ECEN 605
 LINEAR SYSTEMS

Lecture 6
Mathematical Representation of Physical Systems II

State Variable Models for Dynamic Systems

Figure 1: A conceptual model

The general model of Figure 1 is applicable to dynamic systems as well. The only difference is that time derivative of the internal variables $x_{i}(t)$ also enter into the mathematical description of the behavior of the system. For linear time invariant (LTI) systems it

State Variable Models for Dynamic Systems (cont.)

will be possible, in many cases, to write the system equations in the standard form

$$
\begin{align*}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \tag{1a}\\
\mathbf{y}(t) & =\mathbf{C} \mathbf{x}(t)+\mathbf{D} \mathbf{u}(t) \tag{1b}
\end{align*}
$$

where the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ have appropriate dimensions and \mathbf{y}, \mathbf{u} and \mathbf{x} denote the output, input and state vectors respectively. Note that the static model from the previous lecture is a special case of (1), when $\dot{\mathbf{x}}(t)=0$.
In general the internal or state variables should be chosen to provide a "complete" description of the system. We illustrate the use of the model (1) with examples in the next section.

Solution of State Space Equations

Let us consider a scalar example:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=a \mathbf{x}(t)+b \mathbf{u}(t) \tag{2}
\end{equation*}
$$

where a, b, c are scalar constants. To solve the differential equation, we take Laplace transforms, and get

$$
\begin{equation*}
s \mathbf{X}(s)-\mathbf{x}(0)=a \mathbf{X}(s)+b \mathbf{U}(s), \quad \text { or } \quad \mathbf{X}(s)=\frac{1}{s-a} \mathbf{x}(0)+\frac{b}{s-a} \mathbf{U}(s) \tag{3}
\end{equation*}
$$

Taking inverse Laplace transforms, we have

$$
\begin{equation*}
\mathbf{x}(t)=e^{a t} \mathbf{x}(0)+\int_{0}^{t} e^{a(t-\tau)} b \mathbf{u}(\tau) d \tau \tag{4}
\end{equation*}
$$

Eq. (4) shows that the solution consists of two parts. The first part is only depending on the initial condition $\mathbf{x}(0)$ and the second part is only depending on the input $\mathbf{u}(t)$. Therefore the first part is

Solution of State Space Equations (cont.)

called the zero input response and the second part is called the zero state response.
The foregoing approach to the solution of the scalar differential equation can be extended to the case of the vector state equations. Let

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \tag{5}
\end{equation*}
$$

where $\mathbf{x}(t)$ is n vector, so $\mathbf{A} \in \mathbb{R}^{n \times n}$. If a system has r inputs and m outputs, $\mathbf{B} \in \mathbb{R}^{n \times r}, \mathbf{C} \in \mathbb{R}^{m \times n}, \mathbf{D} \in \mathbb{R}^{m \times r}$. Taking the Laplace transform of both sides of the equation, we have

$$
s \mathbf{X}(s)-\mathbf{x}(0)=\mathbf{A X}(s)+\mathbf{B} \mathbf{U}(s)
$$

where $\mathbf{X}(s)=\mathcal{L}[\mathbf{x}(t)], \mathbf{U}(s)=\mathcal{L}[\mathbf{u}(t)]$ and $\mathbf{x}(t)$ is a vector with size n. Hence

$$
(s l-\mathbf{A}) \mathbf{X}(s)=\mathbf{x}(0)+\mathbf{B} \mathbf{U}(s)
$$

or

$$
\mathbf{X}(s)=(s l-\mathbf{A})^{-1} \mathbf{x}(0)+(s l-\mathbf{A})^{-1} \mathbf{B U}(s)
$$

Solution of State Space Equations (cont.)

Taking inverse Laplace transform

$$
\mathbf{x}(t)=\mathcal{L}^{-1}\left[(s l-\mathbf{A})^{-1}\right] \mathbf{x}(0)+\mathcal{L}^{-1}\left[(s l-\mathbf{A})^{-1}\right] * \mathbf{u}(t) .
$$

Note that

$$
\begin{equation*}
(s l-\mathbf{A})^{-1}=\frac{l}{s}+\frac{\mathbf{A}}{s^{2}}+\frac{\mathbf{A}^{2}}{s^{3}}+\cdot \tag{6}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
\mathcal{L}^{-1}\left[(s I-\mathbf{A})^{-1}\right] & =I+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\frac{\mathbf{A}^{3} t^{3}}{3!}+ \\
& =e^{\mathbf{A} t} \tag{7}
\end{align*}
$$

Therefore, the solution of the state equation is

$$
\begin{equation*}
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \tag{8}
\end{equation*}
$$

Solution of State Space Equations (cont.)

Substituting (8) to

$$
\mathbf{y}(t)=\mathbf{C} \mathbf{x}(t)+\mathbf{D} \mathbf{u}(t),
$$

we have

$$
\mathbf{y}(t)=\mathbf{C} e^{\mathbf{A} t} \mathbf{x}(0)+\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D} \mathbf{u}(t)
$$

Examples of State Space Models RLC circuits

Inductors and capacitors have dynamic voltage-current relationships as shown below:

Figure 2: $v_{L}=L \frac{d i_{L}}{d t}$

Figure 3: $i_{C}=C \frac{d v_{C}}{d t}$

It is possible to show, based on the above $v-i$ relationships that an arbitrary $R L C$ circuit can be "completely" described by choosing all inductor currents and capacitor voltages as components of the state vector \mathbf{x}.

Examples of State Space Models (cont.)

Example ($R L C$ circuits)
Consider the series $R L C$ circuit:

Figure 4: An $R L C$ circuit

Examples of State Space Models (cont.)

Example ($R L C$ circuits (cont.))
Choosing x_{1} and x_{2} as the inductor current and capacitor voltage respectively we see that the vector $\left(x_{1}(t), x_{2}(t)\right)$ provides a complete description of all currents and voltages in the circuit. The system equations are obtained from Kirchhoff's laws:

$$
\begin{align*}
x_{1} & =C \dot{x}_{2} \quad(\text { current summation }) \\
u & =R x_{1}+L \dot{x}_{1}+x_{2} \quad \text { (voltage summation) } \tag{9}\\
y & =x_{2} \quad \text { (output). }
\end{align*}
$$

Examples of State Space Models (cont.)

Example ($R L C$ circuits (cont.))
These can be placed in the standard form (1):

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\underbrace{\left[\begin{array}{cc}
-\frac{R}{L} & -\frac{1}{R} \\
\frac{1}{C} & 0
\end{array}\right]}_{\mathbf{A}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
\frac{1}{R} \\
0
\end{array}\right]}_{\mathbf{B}} u \tag{10}\\
y & =\underbrace{\left[\begin{array}{ll}
0 & 1
\end{array}\right]}_{\mathrm{C}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\underbrace{[0]}_{\mathbf{D}} u .
\end{align*}
$$

Examples of State Space Models (cont.)

Example (Two input Two output RLC circuit)

Figure 5: 2 input 2 output $R L C$ circuit

Examples of State Space Models (cont.)

Example (Two input Two output RLC circuit (cont.))
Choosing inductor currents x_{1}, x_{2}, and capacitor voltage x_{3} as state variables we can write Kirchhoff's equations:
current summation

$$
\begin{equation*}
x_{1}=x_{2}+C \dot{x}_{3} \tag{11a}
\end{equation*}
$$

voltage summation

$$
\begin{align*}
& u_{1}=L_{1} \dot{x}_{1}+R_{1} x_{1}+x_{3}+R_{3} C \dot{x}_{3}+u_{2} \tag{11b}\\
& L_{2} \dot{x}_{2}+R_{2} x_{2}=x_{3}+R_{3} C \dot{x}_{3}+u_{2} \tag{11c}\\
& y_{1}=x_{3}+R_{3} C \dot{x}_{3}+u_{2} \tag{11d}\\
& y_{2}=x_{2} . \tag{11e}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (Two input Two output RLC circuit (cont.))
Equation (11) can be rewritten in the standard state variable form:

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
-\frac{\left(R_{1}+R_{3}\right.}{L_{1}} & \frac{R_{3}}{L_{1}} & -\frac{1}{L_{1}} \\
-\frac{R_{3}}{L_{2}} & -\frac{\left(R_{2}+R_{3}\right)}{L_{2}} & \frac{1}{L_{2}} \\
\frac{1}{C} & -\frac{1}{C} & 0
\end{array}\right]}_{\mathbf{A}}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
\frac{1}{L_{1}} & -\frac{1}{L_{1}} \\
0 & \frac{1}{L_{2}} \\
0 & 0
\end{array}\right]}_{\mathbf{B}}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
R_{3} & -R_{3} & 1 \\
0 & 1 & 0
\end{array}\right]}_{\mathbf{C}}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{\mathbf{D}}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] .} \tag{12}
\end{align*}
$$

Examples of State Space Models (cont.)

Example
Consider the system,

Let x_{1} be the current of the inductor L and let x_{2} be the voltage across the capacitor C.

Examples of State Space Models (cont.)

Example (cont.)
Then,

$$
\begin{align*}
& u=R_{1} x_{1}+L \dot{x}_{1} \tag{13}\\
& u=R_{2} C \dot{x}_{2}+x_{2} \tag{14}\\
& y=x_{2} . \tag{15}
\end{align*}
$$

Thus,

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-\frac{R_{1}}{L} & 0 \\
0 & -\frac{1}{R_{2} C}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{L} \\
\frac{1}{R_{2} C}
\end{array}\right] u \tag{16}\\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[0] u . \tag{17}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (cont.)
The transfer function is

$$
\begin{align*}
G(s) & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
s+\frac{R}{L} & 0 \\
0 & s+\frac{1}{R_{2} C}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{1}{L} \\
\frac{1}{R_{2} C}
\end{array}\right]+0 \\
& =\frac{\frac{1}{R_{2} C}}{s+\frac{1}{R_{2} C}} . \tag{18}
\end{align*}
$$

Examples of State Space Models (cont.)

Example
Consider the system,

Examples of State Space Models (cont.)

Example (cont.)
From Kirchhoff current law, we have

$$
\begin{align*}
i_{1}=i_{2}+x_{1} & \text { (node on the left) } \tag{19}\\
i_{2}+C \dot{x}_{2}=i_{3} & \text { (node on the right) } \tag{20}\\
x_{1}+i_{3}=i_{1}+C \dot{x}_{2} & \text { (current from/to } u(t)) . \tag{21}
\end{align*}
$$

Rewriting above with respect to i_{1}, i_{2} and i_{3}, we get

$$
\begin{align*}
& i_{1}=\frac{u-L \dot{x}_{1}}{R_{1}} \tag{22}\\
& i_{2}=\frac{u-L \dot{x}_{1}}{R_{1}}-x_{1} \tag{23}\\
& i_{3}=\frac{u-L \dot{x}_{1}}{R_{1}}-x_{1}+C \dot{x}_{2} . \tag{24}
\end{align*}
$$

Examples of State Space Models (cont.)
Example (cont.)
From Kirchhoff voltage law, we have

$$
\begin{align*}
& u-L \dot{x}_{1}+R_{2}\left(\frac{u-L \dot{x}_{1}}{R_{1}}-x_{1}\right)-x_{2}=0 \quad \text { (Top loop) } \tag{25}\\
& L \dot{x}_{1}=R_{2}\left(\frac{u-L \dot{x}_{1}}{R_{1}}-x_{1}\right)+R_{3}\left(\frac{u-L \dot{x}_{1}}{R_{1}}-x_{1}+C \dot{x}_{2}\right) \tag{26}
\end{align*}
$$

(Bottom loop).
Thus,

$$
\begin{align*}
& u-L \dot{x}_{1}+R_{2}\left(\frac{u-L \dot{x}_{1}}{R_{1}}-x_{1}\right)-x_{2}=0 \tag{27}\\
& \Leftrightarrow u+\frac{R_{2} u}{R_{1}}-R_{2} x_{1}-x_{2}=L \dot{x}_{1}+\frac{R_{2}}{R_{1}} L \dot{x}_{1} \tag{28}\\
& \Leftrightarrow\left(L\left(1+\frac{R_{2}}{R_{1}}\right)\right) \dot{x}_{1}=-R_{2} x_{1}-x_{2}+\left(1+\frac{R_{2}}{R_{1}}\right) u \tag{29}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (cont.)

$$
\begin{align*}
\dot{x}_{1}= & \frac{-R_{2}}{\frac{L\left(R_{1}+R_{2}\right)}{R_{1}}} x_{1}-\frac{R_{1}}{L\left(R_{1}+R_{2}\right)} x_{2}+\frac{1}{L} u \tag{31}\\
= & \frac{-R_{1} R_{2}}{L\left(R_{1}+R_{2}\right)} x_{1}-\frac{R_{1}}{L\left(R_{1}+R_{2}\right)} x_{2}+\frac{1}{L} u \\
R_{1} L \dot{x}_{1}= & R_{2} u-R_{2} L \dot{x}_{1}-R_{1} R_{2} x_{1}+R_{3} u-R_{3} L \dot{x}_{1} \\
& -R_{1} R_{3} x_{1}+R_{1} R_{3} C \dot{x}_{2} \tag{32}\\
\Leftrightarrow R_{1}\left(R_{2}\right. & \left.+R_{3}\right) x_{1}-\left(R_{2}+R_{3}\right) u+L\left(R_{1}+R_{2}+R_{3}\right) \dot{x}_{1} \\
= & R_{1} R_{3} C \dot{x}_{2} \tag{33}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (cont.)

$$
\begin{align*}
R_{1} R_{3} C \dot{x}_{2}= & \left(R_{1}+R_{2}+R_{3}\right)\left\{\frac{-R_{1} R_{2}}{R_{1}+R_{2}} x_{1}-\frac{R_{1}}{R_{1}+R_{2}} x_{2}+u\right\} \\
& +R_{1}\left(R_{2}+R_{3}\right) x_{1}-\left(R_{2}+R_{3}\right) u \tag{34}\\
\Leftrightarrow R_{3} C \dot{x}_{2}= & \left(\frac{-R_{2}\left(R_{1}+R_{2}+R_{3}\right)}{R_{1}+R_{2}}+\left(R_{2}+R_{3}\right)\right) x_{1} \\
& +\frac{-\left(R_{1}+R_{2}+R_{3}\right)}{R_{1}+R_{2}} x_{2}+u \tag{35}\\
\Leftrightarrow R_{3} C \dot{x}_{2}= & \frac{R_{1} R_{3}}{R_{1}+R_{2}} x_{1}-\frac{R_{1}+R_{2}+R_{3}}{R_{1}+R_{2}} x_{2}+u \tag{36}\\
\Leftrightarrow \dot{x}_{2}= & \frac{R_{1}}{C\left(R_{1}+R_{2}\right)} x_{1}-\left(\frac{1}{R_{3} C}+\frac{1}{C\left(R_{1}+R_{2}\right)}\right) x_{2}+u \tag{37}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (cont.)

$$
\begin{align*}
y= & R_{3} i_{3}=R_{3}\left(\frac{u-L \dot{x}_{1}}{R_{1}}-x_{1}+C \dot{x}_{2}\right) \tag{38}\\
= & -R_{3} x_{1}+\frac{R_{3}}{R_{1}} u-\frac{R_{3}}{R_{1}} L\left(\frac{-R_{1} R_{2}}{L\left(R_{1}+R_{2}\right)} x_{1}-\frac{R_{1}}{L\left(R_{1}+R_{2}\right)} x_{2}+\frac{1}{L} u\right) \\
& +R_{3} C\left\{\frac{R_{1}}{C\left(R_{1}+R_{2}\right)} x_{1}-\left(\frac{1}{R_{3} C}+\frac{1}{C\left(R_{1}+R_{2}\right)}\right) x_{2}+\frac{1}{R_{3} C} u\right\} \tag{39}\\
= & \left(-R_{3}+\frac{R_{2} R_{3}}{R_{1}+R_{2}}+\frac{R_{1} R_{3}}{R_{1}+R_{2}}\right) x_{1}+\left(\frac{R_{3}}{R_{1}+R_{2}}-1-\frac{R_{3}}{R_{1}+R_{2}}\right) x_{2} \\
& +\left(\frac{R_{3}}{R_{1}}-\frac{R_{3}}{R_{1}}+1\right) u \tag{40}\\
= & -x_{2}+u . \tag{41}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (cont.)
(41) can also be obtained from the fact that

$$
\begin{equation*}
u=x_{2}+R_{3} i_{3} . \tag{42}
\end{equation*}
$$

The state variable equations are

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-\frac{R_{1} R_{2}}{L\left(R_{1}+R_{2}\right)} & -\frac{R_{1}}{L\left(R_{1}+R_{2}\right)} \\
\frac{R_{1}}{C\left(R_{1}+R_{2}\right)} & -\left(\frac{1}{R_{3} C}+\frac{1}{C\left(R_{1}+R_{2}\right)}\right)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{L} \\
\frac{1}{R_{3} C}
\end{array}\right] u \tag{43}\\
y & =\left[\begin{array}{ll}
0 & -1]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[1] u .
\end{array},\right. \tag{44}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (cont.)
The transfer function is

$$
G(s)=\left[\begin{array}{ll}
0 & -1
\end{array}\right]\left[\begin{array}{cc}
s+\frac{R_{1} R_{2}}{L\left(R_{1}+R_{2}\right)} & \frac{R_{1}}{L\left(R_{1}+R_{2}\right)} \tag{45}\\
-\frac{R_{1}}{C\left(R_{1}+R_{2}\right)} & s+\left(\frac{1}{R_{3} C}+\frac{1}{C\left(R_{1}+R_{2}\right)}\right)
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{1}{L} \\
\frac{1}{R_{3} C}
\end{array}\right]+1
$$

Examples of State Space Models (cont.)

Example
Consider the system,

Examples of State Space Models (cont.)

Example (cont.)
By Kirchhoff current law, we have

$$
\begin{equation*}
x_{1}=C \dot{x}_{2} \tag{46}
\end{equation*}
$$

By Kirchhoff voltage law, we have

$$
\begin{equation*}
u=L \dot{x}_{1}+x_{2}+R x_{1} . \tag{47}
\end{equation*}
$$

The state variable form is

$$
\begin{align*}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-\frac{R_{1}}{L} & -\frac{1}{L} \\
\frac{1}{L} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
\frac{1}{L} \\
0
\end{array}\right] u \tag{48}\\
y & =\left[\begin{array}{ll}
R & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+[0] u . \tag{49}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (cont.)
The transfer function is

$$
\begin{align*}
G(s) & =\left[\begin{array}{ll}
R & 0
\end{array}\right]\left[\begin{array}{cc}
s+\frac{R}{L} & \frac{1}{L} \\
-\frac{1}{L} & s
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right]+0 \\
& =\frac{\left[\begin{array}{ll}
R & 0
\end{array}\right]\left[\begin{array}{cc}
s+\frac{R}{L} & \frac{1}{L} \\
-\frac{1}{L} & s
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right]}{s^{2}+\frac{R}{L} s+\frac{1}{L C}} \tag{50}\\
& =\frac{\frac{R}{L} s}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
\end{align*}
$$

Examples of State Space Models (cont.) Mechanical Systems

The common elements of mechanical systems are masses, springs and dampers. If a linear spring is stretched (compressed) from its relaxed position by a certain amount, it produces a restoring force $K x$ in the opposite direction. A linear damper as shown below produces a force $B \dot{x}$ opposing the motion,

Figure 6: A linear damper (dashpot)

Examples of State Space Models (cont.) Mechanical Systems

with \dot{x} being the relative velocity of the plunger with respect to the housing. The main law of physics governing the behavior of mechanical systems is Newton's equation of motion which can be stated as follows, for linear motion:
The algebraic sum of forces acting on a mass m, in the positive x direction $=m \ddot{x}$, where \ddot{x} is the acceleration of m in the positive x direction.
A similar law holds for rotational motion with force, mass and linear acceleration replaced by torque, moment of inertia and angular acceleration, respectively.

Examples of State Space Models (cont.) Mechanical Systems

Example (Two input, two output mechanical system)
Consider the mechanical system below:

Figure 7: 2 input 2 output mechanical system I

Examples of State Space Models (cont.) Mechanical Systems

Example (Two input, two output mechanical system (cont.)) where x_{1}, x_{2} denote the displacements from the equilibrium positions of the masses m_{1} and m_{2} respectively. A "free body" diagram of each mass is shown below:

Figure 8: Free Body Diagrams

Examples of State Space Models (cont.) Mechanical Systems

Example (Two input, two output mechanical system (cont.))
From Figure 8, Newton's equations for the two masses are:

$$
\begin{align*}
u_{1}-K x_{1}-B\left(\dot{x}_{1}-\dot{x}_{2}\right) & =m_{1} \ddot{x}_{1} \tag{51a}\\
u_{2}+B\left(\dot{x}_{1}-\dot{x}_{2}\right) & =m_{2} \ddot{x}_{2} . \tag{51b}
\end{align*}
$$

To rewrite (51) in the standard first order state variable form we introduce two additional variables

$$
\begin{align*}
& x_{3}:=\dot{x}_{1} \\
& x_{4}:=\dot{x}_{2} \tag{52}
\end{align*}
$$

Examples of State Space Models (cont.) Mechanical Systems

Example (Two input, two output mechanical system (cont.))
We may now write the system equations in the standard first order state variable form,

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-K / m_{1} & 0 & -B / m_{1} & B / m_{1} \\
0 & 0 & B / m_{2} & -B / m_{2}
\end{array}\right]}_{\mathbf{A}}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 / m_{1} & 0 \\
0 & 1 / m_{2}
\end{array}\right]}_{\mathrm{C}}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]}_{\mathrm{C}}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\underbrace{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]}_{\mathrm{D}}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \tag{53}
\end{align*}
$$

with matrices $\{\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}\}$ as shown.

Examples of State Space Models (cont.) Mechanical Systems

Example
Consider the system in Figure 9,

Figure 9: 2 input 2 output mechanical system II

Examples of State Space Models (cont.) Mechanical Systems

Example (cont.)
The free body diagrams for m_{1} and m_{2} are:

Figure 10: The free body diagram for m_{1}

Figure 11: The free body diagram for m_{2}

Examples of State Space Models (cont.) Mechanical Systems

Example (cont.)

Newton's equation of motion are:

$$
\begin{gather*}
u_{1}-K_{1} x_{1}-K_{2}\left(x_{1}-x_{2}\right)=m_{1} \ddot{x}_{1} \tag{54}\\
u_{2}+K_{2}\left(x_{1}-x_{2}\right)=m_{2} \ddot{x}_{2} \tag{55}
\end{gather*}
$$

They can be cast in the standard state variable form:

$$
\begin{align*}
& \dot{x}_{1}=: x_{3} \tag{56}\\
& \dot{x}_{2}=: x_{4} \tag{57}\\
& \dot{x}_{3}=-\frac{K_{1}+K_{2}}{m_{1}} x_{1}+\frac{K_{2}}{m_{1}} x_{2}+\frac{1}{m_{1}} u_{1} \tag{58}\\
& \dot{x}_{4}=\frac{K_{2}}{m_{2}} x_{1}-\frac{K_{2}}{m_{2}} x_{2}+\frac{1}{m_{2}} u_{2} \tag{59}
\end{align*}
$$

Examples of State Space Models (cont.) Mechanical Systems

Example (cont.)

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{K_{1}+K_{2}}{m_{1}} & \frac{K_{2}}{m_{1}} & 0 & 0 \\
\frac{K_{2}}{m_{2}} & -\frac{K_{2}}{m_{2}} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\frac{1}{m_{1}} & 0 \\
0 & \frac{1}{m_{2}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \tag{60}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{align*}
$$

Examples of State Space Models (cont.) Mechanical Systems

Example
Consider the system in Figure 12,

Figure 12: 2 input 2 output mechanical system III

Examples of State Space Models (cont.) Mechanical Systems

Example (cont.)
The free body diagrams and Newton's equations are:

Figure 13: The free body diagram for m_{1}

$$
\begin{equation*}
u_{1}-B_{1} \dot{x}_{1}-B_{2}\left(\dot{x}_{1}-\dot{x}_{2}\right)=m_{1} \ddot{x}_{1} \tag{61}
\end{equation*}
$$

Examples of State Space Models (cont.) Mechanical Systems

Example (cont.)

Figure 14: The free body diagram for m_{2}

$$
\begin{equation*}
u_{2}+B_{2}\left(\dot{x}_{1}-\dot{x}_{2}\right)=m_{2} \ddot{x}_{2} \tag{62}
\end{equation*}
$$

Examples of State Space Models (cont.) Mechanical Systems

Example (cont.)
The standard state variable form is:

$$
\begin{align*}
& \dot{x}_{1}=: x_{3} \tag{63}\\
& \dot{x}_{2}=: x_{4} \tag{64}\\
& \dot{x}_{3}=-\frac{B_{1}+B_{2}}{m_{1}} x_{3}+\frac{B_{2}}{m_{1}} x_{4}+\frac{1}{m_{1}} u_{1} \tag{65}\\
& \dot{x}_{4}=\frac{B_{2}}{m_{2}} x_{3}-\frac{B_{2}}{m_{2}} x_{4}+\frac{1}{m_{2}} u_{2} \tag{66}
\end{align*}
$$

Examples of State Space Models (cont.) Mechanical Systems

Example (cont.)

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{llcc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\frac{B_{1}+B_{2}}{m_{1}} & \frac{B_{2}}{m_{1}} \\
0 & 0 & \frac{B_{2}}{m_{2}} & -\frac{B_{2}}{m_{2}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\frac{1}{m_{1}} & 0 \\
0 & \frac{1}{m_{2}}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \tag{67}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{align*}
$$

Examples of State Space Models (cont.) Electromechanical System

An armature controlled, separately excited DC motor is shown below driving a rotational load with a resistive load torque T_{L}.

Figure 15: Separately excited DC motor

Examples of State Space Models (cont.) Electromechanical System

The armature resistance, inductance and current are denoted R_{a}, L_{a} and i_{a}, e_{b} denotes the back electromotive force (emf), T_{m} the motor torque, θ and ω the motor shaft angular position and velocity and J and B the moment of inertia of the load (reflected to the motor drive shaft) and the viscous damping constant "seen" by the load.
The motor equations are

$$
\begin{align*}
T_{m} & =K_{t} i_{a} \tag{68a}\\
e_{b} & =K_{b} \omega \tag{68b}
\end{align*}
$$

where K_{t}, K_{b} are constants provided by the manufacturer. We write the system equations by summing voltages around the loop (electrical balance) and sum of mechanical torques resulting in acceleration (mechanical balance).

Examples of State Space Models (cont.) Electromechanical System

Electrical Balance

$$
\begin{equation*}
u=R_{a} i_{a}+L_{a} \dot{i}_{a}+e_{b} \tag{69}
\end{equation*}
$$

Mechanical Balance

$$
\begin{equation*}
T_{m}=T_{L}+B \dot{\theta}+J \ddot{\theta} \tag{70}
\end{equation*}
$$

Assuming that angular position and velocity are the outputs of interest we have

$$
\begin{align*}
& y_{1}=\theta \tag{71a}\\
& y_{2}=\omega:=\dot{\theta} \tag{71b}
\end{align*}
$$

Examples of State Space Models (cont.) Electromechanical System

We may now choose $x_{1}=\theta_{1}, x_{2}=\omega$ and $x_{3}=i_{a}$ as the state variables to obtain the DC motor model in the standard form:

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -B / J & K_{t} / J \\
0 & -K_{b} / L_{a} & -R_{a} / L_{a}
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\underbrace{\left[\begin{array}{cc}
0 & 0 \\
0 & -1 / J \\
1 / L_{a} & 0
\end{array}\right]}_{B}\left[\begin{array}{c}
u \\
T_{L}
\end{array}\right]} \tag{72}\\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]}_{C}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{D}\left[\begin{array}{l}
u \\
T_{L}
\end{array}\right] .}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart)
Consider the inverted pendulum below:

Figure 16: Inverted Pendulum

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

There are two balance equations; 1) force balance and 2) torque balance. Firstly we consider the force balance. Since the force in the horizon is the force of the cart and the force of the bob, we have

$$
\begin{equation*}
M \frac{d^{2}}{d t^{2}} x+m \frac{d^{2}}{d t^{2}} x_{m}=u \tag{73}
\end{equation*}
$$

where the coordinate of the point mass, bob, is given by $\left(x_{m}, y_{m}\right)$. Using the reference coordinate, length of massless rod and the angle we have

$$
\begin{align*}
& x_{m}=x+I \sin \theta \\
& y_{m}=I \cos \theta . \tag{74}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Thus, we can rewrite (73) as

$$
\begin{equation*}
M \frac{d^{2}}{d t^{2}} x+m \frac{d^{2}}{d t^{2}}(x+l \sin \theta)=u \tag{75}
\end{equation*}
$$

Noting that $\frac{d^{2}}{d t^{2}} \sin \theta=-(\sin \theta)(\dot{\theta})^{2}+(\cos \theta) \ddot{\theta}$ we get

$$
\begin{equation*}
(M+m) \ddot{x}-m /(\sin \theta)(\dot{\theta})^{2}+m /(\cos \theta) \ddot{\theta}=u . \tag{76}
\end{equation*}
$$

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))
Secondly, for the torque balance, refer to Figure 17 for the notation of directions.

Figure 17: Torque directions

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Since the torque due to the acceleration force is balanced by the torque due to the gravity force we have

$$
\begin{equation*}
F_{x_{m}} \cos \theta-F_{y_{m}} \sin \theta=m g \sin \theta \tag{77}
\end{equation*}
$$

where the forces are

$$
\begin{align*}
& F_{x_{m}}=m \frac{d^{2}}{d t^{2}} x_{m}=m\left(\ddot{x}-I(\sin \theta)(\dot{\theta})^{2}+I(\cos \theta) \ddot{\theta}\right), \\
& F_{y_{m}}=m \frac{d^{2}}{d t^{2}} y_{m}=-m\left(I(\cos \theta)(\dot{\theta})^{2}+I(\sin \theta) \ddot{\theta}\right) . \tag{78}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))
Substituting (77) in (78) gives

$$
\begin{align*}
& m g \sin \theta \\
&= F_{x_{m}} \cos \theta-F_{y_{m}} \sin \theta \\
&= m\left\{\ddot{x}-I(\sin \theta)(\dot{\theta})^{2}+I(\cos \theta) \ddot{\theta}\right\} \cos \theta \\
&-m\left\{I(\cos \theta)(\dot{\theta})^{2}+I(\sin \theta) \ddot{\theta}\right\} \sin \theta \\
&= m \ddot{x} \cos \theta+m I \ddot{\theta} . \tag{79}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Using small signal approximation about $\theta=0$, we have $\cos \theta \cong 1$, $\sin \theta \cong \theta$, and $\dot{\theta}^{2} \cong 0$; thus the inverted pendulum equations become

$$
\begin{align*}
(M+m) \ddot{x}+m / \ddot{\theta} & =u \tag{80}\\
m \ddot{x}+m / \ddot{\theta} & =m g \theta \tag{81}
\end{align*}
$$

Now we define the state vector as

$$
z=\left[\begin{array}{c}
\theta \tag{82}\\
\dot{\theta} \\
x \\
\dot{x}
\end{array}\right] .
$$

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))

Since \dot{z} has elements \ddot{x} and $\ddot{\theta}$ in the vector we derive these expressions using (80) and (81). First, from (81), we have

$$
\begin{equation*}
m I \ddot{\theta}=m g \theta-m \ddot{x} \tag{83}
\end{equation*}
$$

and substituting this into (80),

$$
\begin{align*}
& (M+m) \ddot{x}+m I \ddot{\theta}=u \\
& \Leftrightarrow(M+m) \ddot{x}+m g \theta-m \ddot{x}=u \\
& \Leftrightarrow M \ddot{x}+m g \theta=u \\
& \Leftrightarrow \ddot{x}=-\frac{m}{M} g \theta+\frac{1}{M} u . \tag{84}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))
Next, substituting (84) back into (83) we get

$$
\begin{align*}
& m l \ddot{\theta}=m g \theta-m \ddot{x} \\
& \Leftrightarrow I \ddot{\theta}=g \theta+\left\{\frac{m}{M} g \theta-\frac{1}{M} u\right\} \\
& \Leftrightarrow \ddot{\theta}=\frac{g}{l} \theta+\frac{1}{l}\left\{\frac{m}{M} g \theta-\frac{1}{M} u\right\} \\
& \Leftrightarrow \ddot{\theta}=\frac{g}{l}\left(1+\frac{m}{M}\right) \theta-\frac{1}{l M} u . \tag{85}
\end{align*}
$$

Now fit these to the state space representation of the form:

$$
\begin{align*}
& \dot{\mathbf{z}}=\mathbf{A} \mathbf{z}+\mathbf{B} u \tag{86}\\
& \mathbf{y}=\mathbf{C} \mathbf{z}+\mathbf{D} u . \tag{87}
\end{align*}
$$

Examples of State Space Models (cont.)

Example (Inverted Pendulum on a Cart (cont.))
Then, the final state space representation is

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{z}_{3} \\
\dot{z}_{4}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{g}{l}\left(1+\frac{m}{M}\right) & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-g \theta\left(\frac{m}{M}\right) & 0 & 0 & 0
\end{array}\right]}_{\mathbf{A}}\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
0 \\
-1 / I M \\
0 \\
1 / M
\end{array}\right]}_{\mathbf{B}} u} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{C}}\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]+\underbrace{\left[\begin{array}{ll}
0 & 0
\end{array}\right]}_{\mathbf{D}} u}
\end{aligned}
$$

where

$$
\left[\begin{array}{c}
\dot{z}_{1} \tag{89}\\
\dot{z}_{2} \\
\dot{z}_{3} \\
\dot{z}_{4}
\end{array}\right]=\dot{\mathbf{z}}=\left[\begin{array}{c}
\dot{\theta} \\
\ddot{\theta} \\
\dot{x} \\
\ddot{x}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]=\mathbf{z}=\left[\begin{array}{c}
\theta \\
\dot{\theta} \\
x \\
\dot{x}
\end{array}\right] .
$$

Exercise

Exercise 1

Exercise (cont.)

a) Write equations for the circuit in the matrix form :

$$
\begin{align*}
& \mathbf{A x}+\mathbf{B u}=\mathbf{0} \\
& \mathbf{C} \mathbf{x}+\mathbf{D u}=\mathbf{y} \tag{90}
\end{align*}
$$

b) Solve for the gain matrix G, where

$$
\begin{equation*}
\mathbf{y}=\mathbf{G} \mathbf{u} \tag{91}
\end{equation*}
$$

in terms of $R_{i}, i=1,2,3$.

Exercise (cont.)

Exercise 2

A photovoltaic (PV) array is connected to a load R_{L} as shown:

Exercise (cont.)

The nonlinear $V-I$ characteristic of the PV panel is shown
I_{P} : Panel current

Figure 18: V - I characteristic of the PV array
a) Find the current and voltage in the circuit as a "function" of R_{L}.
b) Find R_{L} to obtain the maximum power output.

Exercise (cont.)

Exercise 3

Exercise (cont.)

a) Write state variable equations for the circuit in the standard form:

$$
\begin{align*}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \tag{92}\\
\mathbf{y} & =\mathbf{C} \mathbf{x}(t)+\mathbf{D u}(t) .
\end{align*}
$$

b) Find the transfer function using the state space model
c) Solve for the state $\mathbf{x}(t)$, and output $\mathbf{y}(t)$, assuming zero initial conditions on the capacitor voltage and inductor current, $u(t)=U(t)$ and $R_{i}=1, i=1,2,3, L=1, C=1$.
d) Verify that the "steady state" values for a constant input u satisfy

$$
\begin{align*}
& \mathbf{A x}+\mathbf{B u}=\mathbf{0} \tag{93}\\
& \mathbf{C} \mathbf{x}+\mathbf{D u}=\mathbf{y}
\end{align*}
$$

Exercise (cont.)

Exercise 4

viscous friction coefficient μ
$\dot{x}=y_{2}$
a) Write state variable equations for the mass-spring system.
b) Calculate the transfer function y_{1} / u and y_{2} / u using the state space model.
c) Find the poles of the system (or eigenvalues of A) as a function of m, k, μ.

Exercise (cont.)

d) Solve for $y_{1}(t), y_{2}(t)$, for zero initial condition and $u(t)=U(t)$, as functions of m, k, μ.
e) Comment on the solution in d) considering the cases $\mu \rightarrow 0$, and $K \rightarrow 0$.

Exercise (cont.)

Exercise 5

a) Write state variable equations for the system.
b) Find the transfer functions

$$
\begin{equation*}
\frac{Y_{i}(s)}{U_{j}(s)}, \quad i=1,2, \quad j=1,2 \tag{94}
\end{equation*}
$$

c) Find the impulse response matrix $\mathbf{G}(t)$

