t) =
1

2
H(1 + j2) e(1+2j)t +

1

2
H(1− j2) e(1−2j)t . (126)

Since the poles of H(s) have negative real parts, the above
responses are also the “steady state” responses, that is those that
remain as t →∞.
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Forced Response to Sinusoidal Inputs

Consider the input

u(t) = cosω t (127)

applied to an LTI system with transfer function H(s) with real
coefficients in the numerator and denominator. Since

cosω t =
1

2
e j ω t +

1

2
e−j ω t (128)

the forced response in the steady state is

y(t) =
1

2
H(j ω) e j ω t +

1

2
H(−j ω) e j ω t . (129)

Since H(s) has real coefficients

H(−j ω) = H∗(j ω) (130)
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Forced Response to Sinusoidal Inputs (cont.)

and so (129) reduces to

y(t) = |H(j ω)| cos (ω t + H(j ω)) (131)

which shows that the LTI system responds to cosω t by putting
out the cosine wave of the same frequency amplified by |H(j ω)|
and phase-shifted by H(j ω). It can be shown similarly that the
response to

u(t) = sinω t (132)

is

y(t) = |H(j ω)| sin (ω t + H(j ω)). (133)
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Forced Response to Sinusoidal Inputs (cont.)

Example

Find the forced response of the system with transfer function
s + 1

s2
, to the input 2 cos t.

Solution. The sinusoidal component of the output, from (131), is
given by,

y(t) = 2

∣∣∣∣1 + j

j2

∣∣∣∣ cos
(
ω t + 1+j

j2

)
= 2
√

2 cos

(
t − 3π

4

)
.

(134)

Note that the steady state response of the system will also contain
steps and ramps due to the s2 term in the denominator of the
transfer function.
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Forced Response to Sinusoidal Inputs (cont.)

Example

Consider the system,

R = 1

+

−

y(t)L = 1

−

+

u(t)

Figure:
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Forced Response to Sinusoidal Inputs (cont.)

Example (cont.)

The inductor voltage can be written as follows.

L

(
u̇ − ẏ

R

)
= y , (135)

ẏ +
R

L
y = u̇. (136)

The Laplace transform gives

Y (s) =

(
s

s + R
L

)
U(s). (137)

Thus the transfer function is

H(s) =
s

s + 1
. (138)
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Forced Response to Sinusoidal Inputs (cont.)

Example (cont.)

Now, we can obtain the forced response components of y(t)
corresponding to the following input signals.
a) u(t) = et ,

y(t) = H(1) et =
1

2
et . (139)

b) u(t) = cos 2t,

y(t) = |H(j2)| cos (2t + H(j2))

=
4

5
cos
(
2t + tan−1(0.5)

)
.

(140)
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Forced Response to Sinusoidal Inputs (cont.)

Example (cont.)

c) u(t) = sin t

y(t) = |H(j)| sin (t + H(j))

=
1

2
cos
(
t +

π

4

)
.

(141)

d) u(t) = et cos (2t) =
et+j 2 t

2
+

et−j 2 t

2

y(t) = H(1 + j2)
et+j 2 t

2
+ H(1− j2)

et−j 2 t

2

=
1

2
|H(1 + j2)|

(
et+2 j t+j H(1 + j2)

)
+

1

2
|H(1− j2)|

(
et−2 j t+j H(1− j2)

)
.

(142)

Since the system transfer function has stable poles, (142) is also
the steady state response.
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Exercises

Exercise 1

If U(t) denotes the unit step, show that

d U(t)

dt
= δ(t). (143)
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Exercises

Exercise 2

Solve using Laplace transforms and identifying the transfer
function, the zero input and zero state responses. (U(t): unit
step)

a) ẏ(t) + y(t) = u̇(t)− u(t), u(t) = U(t), y(0−) = 1

b) ÿ(t) + 3ẏ(t) + 2y(t) = u̇(t) + u(t), u(t) = U(t), y(0−) = 1,
ẏ(0−) = −1

c) ÿ(t) + 5ẏ(t) + 7y(t) = u̇(t)− u(t), u(t) = U(t), y(0−) = 1,
ẏ(0−) = 1

d)
...
y (t) + 3ÿ(t) + 5ẏ(t) + 3y(t) = u̇(t)− u(t), u(t) = U(t),
y(0−) = 1, ẏ(0−) = −1
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Exercises

Exercise 3

Evaluate the following functions. (∗ denotes convolution)

a) g(t) = et ∗ e−t

b) g(t) = U(t) ∗ et

c) g(t) = t ∗ sin t

d) g(t) = δ(t) ∗ t2

e) g(t) = sin t ∗ cos t


