ECEN 605
LINEAR SYSTEMS

Lecture 7

Solution of State Equations



Solution of State Space Equations

Recall from the previous Lecture note, for a system:

x(t) = Ax(t) + Bu(t) (1a)
y(t) = Cx(t) + Du(t), (1b)

the solutions, x(t) and y(t), of the state equation are
t
X(t) = eAtx(0) + / AE-T)Bu(r)dr, )
0
and

t
y(£) = C eAtx(0) + € / AE=T)Bu(7)dr + D u(t).
0



State Transition Matrix

In the expression of the solution x(t) of the state equation, the
term e”t is called state transition matrix and is commonly notated
as

®(t) := ™. (3)

Let us examine some properties of the state transition matrix that
will be used in later chapters. Assume zero input, u(t) = 0. Then
the solution of the system

£(t) = Ax(t) (4)

becomes
x(t) = eAtx(O) = &(t)x(0). (5)

At t =0, we know ®(0) = /. Differentiating eq. (5), we have

x(t) = d(£)x(0) = Ax(t). (6)



State Transition Matrix (cont.)

At t =0,
leads us to have

Therefore, the state transition matrix ®(t) has the following
properties:
®(0)=/ and &(0)=A. (9)



State Transition Matrix (cont.)

In the following, we summarize the property of the state transition
matrix.



State Transition Matrix (cont.)



State Transition Matrix (cont.)
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The state transition matrix contains all the information about the
free motions of the system in eq. (4). However, computing the
state transition matrix is in general not easy. To develop some
approaches to computation, we first study functions of a square

matrix.



Functions of a Square Matrix

Consider a state space model:

x(t) = Ax(t)+ Bu(t)
y(t) = Cx(t)+ Du(t).

Taking the Laplace transform, we have

sX(s) —x(0) = AX(s)+ BU(s)
Y(s) = CX(s)+ DU(s)

Y(s) = C[(sl —A)'BU(s) + (sl — A)"'x(0)] + DU(s)
= [C(sl = A)"'B+ D] U(s) + C(sl — A)~'x(0).



Functions of a Square Matrix (cont.)

The transfer function G(s) is obtained by letting the initial
condition x(0) = 0.

Y,u(s) = [C(s] — A)"'B + D] U(s). (10)

G(s)

This shows the relationship between a state space representation of
the system and its corresponding transfer function. The following
example illustrates how to compute the transfer function from the
given state space representation of the system.



Functions of a Square Matrix (cont.)

Example

Consider a 3rd order system with 2 inputs and outputs.

-1 2 0 10
x(t) = !1 —4 1]x()—|—|:0 1]()
0 0 -1 10

I B FORY B PO



Functions of a Square Matrix (cont.)

Example (cont.)
To compute the transfer function,

_ s+ 4 2 2
52+ 5546 s2 +55+6 52 +55+6
_ 1 s+1 1
(sl — A) 1 - — —
s24+55+6 s2+55+6 s24+55+6
1
0 0
- s+1
r 2 1 2 2 1 2 n 1
s+2 s+3 s+2 s+3 s+1 s+2 s+3
1 1 1 2 1 1
= - + - + - +
s+2 s+3 s+2 s+3 s+2 s+3
1
0 0
- s+1



Functions of a Square Matrix (cont.)

Example (cont.)
Therefore, the state transition matrix is

2e—2t _ e—3t 2e—2t _ 26_3t et — 2e—2t 4 e—3t
eAt — _e—2t + e—3t _e—2t+2€—3t _e—2t + e—3t

0 0

The transfer function is

2 2
+

G(s) = C(sI-A)"1B+D =
2

s+1

1
s+2 s+3+

e—t

1 n 2

s+2 s+3
2 2
s+2 s+3



Functions of a Square Matrix (cont.)

Example (cont.)
To solve for x(t) with

we have

X(s) = (sI—A)_lx(O)—i—(s/—A}‘lBU(s)




Functions of a Square Matrix (cont.)

Example (cont.)

so that
i e t4+1—et
x(t) = | —2e 2t 4273t — % L2t 273t
i et+l—et
[ 1
_ | L1 g2ty 4g-3t
1

(11)



Leverrier’s Algorithm

This algorithm determines (s/ — A)~! without symbolic
calculation. First write

_ Adj[sl = A]  T(s)

I — A= = 12
(s ) det[s/ — A] a(s) (12)
where
a(s) = det[sl —Al=s"+a,_15" 1+ + a5+ ap
T(s) = Adjlsl —Al=Tp1s" '+ Tp08" 2+ -+ Tis + To,
-rl_ c Rnxn'

Thus, (sI — A)~1 is determined if the matrices T; and the
coefficients a; are found. Leverrier's algorithm does that as follows.
Let

a(s) = (a=A)(s = A2) -+ (s = An) (13)



Leverrier’s Algorithm (cont.)

where the )\; are complex numbers and possibly repeated. Then it
is easily seen that

ey . da(s)
a(s) := s
(s=X)- - (s=An)+(s=A)(s—A3) -~ (s—Ap)+ -~

+(s— A1) (s — Ap_1). (14)

This leads to the following result.

Lemma (Leverrier I)

1 1
) 1
+57>\n (15)

a(s) 1
a(s)

_S*)\1+S*)\2

To proceed, we note that

(sl —A)(sl — AL =1 (16)



Leverrier’s Algorithm (cont.)

or

si(sl —A) L= A(sl —A) 1 =1 (17)
and taking the trace of both sides, we have
AT
sTrace [(s/ — A)~'] — Trace ( 3(-5';)) =n (18)

or

ATo+ ATis+ -+ ATn_15”1> .

sTrace [(s/ — A)_l] —Trace ( "B

Lemma (Leverrier II)

Trace(sl — A)~! = (20)



Leverrier’s Algorithm (cont.)

Proof
If J denotes the Jordan form of A
D! -
1
0 A1
J = A1 (21)
1
0 Ao
and
A=TYT (22)

for some T.



Leverrier’s Algorithm (cont.)

Proof (cont.)
Thus,

(sl —A) P =T(sl =N 'T7!

and

Trace(sl — A)~!

Trace (T (sl — N T_l)
Trace (TT_l(S/ - J)_l)
Trace(sl — J)~t

LI I
s — )\1 s — )\2 S — >\n
a(s)
a(s)

(by Lemma (Leverrierl)). (24)



Leverrier’s Algorithm (cont.)

Proof (cont.)
Then (19) becomes

< (j((;))  race <AT0 + ATis +a(s) + ATn_15"1> 0 (25)

or

sa'(s) — Trace(ATy) — sTrace(ATy) — - - - — s" 1 Trace(AT,_1) = na(s).
(26)



Leverrier’s Algorithm (cont.)

Proof (cont.)
Now note that

sa'(s) = na(s)—ap 15"t —2a, 25" % —...

—(n —2)aps® — (n— 1)a1s — nag
so that (26) reduces to

— Trace(ATy) — sTrace(ATy) — s*Trace(AT»)
— oo — s" M Trace(AT,_1)
n—1

= agn+sai(n—1)+ s2ag(n —2)4 - +s5"a, .

(27)



Leverrier’s Algorithm (cont.)

Proof (cont.)
Equating coefficients in (28) we get

1
ap = —;Trace(ATo)
1
a = — 1Trace(AT1)
1
ag = —n_kTrace(ATk)

apn—1 = —Trace(ATp-1).

(29)



Leverrier’s Algorithm (cont.)

Proof (cont.)

Now from
(sl —A)(sl — AL =1

we obtain

a(s)l = (sl —A) (To + Tis+---+ T,,_ls”*l)
= aol +ails+---+ap,_1ls+Is"

or
— ATo+ (To — AT1)s + (T — AT,)s?

+ -+ (Tn,Q — AT,,,l)Sn_l + T,,,lsn
= agl + ails + axls® + -+ ap_1/s"" L + Is".



Leverrier’s Algorithm (cont.)

Proof (cont.)
Equating the matrix coefficients, we get

Thor = |1
7—nf2 ATn—l + a,,,ll
7—nf3 = ATnf2 + anf2l

: (30)
To = AT1 + 31/
0 = AT+ aol.



Leverrier’s Algorithm (cont.)

Proof (cont.)
The relations (29) and (30) suggest the following sequence of
calculations.

Tho1=1, ap—1 = —Trace(AT,-1)
Thoo=AT,_1+4+ an_1l, ap_o = —%Trace(AT,,,g)
Tho3=AT, 2+ an_sl, an—_3 = —%Trace(AT,,_3)

(31)
T1 = AT, + aol, a = — i 1Trace(AT1)
To = ATy + a1, ag = —%Trace(ATo) O

The computation sequence above constitutes Leverrier's algorithm.



Leverrier’s Algorithm (cont.)

Example
2 -1 1 2
0 110
A= -1 1 11
1 1 10
Let
(SI _ A)_l 7_353 + T252 + T15 + To

5% 4 a353 4 aps? + a1s + ag



Leverrier’s Algorithm (cont.)

Example
T3=1 — a3 = —Trace[A] = —4
[ —2 -1 1 2
To =AT3 + a3l = A—4l = 0 -3 ! 0 — a*—lTrace[AT]*Q
2 3+ a3 _1 1 -3 1 2 > 2
| 1 1 1 -4 |
[ -1 4 0 -3
-1 0o -2 1 1
Ty = AT, + apl = > 0 P — a; = 7§Trace [AT1] =5
| -3 -3 -1 5 |
[ o 2 0 -2 ]
1 5 -2 —4 1
To=ATy 4+ a; = 1 7 5 4 — ag = 7;’I‘race [ATo] =2
| o 4 -2 -2 |




Leverrier’s Algorithm (cont.)

Example
Therefore,
det[ssl —A] = s*—4s®+2s> 45542
-2 -1 1 2
0 -3 1 0
. _ o 3 2
Adj[sl —A] = Is°+ 1 01 -3 11°
1 1 1 —4
-1 4 0 -3
-1 0 -2 1
+ 5+

-3 -3 -1 5

2
5

4

0
-2
2
-2

-2
—4

4
—2



Leverrier’s Algorithm (cont.)

Example
and
(sl —A)~ 1 = !
s* —4s3 4252 4+ 55+ 2
$3-2s2—5s —s?4+4s5+2 s2 252 — 35 —2
—s+1 $3—-3s2+5 s2-25—-2 s—4

—s24+2s5—1 s2—7 3 —3s2 42 s2—5s+4
s2—-35—2 s2—-35s4+4 ?2—s5—-2 s3—4s2455-2



Cayley-Hamilton Theorem

An eigenvalue of the n x n real matrix is a real or complex number
A such that Ax = Ax with a nonzero vector x. Any nonzero vector
x satisfying Ax = Ax is called an eigenvector of A associated with
eigenvalue A. To find the eigenvalues of A, we solve

(A= M)x =0 (32)

In order for eq. (32) to have a nonzero solution x, the matrix
(A — sl) must be singular. Thus, the eigenvalues of A are just the
solutions of the following n'* order polynomial equation:

A(s) = det(sl — A) = 0. (33)

A(s) is called the characteristic polynomial of A.



Cayley-Hamilton Theorem (cont.)

Theorem (Cayley-Hamilton Theorem)
Let A be a n X n matrix and let

A(s) = det(sl — A) ="+ a, 15" 1 +---+ a15 + ap
be the characteristic polynomial of A. Then

A(A) = A"+ a, A"t aAtal =00 (34)



Cayley-Hamilton Theorem (cont.)

Proof
(sl — A)~! can always be written as
1
(sl — A)_l = m (Rnflsn_1 + Ry28" %4+ Ryis + RO)

A(s) = det(sl — A) =s"+a,_15" 4+ -+ a1s + a0

and R;, i=0,1,--- ,n—1 are constant matrices formed from the
adjoint of (s/ — A).



Cayley-Hamilton Theorem (cont.)

Proof (cont.)

Write
A(s)l = (sl —A) (Ra—15" 1+ Raos"™ 2 + -+ + Ris + Ry)
= (sl — A)Rp_15" 1+ (sl — A)R,_25" 2
+---+ (sl —A)Ris+ (sl — ARy
= Ro15"+ (Ro2 = ARn1)s" '+ (Ro3 — ARy 2)s" 2
4+ .- +(R0 —ARl)S—ARo.
Since

A(s)l = Is" + ap_1ls" 1+ -+ als + apl,



Cayley-Hamilton Theorem (cont.)

Proof (cont.)
we have by matching the coefficients,

Ro-1 = |
Ry_2 ARp—1+ an—1/
Rnf3 = ARnf2 + an72/

Ro = AR1+31/
0 = ARy + aol.



Cayley-Hamilton Theorem (cont.)

Proof (cont.)

Substituting R;'s successively from the bottom, we have

0 = ARy+ aol
= A’R; + a1A+ agl
= A3R, + apA% + a1A + aol

= A"+ a, 1A £ a, A2 a1 A+ agl = A(A).

Therefore, A(A) = 0.



Cayley-Hamilton Theorem

The Cayley-Hamilton theorem implies that a square matrix A" can
be expressed as a linear combination of /, A, A%, --. A" 1.
Furthermore, multiplying A to (34), we have

AL pa AT e, 2 AT 4 4 3 A2 agA =0

which implies that A"*1 can also be expressed as a linear
combination of /, A, A% --- , A""1. In other words, any matrix
polynomial f(A) of arbitrary degree can always be expressed as a
linear combination of /, A, A%, --- A" 1 e,

F(A) = Bn1 A"t + Bp2A" 2+ -+ BLIA+ Bol

with appropriate values of ;.



Application of C-H Theorem
Computing A}

Let A(s) be the characteristic polynomial of a matrix A € R"*".
A(s)=s"+ 15" 4 ap_0s" 2+ -+ a1s+ ag
From the Cayley-Hamilton theorem, we have
A(A) = A" +a, 1A 4 a, bA" 2 4. 4 a1 A+ agl =0. (35)

Multiplying A™! both sides, we have after rearrangement,

1
Al = - (A”_1 +a, 1A 4k a A4 31/) . (36)
0



Application of C-H Theorem (cont.)
Computing A~}

Example
3 1
=[]
Then the characteristic polynomial is

A(s)=(s—3)(s—2)—1=35%>—55+5.

Therefore,

3

—
Il

|
gl —
—

T
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Application of C-H Theorem (cont.)
Computing A~}

Proceeding forward, we consider any polynomial f(s), then we can
write as

f(s) = q(s)A(s) + h(s).

It implies that
f(\i) = h(X;), for all eigenvalues of A.
Applying Cayley-Hamilton theorem, A(A) = 0, we have

f(A) = q(A)A(A) + h(A) = h(A).



Application of C-H Theorem (cont.)
Computing A~}

Example
Using A given in the previous example, compute

f(A) = A* +3A3 1242 L A+ 1.
Calculation can be simplified by following. Consider
f(s) = a(s)A(s) + h(s)
(s® + 8s +37) A(s) + (1465 — 184) .
h(s)
S

Thus,
f(A) = h(A) = 146A — 184.



Application of C-H Theorem (cont.)
Computing A~}

Remark

An obvious way of computing h(s) is to carry out long division.
However, when long division requires lengthy computation, h(s)
can be directly calculated by letting

h(s) = Bn18""1 + Bn2s" 2 + -+ + P15 + Bo.
The unknowns [3; can be easily calculated by using the relationship
£(S)|s=r, = h(s)|s=r,, fori=1,2,---,n

where \; are eigenvalues of A.

This idea is extended to any analytic function f(s) and A with
eigenvalues with m multiplicities.



Application of C-H Theorem (cont.)
Computing A~}

Theorem
Let A be a n x n square matrix with characteristic polynomial

AN =N7Z (s = X)"

where n = M n;. Let f(s) be any function and h(s) be a polynomial of
degree n — 1

h(s) = Bn-15""" 4 Bp2s"" 2+ -+ + P15 + Bo.

then
f(A) = h(A)
if the coefficients, 3;s, of h(s) are chosen such that
I /
) A 0L el =12 .m.
ds' s—A, ds! y




Application of C-H Theorem (cont.)
Computing A~}

Example
Compute A0 with

Define

Note that
A(s)=s(s+2)+1=5>+2s4+1=(s+1)>=0

and the eigenvalues of A are {—1,—1}.



Application of C-H Theorem (cont.)
Computing A~}

Example (cont.)

To determine 3;,

F(-1)=h(-1) = ()% =-p1+/
F(-1)=H(-1) =  100(-1)®° = G

Thus, we have §; = —100 and By =1 — 100 = —99, and
h(s) = —100s — 99.
Therefore, from Cayley-Hamilton theorem

100 [ o —100 1 o] [ —99
A% = hay = 1004 oo = [ 0 a0 [ o]



Application of C-H Theorem (cont.)
Computing A~}

Example

To compute e*t, we let f(s) = et and
h(s) = 5252 + 515 + Bo.
Since the eigenvalues of A are {1, 1, 2}, we evaluate the following.

f(s)ls=1 = h(s)|s=1 = e' = P2+ f1+ Bo
Fi(8)]s=1 = H'(s)ls=1 = te' =20 + f1
f(s)ls=2 = h(s)ls=2 = e* = 46 + 261 + fo.



Application of C-H Theorem (cont.)
Computing A~}

Example (cont.)
From these, we have

By = —2tet+ e’
B = 3tef 4 2et —2e%
By = €%t — el —tet

h(s) = (e2t —e' —te') 2+ (3te’ +2ef — 2e2t) s — 2tel + &2,



Application of C-H Theorem (cont.)
Computing A~}

Example (cont.)

Therefore,
et = f(A)

= A

(e — et — te') A% + (Bte’ + 2" — 2e°") A+ (—2te" + &) |
—e?t 4 et 2tet —2e%t 4 2¢t
= 0 et 0
e?t — et —tet 2%t — et

Remark

Consider two square matrices A1 and A; that are similar. Then

f(A1) = f(A2).



Application of C-H Theorem (cont.)
Computing A~}

Example
Compute et with

The characteristic polynomial is
A(s) = (s = M)?*(s — 2)
and the eigenvalues of A are {1, A1, A2}. Define

f(s) =e" and h(s) = Bas® + Bis + fo.



Application of C-H Theorem (cont.)

Computing A~}

Example (cont.)
To determine 3;,

F($)ls=x = h(s)ls=x,
FI(S)s=1 = W (S)]s=s
F(s)ls=x, = h(s)ls=x,

=
=
=

et = BT + Bihi + o
te’! =231 + B
et = B3 + B2 + fo.



Application of C-H Theorem (cont.)

Computing A~}

Example (cont.)

B2 a2 A 177t eMt
B1 221 1 0 Aretit
Bo L A3 A2 1 etat
1 1 1
(AL = X2)? AL — A2 (M1 = X2)?
20 X+ Ao 2, ex;’t
_— - - 1
(A1 — A2)? A1 — A2 (A1 = A2)? teMt
22120 — A3 A1 22 e
(A1 — A2)? A1 — X2 (A1 — A2)?
—e Mt (A — Ap)teMlt 4 2t
A1 — A2)?
221 M — (A7 — A3)tet1t — 2x M2t
(M — A2)?
—(2A122 — AD)eME 4 (A1 — Aa)Aphgtett 4 AZet2t
(M — A2)?




Application of C-H Theorem (cont.)
Computing A~}

Example (cont.)

—eME 4 (A — Ap)teMt + e*2f52 216Nt — (A2 — Ad)tettt — 2)\1e*2fs

h(s =
© (M — X2)? (M — X2)?

N — (22122 — A3)eME 4 (A1 — Ao)Aghatet 4 AZer2t
(A1 — A2)?




Application of C-H Theorem (cont.)

Computing A~}

Example (cont.)

F(A) = &M =hA)
B —eME 4 (A — Ap)tet1t 4 et2t l: >§ 2;‘21
B (A1 — 2)? 0 o
201eME — (A2 = AB)re1t — 2 M2t { M /\11
(A1 = X2)? 0 0

N —(2A122 — A3)eME 4 (A — Ao)Aphatelt 4 AZer2t
(A1 — A2)?

et teMt 0 :|

0 Mt 0
0 0 erat

1
0
0



Similarity Transformation

The state variables describing a system are not unique and the
state space representation of a given system depends on the choice
of state variables. By choosing different bases for the underlying n
ddimensional state space we obtain different nth order
representations of the same system. Such systems are called
similar. Similar systems have the same transfer function although
their state space representations are different. This fact can be
exploited to develop equivalent state space representations consists
of matrices that display various structural properties or simplify
computation.

Now consider a state space representation

x(t) = Ax(t)+ Nu(t)
y(t) = Cx(t)+ Du(t).



Similarity Transformation (cont.)

Define x(t) = Tz(t) where T is a square invertible matrix. Then

Tz(t) = ATz(t) + Bu(t)

y(t) = CTz(t) + Du(t).
or
{z’(t) = T ATz(t)+ T 'Bu(t) :>{ z = Anz(t) + Bhu(t)
y(t) = CTz(t)+ Du(t) y(t) = GCuz(t) + Du(t).

The transfer function of the system may be computed

CT(sl—T'AT)T'B+D = CT[T (sl —A) T]’1 T 'B+D
= CT[T Xsl—A)'T|T'B+D
= CTT Ysl—A)TT'B+D
= C(sl-A)7'B+D

which shows that the representations in egs. (37) and (37) have
the same transfer function.



Diagonalization

Theorem

Consider an n x n matrix A with distinct eigenvalues A1, Ao, - - -

An. Let x;, i =1,2,---  n be eigenvectors associated with \;.
Define a n x n matrix

T=[1 x2 x3 -+ Xp].

Then
A1
1 A2
T AT =



Diagonalization (cont.)

Proof
Since x; is an eigenvector of A associated with A;, Ax; = A;x;. So
we write

>o .-

o




Diagonalization (cont.)

Proof cont.
Consequently,

Al x - x X =[x1 x

Xj

Xn)

and
A1

TIAT =

A1

A2



Jordan Form

We have seen in the previous section that an n x n matrix A can
be converted through a similarity transformation into a diagonal
matrix when the eigenvalues of A are distinct. When the
eigenvalues of A are not distinct, that is, some are repeated, it is
not always possible to "diagonalize” A, as before. In this
subsection, we deal with this case, and develop the so-called
Jordan form of A which is the "maximally” diagonal form that can
be obtained.

The characteristic polynomial of the n x n real or complex matrix
A, denoted T1(s), is:

MN(s) = det(sl —A)
"+ ap_1s" T -+ as+ ao. (37)

Write (37) in the factored form

Ms)=(s—A)"(s= X))+ -+ (s—=Ap)™ (38)



Jordan Form (cont.)

where the \; are distinct, that is,
ANi #Aj, fori#j

and
n+n+---+n,=n.

It is easy to establish the following.



Jordan Form (cont.)

Theorem
There exists an n X n nonsingular matrix T such that

Ar
T-1AT = &
Ap

where A; is n; X n; and

det(sl —A))=(s—A)", fori=12---



Jordan Form (cont.)

In the remaining part of the section, we develop the Jordan
decomposition of the matrices A;. Therefore, we now consider,
without loss of generality, an n x n matrix A such that

M(s) = det(sl — A) = (s —A)". (39)

The Jordan structure of such an A matrix may be found by
forming the matrices

(A= XDk, for k=0,1,2,---,n. (40)
Let N denote the null space of (A — \/)k:
Ny = {x | (A= M)kx = o} (41)
and denote the dimension of N by vy:

dimension Ny = v, for k=0,1,2,---,n+1. (42)



Jordan Form (cont.)

We remark that
O=vp<n < <vp1<vp,=n=vp1. (43)

The following theorem gives the Jordan structure of A.



Jordan Form (cont.)

Theorem
Given the n X n matrix A with

det(sl — A) = (s — \)", (44)

there exists an n x n matrix T with det(T) # 0, such that

Ay
Az
Ar

-1

T lAT =
where
A1 0 0
0 A 1 0
Aj = : . , forj=1,2,---r
0 A1
0 o0 (DY

is called a Jordan block n; x n;.



Jordan Form (cont.)

The number r and sizes n; of the Jordan blocks A; can be found
from the formula given in the following Lemma.

Lemma
Under the assumption of the previous theorem, the number of
Jordan blocks of size k X k is given by

U — Vk—1 — Vky1, for k=1,2,--- ,n.



Jordan Form (cont.)

Example
Let A be an 11 x 11 matrix with

det(s/ — A) = (s — A
Suppose that

v1=6,1p=9 13=10, 1y=11=v5 =15 = -+ = Vi1 = V1.



Jordan Form (cont.)

Example (cont.)

Then the number of Jordan blocks:
a)of size 1 x1=211 —vg—1vp=3
b) of size 2 x2=21p —v; —v3 =2
c)ofsize 3x3=2v3—1p—v4=0
d) of size 4 x4=2v4—1v3—15=1
e)ofsize 5x5=2u5 —v4—15=0

k) of size 11 x 11 = 2v1; — v13 — v19 = 0.



Jordan Form (cont.)

Example (cont.)

Therefore, the Jordan form of A is as shown below:

o O O

o O >

o > = O

> = O O

o >
> =
o >
> =




Jordan Form (cont.)

This result can now be applied to each of the blocks A; in the
previous theorem to obtain the complete Jordan decomposition in
the general case. It is best to illustrate the procedure with an
example.

Example
Let A be a 15 x 15 matrix with

det(s/ — A) = (s — A1) (s — )" (s — A3)?

with A; being distinct.



Jordan Form (cont.)

Example (cont.)
We compute

(A=X\DX,  k=0,1,2,---,8,9
and set

hi = dimN (A — A1)k, k=0,1,2,---,0.
Similarly, let

j=dimN (A= XlY,  j=0,1,2,---,5

and
Is = dimN (A — A3/)°, s=0,1,2,3,4.



Jordan Form (cont.)

Example (cont.)
Suppose, for example,

ho=0, =2, hy=4, hy=6, hy=7, hs=hs=h; =hg =8
=0, =3, h=4 ih=i=i=4
bh=0 h=1 h=2 h=I=3.

By Theorem 29, the Jordan form of A has the following structure.

AL 0 O
TlAT=1| 0 A, 0
0 0 A

with A; € R®88 A, € R*** and Az € R3*3. Furthermore, the
detailed structure of A, by Theorem 30, consists of the following
numbers of Jordan blocks.



Jordan Form (cont.)

Example (cont.)

a
b

C

Q.
~—

[§]

g
h

~—

—
~— ~—

~ ~—

~— ~—

of sizel x1=2h; —hg—h, =0
of size 2 x2=2h, —h;y —h3=0
of size 3x3=2h3—hy —hy =1
of size 4 x 4 =2hy — h3 — hs =0
of size 5 x5 =2hg — hy — hg =1
of size 6 Xx 6 = 2hg — hs — h; =0
of size 7 x 7 =2h; — hg — hg =0
of size 8 x 8 =2hg — hy —hg =0

blocks
blocks
blocks
blocks
blocks
blocks
blocks
blocks



Jordan Form (cont.)

Example (cont.)

Similarly, the numbers of Jordan blocks in Ay are:
a)ofsize 1l x1=2i1 —ig—ip =2
b) of size 2 x2 =2 — 4 —i3 =1
c)of size 3x3=2i3—ih—isg =0
d) of size 4 x4 =2iy — iz —i5 =0

and the numbers of Jordan blocks in A3 are:
a)ofsizelx1=2h—lh—h=0
b) of size 2 x2=2h —h — 5 =0
c)ofsize3x3=2—h—14=1

blocks
blocks
blocks
blocks

blocks
blocks
blocks



Jordan Form (cont.)

Example (cont.)
With this information, we know that the Jordan form of A is given
by

MM 10 0 0
0 A 1 0 0
0 0 A 1 0
0 0 0 A 1
0 0 0 0 X
A 10
0 A 1
T7lAaT = 0 0 X
A 1
0 X
A2
A2
A3 1
0 A3
0 0 A3




Finding the Transformation Matrix T

Once the Jordan form is found, it is relatively easy to find the
transformation matrix. We illustrate using the previous example.
Write T in terms of its columns.

T=|t1 th t3 t4 t5 tg t7 tg tg tig t11 t12 t13 tia tis.
———— e N~ =~ ~N ——
block 1 block 2 block 3 block 4 block 5 block 6



Finding the Transformation Matrix T (cont.)

Then we have

Atp = Mfy or (A—/\ll)t1:0

At = Mb+ 1 or (A — )\1/) th =1t
Atz = Mtz + b or (A — )\1/) t3 = o (45)
Aty = Mtz + t3 or (A — )\1/) ty = t3
Ats = Mts+ tg or (A — )\1/) ts = ta
as well as

Ate = Aitg or (A — )\1/) te =0
Aty = Mty + tg or (A — )\1/) t7 = tg (46)
Atg = Mitg+ty7 or (A — )\1/) tg = t7



Finding the Transformation Matrix T (cont.)

Therefore, we need to find two linearly independent vectors ty, tg
in V(A — A1l) such that the chains of vectors

ty, t2, t3, ta, t5 and te, t7, tg

are linearly independent. Alternatively, we can attempt to find ts
such that
(A= X\1)’ts =0

and find t4, t3, to, t; from the set in eq. (45). Similarly, we can
find tg, such that
(A= Xl tg=0

and tg, t7, tg found from eq. (46) are linearly independent.



Finding the Transformation Matrix T (cont.)
Moving to the blocks associated with A, we see that we need to
find to, t11, t12 so that
(A — )\2/) tg = 0
(A — /\2/) t11 =
(A — )\2/) ti1p =
and (tg, ti0, t11, t12) are independent with
Atio = Aotig + tg.
Likewise, we find t;3, such that
(A - )\3/) tiz = 0
(A-=X3l)tiy = t3
(A=X3l)tis = tia
with (t13, tia, tis) linearly independent. In each of the above

cases, the existence of the vectors t;; are guaranteed by the
existence of the Jordan forms.



