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State Variable Models for Dynamic Systems
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x1, x2 · · · xn

Figure 1: A conceptual model

The general model of Figure 1 is applicable to dynamic systems as
well. The only difference is that time derivative of the internal
variables xi (t) also enter into the mathematical description of the
behavior of the system. For linear time invariant (LTI) systems it
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State Variable Models for Dynamic Systems
(cont.)

will be possible, in many cases, to write the system equations in
the standard form

ẋ(t) = Ax(t) + Bu(t) (1a)

y(t) = Cx(t) + Du(t) (1b)

where the matrices A, B, C, D have appropriate dimensions and y,
u and x denote the output, input and state vectors respectively.
Note that the static model from the previous lecture is a special
case of (1), when ẋ(t) = 0.
In general the internal or state variables should be chosen to
provide a “complete” description of the system. We illustrate the
use of the model (1) with examples in the next section.



4/66

Solution of State Space Equations

Let us consider a scalar example:

ẋ(t) = ax(t) + bu(t) (2)

where a, b, c are scalar constants. To solve the differential
equation, we take Laplace transforms, and get

sX(s)−x(0) = aX(s)+bU(s), or X(s) =
1

s − a
x(0)+

b

s − a
U(s).

(3)
Taking inverse Laplace transforms, we have

x(t) = eatx(0) +

∫ t

0
ea(t−τ)bu(τ)dτ. (4)

Eq. (4) shows that the solution consists of two parts. The first
part is only depending on the initial condition x(0) and the second
part is only depending on the input u(t). Therefore the first part is
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Solution of State Space Equations (cont.)

called the zero input response and the second part is called the
zero state response.
The foregoing approach to the solution of the scalar differential
equation can be extended to the case of the vector state equations.
Let

ẋ(t) = Ax(t) + Bu(t) (5)

where x(t) is n vector, so A ∈ Rn×n. If a system has r inputs and
m outputs, B ∈ Rn×r , C ∈ Rm×n, D ∈ Rm×r . Taking the Laplace
transform of both sides of the equation, we have

sX(s)− x(0) = AX(s) + BU(s)

where X(s) = L[x(t)], U(s) = L[u(t)] and x(t) is a vector with
size n. Hence

(sI − A)X(s) = x(0) + BU(s)

or
X(s) = (sI − A)−1x(0) + (sI − A)−1BU(s)
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Solution of State Space Equations (cont.)

Taking inverse Laplace transform

x(t) = L−1
[
(sI − A)−1

]
x(0) + L−1

[
(sI − A)−1

]
∗ u(t).

Note that

(sI − A)−1 =
I

s
+

A

s2
+

A2

s3
+ · (6)

Thus, we have

L−1
[
(sI − A)−1

]
= I + At +

A2t2

2!
+

A3t3

3!
+ ·

= eAt . (7)

Therefore, the solution of the state equation is

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ. (8)
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Solution of State Space Equations (cont.)

Substituting (8) to

y(t) = Cx(t) + Du(t),

we have

y(t) = C eAtx(0) + C

∫ t

0
eA(t−τ)Bu(τ)dτ + Du(t).
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Examples of State Space Models
R LC circuits

Inductors and capacitors have dynamic voltage-current
relationships as shown below:

L

+ −vL

iL

Figure 2: vL = L
d iL
d t

C

+ −
vC

iC

Figure 3: iC = C
d vC
d t

It is possible to show, based on the above v -i relationships that an
arbitrary R LC circuit can be “completely” described by choosing
all inductor currents and capacitor voltages as components of the
state vector x.
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Examples of State Space Models (cont.)

Example (R LC circuits)

Consider the series R LC circuit:

R1 L x1

C

+

−
x2

−

+

y

−

+

u

Figure 4: An R LC circuit
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Examples of State Space Models (cont.)

Example (R LC circuits (cont.))

Choosing x1 and x2 as the inductor current and capacitor voltage
respectively we see that the vector (x1(t), x2(t)) provides a
complete description of all currents and voltages in the circuit.
The system equations are obtained from Kirchhoff’s laws:

x1 = C ẋ2 (current summation)

u = R x1 + L ẋ1 + x2 (voltage summation)

y = x2 (output).

(9)
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Examples of State Space Models (cont.)

Example (R LC circuits (cont.))

These can be placed in the standard form (1):[
ẋ1
ẋ2

]
=

[
−R

L − 1
R

1
C 0

]
︸ ︷︷ ︸

A

[
x1
x2

]
+

[
1
R
0

]
︸︷︷︸
B

u

y =
[
0 1

]︸ ︷︷ ︸
C

[
x1
x2

]
+
[
0
]︸︷︷︸

D

u.

(10)
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Examples of State Space Models (cont.)

Example (Two input Two output R LC circuit)

+
−u1

L1x1
R1

L2

x2

R2

C

+

−
x3

y2

+
− u2

R3

−

+

y1

Figure 5: 2 input 2 output R LC circuit
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Examples of State Space Models (cont.)

Example (Two input Two output R LC circuit (cont.))

Choosing inductor currents x1, x2, and capacitor voltage x3 as
state variables we can write Kirchhoff’s equations:

current summation

x1 = x2 + C ẋ3 (11a)

voltage summation

u1 = L1 ẋ1 + R1 x1 + x3 + R3 C ẋ3 + u2 (11b)

L2 ẋ2 + R2 x2 = x3 + R3 C ẋ3 + u2 (11c)

y1 = x3 + R3 C ẋ3 + u2 (11d)

y2 = x2. (11e)
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Examples of State Space Models (cont.)

Example (Two input Two output R LC circuit (cont.))

Equation (11) can be rewritten in the standard state variable form:ẋ1ẋ2
ẋ3

 =

−
(R1+R3

L1
R3
L1

− 1
L1

−R3
L2

− (R2+R3)
L2

1
L2

1
C − 1

C 0


︸ ︷︷ ︸

A

x1x2
x3

+

 1
L1
− 1

L1
0 1

L2
0 0


︸ ︷︷ ︸

B

[
u1
u2

]

[
y1
y2

]
=

[
R3 −R3 1
0 1 0

]
︸ ︷︷ ︸

C

x1x2
x3

+

[
0 1
0 0

]
︸ ︷︷ ︸

D

[
u1
u2

]
.

(12)
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Examples of State Space Models (cont.)

Example

Consider the system,

−

+

u(t)

R2

+

−

y(t)C

+

−
x2

R1

L

x1

Let x1 be the current of the inductor L and let x2 be the voltage
across the capacitor C .
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Examples of State Space Models (cont.)

Example (cont.)

Then,

u = R1 x1 + L ẋ1 (13)

u = R2 C ẋ2 + x2 (14)

y = x2. (15)

Thus, [
ẋ1
ẋ2

]
=

[
−R1

L 0
0 − 1

R2 C

] [
x1
x2

]
+

[ 1
L
1

R2 C

]
u (16)

y =
[
0 1

] [x1
x2

]
+
[
0
]
u. (17)
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Examples of State Space Models (cont.)

Example (cont.)

The transfer function is

G (s) =
[
0 1

] [s + R
L 0

0 s + 1
R2 C

]−1 [ 1
L
1

R2 C

]
+ 0

=
1

R2 C

s + 1
R2 C

.

(18)
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Examples of State Space Models (cont.)

Example

Consider the system,

−

+

u(t)

C

+

−
x2

+

−

y(t)

R2 i2

R3

i3

R1

i1

L

x1
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Examples of State Space Models (cont.)

Example (cont.)

From Kirchhoff current law, we have

i1 = i2 + x1 (node on the left) (19)

i2 + C ẋ2 = i3 (node on the right) (20)

x1 + i3 = i1 + C ẋ2 (current from/to u(t)). (21)

Rewriting above with respect to i1, i2 and i3, we get

i1 =
u − L ẋ1

R1
(22)

i2 =
u − L ẋ1

R1
− x1 (23)

i3 =
u − L ẋ1

R1
− x1 + C ẋ2. (24)
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Examples of State Space Models (cont.)

Example (cont.)

From Kirchhoff voltage law, we have

u − L ẋ1 + R2

(
u − L ẋ1

R1
− x1

)
− x2 = 0 (Top loop) (25)

L ẋ1 = R2

(
u − L ẋ1

R1
− x1

)
+ R3

(
u − L ẋ1

R1
− x1 + Cẋ2

)
(26)

(Bottom loop).

Thus,

u − L ẋ1 + R2

(
u − L ẋ1

R1
− x1

)
− x2 = 0 (27)

⇔ u +
R2 u

R1
− R2 x1 − x2 = L ẋ1 +

R2

R1
L ẋ1 (28)

⇔
(
L

(
1 +

R2

R1

))
ẋ1 = −R2 x1 − x2 +

(
1 +

R2

R1

)
u (29)

(30)
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Examples of State Space Models (cont.)

Example (cont.)

ẋ1 =
−R2

L(R1+R2)
R1

x1 −
R1

L(R1 + R2)
x2 +

1

L
u

=
−R1 R2

L(R1 + R2)
x1 −

R1

L(R1 + R2)
x2 +

1

L
u

(31)

R1 L ẋ1 = R2 u − R2 L ẋ1 − R1 R2 x1 + R3 u − R3 L ẋ1

− R1 R3 x1 + R1 R3 C ẋ2 (32)

⇔ R1(R2 + R3)x1 − (R2 + R3)u + L(R1 + R2 + R3)ẋ1

= R1 R3 C ẋ2 (33)
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Examples of State Space Models (cont.)

Example (cont.)

R1 R3 C ẋ2 = (R1 + R2 + R3)

{
−R1 R2

R1 + R2
x1 −

R1

R1 + R2
x2 + u

}
+ R1(R2 + R3)x1 − (R2 + R3)u (34)

⇔ R3 C ẋ2 =

(
−R2(R1 + R2 + R3)

R1 + R2
+ (R2 + R3)

)
x1

+
−(R1 + R2 + R3)

R1 + R2
x2 + u (35)

⇔ R3 C ẋ2 =
R1 R3

R1 + R2
x1 −

R1 + R2 + R3

R1 + R2
x2 + u (36)

⇔ ẋ2 =
R1

C (R1 + R2)
x1 −

(
1

R3 C
+

1

C (R1 + R2)

)
x2 + u

(37)
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Examples of State Space Models (cont.)

Example (cont.)

y = R3 i3 = R3

(
u − L ẋ1

R1
− x1 + C ẋ2

)
(38)

= −R3 x1 +
R3

R1
u − R3

R1
L

(
−R1 R2

L(R1 + R2)
x1 −

R1

L(R1 + R2)
x2 +

1

L
u

)
+ R3 C

{
R1

C (R1 + R2)
x1 −

(
1

R3 C
+

1

C (R1 + R2)

)
x2 +

1

R3 C
u

}
(39)

=

(
−R3 +

R2 R3

R1 + R2
+

R1 R3

R1 + R2

)
x1 +

(
R3

R1 + R2
− 1− R3

R1 + R2

)
x2

+

(
R3

R1
− R3

R1
+ 1

)
u (40)

= −x2 + u. (41)
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Examples of State Space Models (cont.)

Example (cont.)

(41) can also be obtained from the fact that

u = x2 + R3 i3. (42)

The state variable equations are[
ẋ1
ẋ2

]
=

[
− R1 R2

L(R1+R2)
− R1

L(R1+R2)
R1

C(R1+R2)
−
(

1
R3 C

+ 1
C(R1+R2)

)][x1
x2

]
+

[ 1
L
1

R3 C

]
u

(43)

y =
[
0 −1

] [x1
x2

]
+
[
1
]
u. (44)
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Examples of State Space Models (cont.)

Example (cont.)
The transfer function is

G (s) =
[
0 −1

] [s + R1 R2

L(R1+R2)
R1

L(R1+R2)

− R1

C(R1+R2)
s +

(
1

R3 C
+ 1

C(R1+R2)

)]−1 [
1
L
1

R3 C

]
+ 1

(45)
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Examples of State Space Models (cont.)

Example

Consider the system,

−

+

u(t)

L
C

+

−

y(t)R
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Examples of State Space Models (cont.)

Example (cont.)

By Kirchhoff current law, we have

x1 = C ẋ2. (46)

By Kirchhoff voltage law, we have

u = L ẋ1 + x2 + R x1. (47)

The state variable form is[
ẋ1
ẋ2

]
=

[
−R1

L − 1
L

1
L 0

] [
x1
x2

]
+

[
1
L
0

]
u (48)

y =
[
R 0

] [x1
x2

]
+
[
0
]
u. (49)
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Examples of State Space Models (cont.)

Example (cont.)

The transfer function is

G (s) =
[
R 0

] [s + R
L

1
L

− 1
L s

]−1 [ 1
L
0

]
+ 0

=

[
R 0

] [s + R
L

1
L

− 1
L s

]−1 [ 1
L
0

]
s2 + R

L s + 1
LC

=
R
L s

s2 + R
L s + 1

LC

.

(50)
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Examples of State Space Models (cont.)
Mechanical Systems

The common elements of mechanical systems are masses, springs
and dampers. If a linear spring is stretched (compressed) from its
relaxed position by a certain amount, it produces a restoring force
K x in the opposite direction. A linear damper as shown below
produces a force B ẋ opposing the motion,

ym
B ẋ

ẋ

Figure 6: A linear damper (dashpot)
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Examples of State Space Models (cont.)
Mechanical Systems

with ẋ being the relative velocity of the plunger with respect to the
housing. The main law of physics governing the behavior of
mechanical systems is Newton’s equation of motion which can be
stated as follows, for linear motion:
The algebraic sum of forces acting on a mass m, in the positive x
direction = m ẍ , where ẍ is the acceleration of m in the positive x
direction.
A similar law holds for rotational motion with force, mass and
linear acceleration replaced by torque, moment of inertia and
angular acceleration, respectively.
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Examples of State Space Models (cont.)
Mechanical Systems

Example (Two input, two output mechanical system)

Consider the mechanical system below:

m1
K

u1

x1 = y1

m2

B

u2

x2 = y2

Figure 7: 2 input 2 output mechanical system I
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Examples of State Space Models (cont.)
Mechanical Systems

Example (Two input, two output mechanical system (cont.))

where x1, x2 denote the displacements from the equilibrium
positions of the masses m1 and m2 respectively. A “free body”
diagram of each mass is shown below:

m1

K x1 u1

B(ẋ1 − ẋ2)

x1

m2

B(ẋ1 − ẋ2) u1

x2

Figure 8: Free Body Diagrams
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Examples of State Space Models (cont.)
Mechanical Systems

Example (Two input, two output mechanical system (cont.))

From Figure 8, Newton’s equations for the two masses are:

u1 − K x1 − B(ẋ1 − ẋ2) = m1ẍ1 (51a)

u2 + B(ẋ1 − ẋ2) = m2ẍ2. (51b)

To rewrite (51) in the standard first order state variable form we
introduce two additional variables

x3 := ẋ1

x4 := ẋ2.
(52)
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Examples of State Space Models (cont.)
Mechanical Systems

Example (Two input, two output mechanical system (cont.))

We may now write the system equations in the standard first order
state variable form,

ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 1 0
0 0 0 1

−K/m1 0 −B/m1
B/m1

0 0 B/m2 −B/m2


︸ ︷︷ ︸

A


x1
x2
x3
x4

+


0 0
0 0

1/m1 0
0 1/m2


︸ ︷︷ ︸

B

[
u1
u2

]

[
y1
y2

]
=

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

C


x1
x2
x3
x4

+

[
0 0
0 0

]
︸ ︷︷ ︸

D

[
u1
u2

]
(53)

with matrices {A, B, C, D} as shown.
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Examples of State Space Models (cont.)
Mechanical Systems

Example

Consider the system in Figure 9,

m1
K1

u1

x1 = y1

m2
K2

u2

x2 = y2

Figure 9: 2 input 2 output mechanical system II
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Examples of State Space Models (cont.)
Mechanical Systems

Example (cont.)

The free body diagrams for m1 and m2 are:

m1

K1 x1 u1

K2(x1 − x2)

x1

Figure 10: The free body diagram
for m1

m2

K2(x1 − x2) u1

x2

Figure 11: The free body diagram
for m2
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Examples of State Space Models (cont.)
Mechanical Systems

Example (cont.)

Newton’s equation of motion are:

u1 − K1 x1 − K2(x1 − x2) = m1 ẍ1 (54)

u2 + K2(x1 − x2) = m2 ẍ2 (55)

They can be cast in the standard state variable form:

ẋ1 =: x3 (56)

ẋ2 =: x4 (57)

ẋ3 = −K1 + K2

m1
x1 +

K2

m1
x2 +

1

m1
u1 (58)

ẋ4 =
K2

m2
x1 −

K2

m2
x2 +

1

m2
u2 (59)
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Examples of State Space Models (cont.)
Mechanical Systems

Example (cont.)


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 1 0
0 0 0 1

−K1+K2
m1

K2
m1

0 0
K2
m2

−K2
m2

0 0



x1
x2
x3
x4

+


0 0
0 0
1
m1

0

0 1
m2

[u1u2
]

[
y1
y2

]
=

[
1 0 0 0
0 1 0 0

]
x1
x2
x3
x4

+

[
0 0
0 0

] [
u1
u2

] (60)
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Examples of State Space Models (cont.)
Mechanical Systems

Example

Consider the system in Figure 12,

m1
B1

u1

x1 = y1

m2
B2

u2

x2 = y2

Figure 12: 2 input 2 output mechanical system III
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Examples of State Space Models (cont.)
Mechanical Systems

Example (cont.)

The free body diagrams and Newton’s equations are:

m1

B1 ẋ1 u1

B2(ẋ1 − ẋ2)

x1

Figure 13: The free body diagram for m1

u1 − B1 ẋ1 − B2(ẋ1 − ẋ2) = m1 ẍ1 (61)
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Examples of State Space Models (cont.)
Mechanical Systems

Example (cont.)

m2

B2(ẋ1 − ẋ2) u1

x2

Figure 14: The free body diagram for m2

u2 + B2(ẋ1 − ẋ2) = m2 ẍ2 (62)
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Examples of State Space Models (cont.)
Mechanical Systems

Example (cont.)

The standard state variable form is:

ẋ1 =: x3 (63)

ẋ2 =: x4 (64)

ẋ3 = −B1 + B2

m1
x3 +

B2

m1
x4 +

1

m1
u1 (65)

ẋ4 =
B2

m2
x3 −

B2

m2
x4 +

1

m2
u2 (66)



43/66

Examples of State Space Models (cont.)
Mechanical Systems

Example (cont.)


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 1 0
0 0 0 1

0 0 −B1+B2
m1

B2
m1

0 0 B2
m2

− B2
m2



x1
x2
x3
x4

+


0 0
0 0
1
m1

0

0 1
m2

[u1u2
]

[
y1
y2

]
=

[
1 0 0 0
0 1 0 0

]
x1
x2
x3
x4

+

[
0 0
0 0

] [
u1
u2

] (67)
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Examples of State Space Models (cont.)
Electromechanical System

An armature controlled, separately excited DC motor is shown
below driving a rotational load with a resistive load torque TL.

−

+

u

ia
Rd Ld

+

−
eb(t)

−

+

Field

J

TL

B
Tm, θ

ω

Figure 15: Separately excited DC motor
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Examples of State Space Models (cont.)
Electromechanical System

The armature resistance, inductance and current are denoted Ra,
La and ia, eb denotes the back electromotive force (emf), Tm the
motor torque, θ and ω the motor shaft angular position and
velocity and J and B the moment of inertia of the load (reflected
to the motor drive shaft) and the viscous damping constant “seen”
by the load.
The motor equations are

Tm = Kt ia (68a)

eb = Kb ω (68b)

where Kt , Kb are constants provided by the manufacturer. We
write the system equations by summing voltages around the loop
(electrical balance) and sum of mechanical torques resulting in
acceleration (mechanical balance).
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Examples of State Space Models (cont.)
Electromechanical System

Electrical Balance

u = Ra ia + La i̇a + eb. (69)

Mechanical Balance

Tm = TL + B θ̇ + J θ̈. (70)

Assuming that angular position and velocity are the outputs of
interest we have

y1 = θ (71a)

y2 = ω := θ̇. (71b)
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Examples of State Space Models (cont.)
Electromechanical System

We may now choose x1 = θ1, x2 = ω and x3 = ia as the state
variables to obtain the DC motor model in the standard form:ẋ1ẋ2

ẋ3

 =

0 1 0
0 −B/J Kt/J
0 −Kb/La −Ra/La


︸ ︷︷ ︸

A

x1x2
x3

+

 0 0
0 −1/J

1/La 0


︸ ︷︷ ︸

B

[
u
TL

]

[
y1
y2

]
=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

C

x1x2
x3

+

[
0 1
0 0

]
︸ ︷︷ ︸

D

[
u
TL

]
.

(72)
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart)

Consider the inverted pendulum below:

Mu

θ

m

mg

l
l cos θ

l sin θ

x0

y

x

Figure 16: Inverted Pendulum
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

There are two balance equations; 1) force balance and 2) torque
balance. Firstly we consider the force balance. Since the force in
the horizon is the force of the cart and the force of the bob, we
have

M
d2

d t2
x + m

d2

d t2
xm = u (73)

where the coordinate of the point mass, bob, is given by (xm, ym).
Using the reference coordinate, length of massless rod and the
angle we have

xm = x + l sin θ

ym = l cos θ.
(74)
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Thus, we can rewrite (73) as

M
d2

d t2
x + m

d2

d t2
(x + l sin θ) = u (75)

Noting that
d2

d t2
sin θ = −(sin θ)(θ̇)2 + (cos θ)θ̈ we get

(M + m) ẍ −m l (sin θ)(θ̇)2 + m l (cos θ)θ̈ = u. (76)
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Secondly, for the torque balance, refer to Figure 17 for the
notation of directions.

θ

m

mg

Fym

Fxm

x

y

Figure 17: Torque directions
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Since the torque due to the acceleration force is balanced by the
torque due to the gravity force we have

Fxm cos θ − Fym sin θ = mg sin θ (77)

where the forces are

Fxm = m
d2

d t2
xm = m

(
ẍ − l (sin θ)(θ̇)2 + l (cos θ)θ̈

)
,

Fym = m
d2

d t2
ym = −m

(
l (cos θ)(θ̇)2 + l (sin θ)θ̈

)
.

(78)
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Substituting (77) in (78) gives

mg sin θ

= Fxm cos θ − Fym sin θ

= m
{
ẍ − l (sin θ)(θ̇)2 + l (cos θ)θ̈

}
cos θ

−m
{
l (cos θ)(θ̇)2 + l (sin θ)θ̈

}
sin θ

= m ẍ cos θ + m l θ̈. (79)
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Using small signal approximation about θ = 0, we have cos θ ∼= 1,
sin θ ∼= θ, and θ̇ 2 ∼= 0; thus the inverted pendulum equations
become

(M + m)ẍ + m l θ̈ = u (80)

m ẍ + m l θ̈ = mg θ. (81)

Now we define the state vector as

z =


θ

θ̇
x
ẋ

 . (82)
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Since ż has elements ẍ and θ̈ in the vector we derive these
expressions using (80) and (81). First, from (81), we have

m l θ̈ = mg θ −m ẍ (83)

and substituting this into (80),

(M + m)ẍ + m l θ̈ = u

⇔ (M + m)ẍ + mg θ −m ẍ = u

⇔ M ẍ + mg θ = u

⇔ ẍ = −m

M
g θ +

1

M
u. (84)
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Next, substituting (84) back into (83) we get

m l θ̈ = mg θ −m ẍ

⇔ l θ̈ = g θ +

{
m

M
g θ − 1

M
u

}
⇔ θ̈ =

g

l
θ +

1

l

{
m

M
g θ − 1

M
u

}
⇔ θ̈ =

g

l

(
1 +

m

M

)
θ − 1

l M
u. (85)

Now fit these to the state space representation of the form:

ż = Az + B u (86)

y = Cz + D u. (87)
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Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))
Then, the final state space representation is

ż1
ż2
ż3
ż4

 =


0 1 0 0

g
l (1 + m

M ) 0 0 0
0 0 0 1

−g θ( m
M ) 0 0 0


︸ ︷︷ ︸

A


z1
z2
z3
z4

+


0

−1/l M
0

1/M


︸ ︷︷ ︸

B

u

[
y1
y2

]
=

[
1 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

C


z1
z2
z3
z4

+
[
0 0

]︸ ︷︷ ︸
D

u

(88)

where 
ż1
ż2
ż3
ż4

 = ż =


θ̇

θ̈
ẋ
ẍ

 and


z1
z2
z3
z4

 = z =


θ

θ̇
x
ẋ

 . (89)
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Exercise

Exercise 1

+
−u1

R1

+ −y2

R2

+
− u2

R3

−

+

y1
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Exercise (cont.)

a) Write equations for the circuit in the matrix form :

Ax + Bu = 0,

Cx + Du = y.
(90)

b) Solve for the gain matrix G, where

y = Gu (91)

in terms of Ri , i = 1, 2, 3.
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Exercise (cont.)

Exercise 2

A photovoltaic (PV) array is connected to a load RL as shown:

I

RL

+

−

V
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Exercise (cont.)

The nonlinear V − I characteristic of the PV panel is shown

VP : Panel voltage

IP : Panel current

Figure 18: V − I characteristic of the PV array

a) Find the current and voltage in the circuit as a “function” of
RL.

b) Find RL to obtain the maximum power output.
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Exercise (cont.)

Exercise 3

−

+

u

R1

+

−

y

C

R3

L

R2
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Exercise (cont.)

a) Write state variable equations for the circuit in the standard
form:

ẋ(t) = Ax(t) + Bu(t),

y = Cx(t) + Du(t).
(92)

b) Find the transfer function using the state space model

c) Solve for the state x(t), and output y(t), assuming zero initial
conditions on the capacitor voltage and inductor current,
u(t) = U(t) and Ri = 1, i = 1, 2, 3, L = 1, C = 1.

d) Verify that the “steady state” values for a constant input u
satisfy

Ax + Bu = 0,

Cx + Du = y.
(93)
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Exercise (cont.)

Exercise 4

m1
K

u1

x = y1

ẋ = y2viscous friction coefficient µ

a) Write state variable equations for the mass-spring system.

b) Calculate the transfer function y1/u and y2/u using the state
space model.

c) Find the poles of the system (or eigenvalues of A) as a
function of m, k , µ.
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Exercise (cont.)

d) Solve for y1(t), y2(t), for zero initial condition and
u(t) = U(t), as functions of m, k , µ.

e) Comment on the solution in d) considering the cases µ→ 0,
and K → 0.
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Exercise (cont.)

Exercise 5

m1
K

u1

x1 = y1

m2

B

u2

x2 = y2

a) Write state variable equations for the system.

b) Find the transfer functions

Yi (s)

Uj(s)
, i = 1, 2, j = 1, 2. (94)

c) Find the impulse response matrix G(t)


