ECEN 605
 LINEAR SYSTEMS

Lecture 8
Invariant Subspaces

State Space Structure Using Invariant Subspaces

Let

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t) \tag{1a}\\
& y(t)=C x(t) \tag{1b}
\end{align*}
$$

denote a dynamic system where \mathcal{X}, \mathcal{U} and \mathcal{Y} denote n, r and m dimensional vector spaces, and A, B, C are linear operators:

$$
\begin{equation*}
A: \mathcal{X} \rightarrow \mathcal{X}, \quad B: \mathcal{U} \rightarrow \mathcal{X}, \quad C: \mathcal{X} \rightarrow \mathcal{Y} \tag{2}
\end{equation*}
$$

The structure of the system can be effectively explored and displayed in several different coordinate systems using various invariant subspaces.
A subspace $\mathcal{V} \subset \mathcal{X}$ is A-invariant if $A \mathcal{V} \subset \mathcal{V}$. If \mathcal{V} has dimension K and $\left\{v_{1}, v_{2}, \ldots v_{K}\right\}$ is a basis for \mathcal{V}, one can choose any subspace

State Space Structure Using Invariant Subspaces (cont.)

$\mathcal{W} \subset \mathcal{X}$ such that $\mathcal{V} \oplus \mathcal{W}=\mathcal{X}$, a basis $\left\{w_{K+1}, \ldots w_{n}\right\}$ for \mathcal{W} and form the coordinate transformation

$$
\begin{equation*}
T=\left[v_{1}, \ldots, v_{K}, w_{K+1}, \ldots, w_{n}\right] \tag{3}
\end{equation*}
$$

and set

$$
\begin{equation*}
x=T z \tag{4}
\end{equation*}
$$

The system equation (1) is then transformed into

$$
\begin{align*}
& \dot{z}(t)=A_{n} z(t)+B_{n} u(t) \tag{5a}\\
& y(t)=C_{n} z(t) \tag{5b}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}=T^{-1} A T, \quad B_{n}=T^{-1} B, \quad C_{n}=C T . \tag{6}
\end{equation*}
$$

State Space Structure Using Invariant Subspaces (cont.)

Writing (6) as

$$
\begin{equation*}
A T=T A_{n}, \quad T B_{n}=B, \quad C_{n}=C T \tag{7}
\end{equation*}
$$

it is easy to see that, the A-invariance of \mathcal{V} implies that

$$
A_{n}=\left[\begin{array}{cc}
A_{1} & A_{3} \tag{8}\\
0 & A_{2}
\end{array}\right]
$$

Thus (5) can be written as

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{z}_{1} \\
\dot{z}
\end{array}\right] } & =\left[\begin{array}{cc}
A_{1} & A_{3} \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u \tag{9a}\\
y & =\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] . \tag{9b}
\end{align*}
$$

If \mathcal{W} also happens to be A-invariant then $A_{3}=0$ in (9a).

State Space Structure Using Invariant Subspaces (cont.)

Now we construct two special A-invariant subspaces for the dynamic system (1). These are the controllable subspace and unobservable subspace. For this, let \mathcal{B} denote the image of B :

$$
\begin{equation*}
\mathcal{B}:=\{B u \mid u \in \mathcal{U}\} \tag{10}
\end{equation*}
$$

and let

$$
\begin{equation*}
\mathcal{V}_{u}:=\mathcal{B}+A \mathcal{B}+\cdots+A^{n-1} \mathcal{B} . \tag{11}
\end{equation*}
$$

Let $\operatorname{Ker} C$ denote the null space of C :

$$
\begin{equation*}
\operatorname{Ker} C:=\{x \mid C x=0\} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{V}_{y}=\bigcap_{i=0}^{n-1} \operatorname{Ker} C A^{i} . \tag{13}
\end{equation*}
$$

State Space Structure Using Invariant Subspaces (cont.)

\mathcal{V}_{u} is called the controllable subspace and \mathcal{V}_{y} is called the unobservable subspace of the system (1).

Lemma

$$
\begin{align*}
A \mathcal{V}_{u} & \subset \mathcal{V}_{u} \tag{14a}\\
\mathcal{B} & \subset \mathcal{V}_{u} \tag{14b}
\end{align*}
$$

State Space Structure Using Invariant Subspaces (cont.)

proof

That $\mathcal{B} \subset \mathcal{V}_{u}$ follows from (11). To prove (14a) consider an arbitrary vector $v \in \mathcal{V}_{u}$. Then

$$
\begin{equation*}
v=B u_{0}+A B u_{1}+\cdots+A^{n-1} B u_{n-1} \tag{15}
\end{equation*}
$$

for some $u_{i}, i=0,1, \ldots, n-1$ Therefore

$$
\begin{equation*}
A v=A B u_{0}+A^{2} B u_{1}+\cdots+A^{n} B u_{n-1} . \tag{16}
\end{equation*}
$$

Since A^{n} can be expressed as a linear combination of lower powers of A, it follows that

$$
\begin{equation*}
A v=B \bar{u}_{0}+A^{2} B \bar{u}_{1}+\cdots+A^{n} B \bar{u}_{n-1} . \tag{17}
\end{equation*}
$$

for some $\bar{u}_{i}, i=0,1,2, \ldots, n-1$.

State Space Structure Using Invariant Subspaces (cont.)

proof (cont.)
Therefore

$$
\begin{equation*}
A_{v} \in \mathcal{V}_{u} \tag{18}
\end{equation*}
$$

Since v was an arbitrary vector in \mathcal{V}, it follows that

$$
\begin{equation*}
A \mathcal{V}_{u} \subset \mathcal{V}_{u} \tag{19}
\end{equation*}
$$

State Space Structure Using Invariant Subspaces (cont.)

Remark
Consider the collection of subspaces

$$
\begin{equation*}
\underline{\mathcal{V}}=\{\mathcal{V} \mid A \mathcal{V} \subset \mathcal{V}, \mathcal{B} \subset \mathcal{V}\} \tag{20}
\end{equation*}
$$

It is easy to show that \mathcal{V}_{u} is the "smallest" element of $\underline{\mathcal{V}}$, that is, is contained in every subspace in \mathcal{V}_{u}.

State Space Structure Using Invariant Subspaces (cont.)

Lemma

$$
\begin{align*}
A \mathcal{V}_{y} & \subset \mathcal{V}_{y} \tag{21a}\\
\mathcal{V}_{y} & \subset \operatorname{Ker} C .
\end{align*}
$$

(21b)

State Space Structure Using Invariant Subspaces (cont.)

Proof.
That (21b) is true follows from (13). To prove (21a), pick an arbitrary $v \in \mathcal{V}_{y}$. Then

$$
\begin{equation*}
C A^{i} v=0, \quad i=0,1, \ldots, n-1 \tag{22}
\end{equation*}
$$

Now, it is easy to verify that

$$
\begin{equation*}
C A^{i}(A v)=0, \quad i=0,1, \ldots, n-1 \tag{23}
\end{equation*}
$$

again using the Cayley-Hamilton Theorem. Thus $A v \in \mathcal{V}_{y}$ and this proves (21a).

State Space Structure Using Invariant Subspaces (cont.)

Remark

Consider the collection of all subspaces which are A-invariant and contained in KerC:

$$
\begin{equation*}
\underline{\mathcal{V}}=\{\mathcal{V} \mid A \mathcal{V} \subset \mathcal{V}, \mathcal{V} \subset \operatorname{Ker} C\} \tag{24}
\end{equation*}
$$

It is easy to see that \mathcal{V}_{y} is the "largest" element of $\underline{\mathcal{V}}$, that is, every element \mathcal{V} inㅢ satisfies

$$
\begin{equation*}
\mathcal{V} \subset \mathcal{V}_{y} . \tag{25}
\end{equation*}
$$

State Space Structure Using Invariant Subspaces (cont.)

Lemma

$$
\begin{align*}
& A\left(\mathcal{V}_{u} \cap \mathcal{V}_{y}\right) \subset\left(\mathcal{V}_{u} \cap \mathcal{V}_{y}\right) \tag{26a}\\
& A\left(\mathcal{V}_{u}+\mathcal{V}_{y}\right) \subset\left(\mathcal{V}_{u}+\mathcal{V}_{y}\right)
\end{align*}
$$

(26b)

State Space Structure Using Invariant Subspaces (cont.)

Proof.
If $v \in \mathcal{V}_{u} \cap \mathcal{V}_{y}, A v \in \mathcal{V}_{u}$ and $A v \in \mathcal{V}_{y}$ and so $A v \in \mathcal{V}_{u} \cap \mathcal{V}_{y}$. If $v \in \mathcal{V}_{u}+\mathcal{V}_{y}$, then $v=v_{1}+v_{2}$ with $v_{1} \in \mathcal{V}_{u}$ and $v_{2} \in \mathcal{V}_{y}$. Then $A v=A v_{1}+A v_{2} \in \mathcal{V}_{u}+\mathcal{V}_{y}$.

State Space Structure Using Invariant Subspaces (cont.)

Now consider a decomposition of the state space as follows:

$$
\begin{equation*}
\mathcal{X}=\mathcal{V}_{1} \oplus \mathcal{V}_{2} \oplus \mathcal{V}_{3} \oplus \mathcal{V}_{4} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{V}_{1}:=\mathcal{V}_{u} \cap \mathcal{V}_{y} \tag{28}
\end{equation*}
$$

and $\mathcal{V}_{2}, \mathcal{V}_{3}, \mathcal{V}_{4}$ satisfy

$$
\begin{align*}
& \mathcal{V}_{2} \oplus \mathcal{V}_{1}=\mathcal{V}_{u} \tag{29}\\
& \mathcal{V}_{3} \oplus \mathcal{V}_{1}=\mathcal{V}_{y} \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{V}_{4} \oplus \mathcal{V}_{3} \oplus \mathcal{V}_{2} \oplus \mathcal{V}_{1}=\mathcal{X} \tag{31}
\end{equation*}
$$

but are otherwise arbitrary.

State Space Structure Using Invariant Subspaces (cont.)

Let

$$
\begin{equation*}
\operatorname{dim} \mathcal{V}_{i}=K_{i} \tag{32}
\end{equation*}
$$

and let T_{i} denote an $n \times K_{i}$ matrix whose columns form a bases for $\mathcal{V}_{i}, i=1,2,3,4$. Let

$$
\begin{equation*}
T=\left[T_{1}, T_{2}, T_{3}, T_{4}\right] \tag{33}
\end{equation*}
$$

denote a coordinate transformation and set

$$
\begin{equation*}
x=T z \tag{34}
\end{equation*}
$$

In this coordinate

$$
\begin{align*}
& \dot{z}=A_{n} z+B_{n} u \tag{35a}\\
& y=C_{n} z \tag{35b}
\end{align*}
$$

State Space Structure Using Invariant Subspaces (cont.)

and

$$
\begin{align*}
A_{n} & =T^{-1} A T \tag{36a}\\
B_{n} & =T^{-1} B \\
C_{n} & =C T
\end{align*}
$$

(36b)
(36c)

State Space Structure Using Invariant Subspaces (cont.)

Theorem (Kalman Canonical Decomposition)
In the coordinate system defined by (28)-(36); $\left(A_{n}, B_{n}, C_{n}\right)$ have the following structure:

$$
\begin{align*}
& A_{n}=\left[\begin{array}{cccc}
A_{1} & A_{3} & A_{5} & A_{7} \\
0 & A_{2} & 0 & A_{8} \\
0 & 0 & A_{4} & A_{9} \\
0 & 0 & 0 & A_{6}
\end{array}\right] \\
& B_{n}=\left[\begin{array}{c}
B_{1} \\
B_{2} \\
0 \\
0
\end{array}\right] \tag{37}\\
& C_{n}=\left[\begin{array}{llll}
0 & C_{2} & 0 & C_{6}
\end{array}\right] .
\end{align*}
$$

State Space Structure Using Invariant Subspaces (cont.)

Proof.
The proof follows from the facts:

$$
\begin{align*}
A \mathcal{V}_{1} & \subset \mathcal{V}_{1} \tag{38a}\\
A\left(\mathcal{V}_{1} \oplus \mathcal{V}_{2}\right) & \subset \mathcal{V}_{1} \oplus \mathcal{V}_{2} \\
A\left(\mathcal{V}_{1} \oplus \mathcal{V}_{3}\right) & \subset \mathcal{V}_{1} \oplus \mathcal{V}_{3}
\end{align*}
$$

and

$$
\begin{align*}
B & \subset \mathcal{V}_{1} \oplus \mathcal{V}_{2} \tag{39a}\\
\mathcal{V}_{1} \oplus \mathcal{V}_{3} & \subset \operatorname{Ker} C, \tag{39b}
\end{align*}
$$

and the relations (36).

State Space Structure Using Invariant Subspaces (cont.)

Remark

The structure (37) specifies only the zero blocks in the matrices.
The non-zero blocks will depend on the actual subspaces $\mathcal{V}_{2}, \mathcal{V}_{3}$ and \mathcal{V}_{4} and the bases for these subspaces.

State Space Structure Using Invariant Subspaces (cont.)

Example (Kalman Canonical Decomposition)
Consider the system

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t) \tag{40}\\
& y(t)=C x(t)
\end{align*}
$$

with

State Space Structure Using Invariant
Subspaces (cont.)

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
B=\left[\begin{array}{ll}
0 & 1 \tag{41}\\
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]
$$

$$
C=\left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right] .
$$

State Space Structure Using Invariant Subspaces (cont.)

The controllable subspace \mathcal{V}_{u} is generated by

$$
\left\{\begin{array}{ll}
0 & 1 \tag{42}\\
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right\}=\mathcal{V}_{u} .
$$

The unobservalbe subspace

$$
\mathcal{V}_{y}=\operatorname{Ker}\left[\begin{array}{llll}
1 & 1 & 0 & 0 \tag{43}\\
0 & 2 & 0 & 0
\end{array}\right]=\left\{\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right\}
$$

State Space Structure Using Invariant Subspaces (cont.)

Then

$$
\mathcal{V}_{u} \cap \mathcal{V}_{y}=\left\{\begin{array}{l}
0 \tag{44}\\
0 \\
1 \\
0
\end{array}\right\}=: \mathcal{V}_{1}
$$

State Space Structure Using Invariant Subspaces (cont.)

Define

$$
\mathcal{V}_{2}=\left\{\begin{array}{l}
1 \tag{45}\\
0 \\
0 \\
0
\end{array}\right\}, \quad \mathcal{V}_{3}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right\} \text { and } \quad \mathcal{V}_{4}=\left\{\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right\}
$$

to satisfy

$$
\begin{equation*}
\mathcal{X}=\mathcal{V}_{1} \oplus \mathcal{V}_{2} \oplus \mathcal{V}_{3} \oplus \mathcal{V}_{4} \tag{46}
\end{equation*}
$$

and let

$$
T=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \tag{47}\\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

State Space Structure Using Invariant Subspaces (cont.)

It is easy to verify that

$$
\begin{align*}
T^{-1} A T & =A_{n}
\end{align*}=\left[\begin{array}{ll|ll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \tag{48}\\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right] .
$$

which is the Kalman Canonical Decomposition of the system.

