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Lecture 9

Structure of LTI Systems I
– Controllability
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Introduction

The realization problem is: Given a transfer function G (s),
construct a circuit, using standard components, so that the
transfer function of the circuit is precisely equal to the given G (s).
In the “old” days, the standard circuit components used to be R ,
L, C elements plus transformers.

The modern version of the problem uses integrators, multipliers,
and summers as standard components for continuous time systems
and delays, multipliers, and summers for discrete time (sampled
data) systems.

Throughout this unit, we assume that G (s) is rational and proper
unless specifically stated.
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Controllability

Definition
A dynamic system is said to be completely (state) controllable if
every initial state can be transferred to any final prescribed state in
a finite time T by some input u(t), 0 ≤ t ≤ T .
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Controllability (cont.)

Theorem (Controllability)

The system

ẋ(t) = Ax(t) + Bu(t) (1)

where A ∈ R
n×n,B ∈ R

n×m is controllable if and only if one of the

following equivalent conditions hold:

(1) rank[Wc ] = n where

Wc(t) :=

∫ t

0
eAτBBT eA

T
τdτ,

(2) rank[B ,AB , · · · ,An−1B] = n

(3) rank[A− λI ,B] = n for all eigenvalue λ ∈ C of A
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Controllability (cont.)

Proof
We first show that if Wc is nonsingular, then Equation (1) is
controllable.

Consider the response of the system in Equation (1) at time t1,
that is

x (t1) = eAt1x(0) +

∫ t1

0
eA(t1−τ)Bu(τ)dτ. (2)

We claim that any x(0) = x0 and any x (t1) = x1. Select

u(t) = −BT eA
T (t1−t)Wc(t1)

−1
[

eAt1x0 − x1

]

.
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Controllability (cont.)

Before we proceed, we establish

Wc(t) =

∫ t

0
eA(t−τ)BBT eA

T (t−τ)dτ =

∫ t

0
eAτBBT eA

T
τdτ. (3)

Let σ := t − τ ,

∫ t

0
eA(t−τ)BBT eA

T (t−τ)dτ =

∫ t

0
eAσBBT eA

T
σdσ

and we obtain (3) by letting τ := σ.
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Controllability (cont.)

Then

x1 = eAt1x0 +

∫ t1

0
eA(t1−τ)Bu(τ)dτ

= eAt1x0 −

∫ t1

0
eA(t1−τ)BBT eA

T (t1−τ)Wc(t1)
−1

[

eAt1x0 − x1

]

dτ

= eAt1x0 −

∫ t1

0
eA(t1−τ)BBT eA

T (t1−τ)dτ

︸ ︷︷ ︸

Wc(t1)

Wc(t1)
−1

[

eAt1x0 − x1

]

= eAt1x0 − eAt1x0 + x1 = x1.

Since the selected u(t) transfers any x0 to any x1 at time t1,
Equation (1) is controllable.
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Controllability (cont.)

Now we show the converse by contradiction. Note that the
expression of Wc shows that Wc is symmetric. Suppose that
Equation (1) is controllable but Wc is singular (not positive
definite). It means that there exists a nonzero vector v such that

vTWc(t1)v =

∫ t1

0
vT eA(t1−τ)BBT eA

T (t1−τ)vdt

=

∫ t1

0

∥
∥
∥B

T eA
T (t1−τ)v

∥
∥
∥

2
dτ = 0

which implies that

BT eA
T (t1−τ)v = 0 or vT eA(t1−τ)B = 0 (4)

for all τ ∈ [0, t1].
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Controllability (cont.)

Now select the initial state and the final state:

x0 = e−At1v and x1 = 0.

If the system is controllable, we should be able to transfer x0 to
x1 in a finite time. So Equation (2) becomes

x1 = eAt1x0 +

∫ t1

0
eA(t1−τ)Bu(τ)dτ.

0 = eAt1e−At1v +

∫ t1

0
eA(t1−τ)Bu(τ)dτ

= v +

∫ t1

0
eA(t1−τ)Bu(τ)dτ.



10/36

Controllability (cont.)

Premultiplying by vT yields

0 = vT v +

∫ t1

0
vT eA(t1−τ)B
︸ ︷︷ ︸

=0 from Equation(4)

u(τ)dτ = ‖v‖2 + 0

which contradicts v 6= 0. This proves (1).
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Controllability (cont.)

To prove (2), let the initial state be x0 and the final state be
x1 = 0. then

0 = eAt1x0 +

∫ t1

0
eA(t1−τ)Bu(τ)dτ

= eAt1x0 + eAt1
∫ t1

0
e−AτBu(τ)dτ

yields

x0 = −

∫ t1

0
e−AτBu(τ)dτ.



12/36

Controllability (cont.)

Without loss of generality, we let

e−Aτ =
n−1∑

k=0

fk(τ)A
k .

Then

x0 = −
n−1∑

k=0

AkB

∫ t1

0
fk(τ)u(τ)dτ. (5)
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Controllability (cont.)

Now let

βk :=

∫ t1

0
fk(τ)u(τ)dτ,

then Equation (5) becomes

x0 = −
n−1∑

k=0

AkBβk

= −
[

B AB AB · · · An−1B
]








β0
β1
...

βn−1







. (6)

If the system is completely controllable, Equation (6) must be
satisfied for any given initial state x0. This requires that the
condition (2) in the theorem.
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Controllability (cont.)

To prove (3), we consider the following. If (2) is true and (3) is
not true, there exists an eigenvalue λ∗ and a nonzero vector v 6= 0
such that

v [A− λ∗I B] = 0.

It implies that

v(A− λ∗I ) = 0 and vB = 0

or

vA = λ∗v and vB = 0.
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Controllability (cont.)

Note that v is a left eigenvector of A associated with λ∗. Now
consider

vA2 = (vA)A = (λ∗v)A = λ∗(vA) = (λ∗)2v

vA3 = (vA2)A = ((λ∗)2v)A = (λ∗)2(vA) = (λ∗)3v
...

vAn−1 = (λ∗)n−1v

Now write

v [B AB A2B · · · An−1B] = [vB λ∗vB (λ∗)2vB · · · (λ∗)n−1vB] = 0.

This contracdicts (3). Thus,

rank[A− λI B] = n for all eigenvalues of A.
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Controllability (cont.)

Remark

rank
[
B AB · · · An−1B AnB

]
= rank

[
B AB · · · An−1B

]

This is due to the Cayley Hamilton Theorem.

An = α0I + α1A+ · · ·+ αn−1A
n−1.
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Controllability (cont.)

If we let x(0) and x∗ be the initial condition and the desired final
state of x(t), respectively, it is easy to show that

u(τ) = BT eA
T (t1−τ)Wc(t1)

−1(x∗ − eAT x(0)), 0 ≤ τ ≤ t1

transfers x(0) to x∗ = x(t1) in t1 seconds. Recall the solution of
the state equation.

x(t1) = eAT x(0) +

∫ T

0

eA(t1−τ)Bu(τ)dτ

= eAT x(0) +

∫ T

0

eA(t1−τ)BBT eA
T (t1−τ)dτ

︸ ︷︷ ︸

Wc (t1)

Wc(t1)
−1(x∗ − eAT x(0))

= eAT x(0) + (x∗ − eAT x(0))

= x∗.
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Controllability (cont.)

Theorem
(A,B) is controllable if and only if the following Lyapunov

eqaution,

AWc +WcA
T = −BBT

with real part of all eigenvalues of A being negative, has the

unique solution that is positive definite. The solution is

Wc =

∫
∞

0
eAτBBT eA

T
τdτ

and is called the controllability Gramian.
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Controllability (cont.)

Example

Consider

[
ẋ1(t)
ẋ2(t)

]

=

[
−0.5 0
0 −1

] [
x1(t)
x2(t)

]

+

[
0.5
1

]

u(t).

Since

Rank[B AB] = Rank

[
0.5 −0.25
1 −1

]

= 2,

the system is controllable. Let

[
x1(0)
x2(0)

]

=

[
0.5
1

]

.
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Controllability (cont.)

We want to find u(t) that moves the state x(0) to x(t) = [0 0]T

within 2 seconds. Recall

ut1(t) = −BT eA
T (t1−t)Wc(t1)

−1
[

eAt1x(0)− x(t1)
]

where

Wc(t) =

∫ t

0
eAτBBT eA

T
τdτ.
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Controllability (cont.)

We compute

Wc (2) =

∫ 2

0
e
Aτ

BB
T
e
AT τ

dτ

=

∫ 2

0

([
e−0.5τ 0

0 e−τ

] [
0.5
1

]

[0.5 1]

[
e−0.5τ 0

0 e−τ

])

dτ

=

∫ 2

0

[
e0.5τ 0

0 e−τ

] [
0.25 0.5
0.5 1

] [
e−0.5τ 0

0 e−τ

]

dτ

=

∫ 2

0

[
0.25e−0.5τ 0.5e−0.5τ

0.5e−τ e−τ

] [
e−0.5τ 0

0 e−τ

]

dτ

=

∫ 2

0

[
0.25e−τ 0.5e−1.5τ

0.5e−1.5τ e−2τ

]

dτ

=

[

−0.25e−τ − 1
3
e−1.5τ

− 1
3
e−1.5τ −0.5e−2τ

]2

0

=




−0.25

(

e−2 − 1
)

− 1
3

(

e−3 − 1
)

− 1
3

(

e−3 − 1
)

−0.5
(

e−4 − 1
)





=

[
0.2162 0.3167
0.3167 0.4908

]

.
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Controllability (cont.)

ut1 (t) = −B
T
e
AT (t1−t)

Wc (t1)
−1

[

e
At1 x(0) − x(t1)

]

= −[0.5 1]

[

e−0.5(2−t) 0

0 e−(2−t)

] [
84.4450 −54.4901

−54.4901 37.1985

]

︸ ︷︷ ︸

W−1

([
e−1 0

0 e−2

] [
10
−1

]

−

[
0
0

])

=
[

−0.5e
−1

e
0.5t

− e
−2

e
t
] [

84.4450 −54.4901
−54.49011 37.1985

] [
10e−1

−e−2

]

=
[

−0.5e
−1

e
0.5t

− e
−2

e
t
] [

844.45e−1 + 54.4901e−2

−544.901e−1 − 37.1985e−2

]

=
(

−422.225e
−2

− 27.245e
−3

)

e
0.5t

+
(

544.901e
−3

+ 37.1985e
−4

)

e
t

= −58.50e
0.5t

+ 27.81e
t
.
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Controllability (cont.)

clear
x0=[10 -1];
a=[-0.5 0; 0 -1];
b=[0.5 1]’;
c=[1 1];
d=0;
sys=ss(a,b,c,d);
t=0:0.01:2.5;
u=-58.50*exp(0.5*t)+27.81*exp(t);
[y,t,x]=lsim(sys,u,t,x0);
plot(t,x(:,1),’-b’,t,x(:,2),’-.b’,t,u,’-g’), grid
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Controllability (cont.)
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Controllability (cont.)

Remark
In the above example, the states have been transfered to the final

states in 2 seconds. This was possible because no restruction was

imposed on the control effort u(t). However, this assumption is

often no longer valid in practice. For example, in the above

example, if we restrict the control effort to be restricted, i.e.,

|u(t)| ≤ M for all t, the transfer of the states to the final states

may not be achieved in 2 seconds. Nevertheless, controllability

imples the existence of control effort u(t) that transfers any state

to any arbitrary state in finite time.
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Controllability (cont.)

Example

Consider

[
ẋ1(t)
ẋ2(t)

]

=

[
−1 0
0 −1

] [
x1(t)
x2(t)

]

+

[
1
1

]

u(t).
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Controllability (cont.)

Clearly,

Rank[B AB] = Rank

[
1 −1
1 −1

]

= 1

and the system is not completely controllable. From the theorem,
we know that Wc(t) will not be invertible and therefore, no input
can transfer x(0) to any states in a finite time.
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Controllability (cont.)

Let A ∈ R
n×n, B ∈ R

n×p. Also let

rank[B] = p.

Then

C =
[

B AB A
2
B · · · A

n−1
B
]

=
[

b1 b2 · · · bp | Ab1 Ab2 · · · Abp | · · · |A
n−1

b1 A
n−1

b2 · · · A
n−1

bp

]

.

Let µi be the number of linearly independent columns associated
with bi . If rank[C] = n, then

µ1 + µ2 + · · ·+ µp = n.

Controllability Indices :{µ1, µ2, · · · , µp}

Controllability Index :µ := max(µ1, µ2, · · · , µp)



29/36

Controllability (cont.)

Corollary

Let rank[B] = p, A ∈ R
n×n, B ∈ R

n×p. The n-dimensional pair

(A,B) is controllable if and only if

rank [Cn−p+1] = n

where

Cn−p+1 :=
[
B AB A2B · · ·An−pB

]
,

or Cn−p+1C
T
n−p+1 ∈ R

n×n is nonsingular.
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Controllability (cont.)

Proof.
If CT

n−p+1 has full rank, then CT
n−p+1x = 0 for all x 6= 0. It follows

that
Cn−p+1C

T
n−p+1x = 0 for all x 6= 0.

This implies that Cn−p+1C
T
n−p+1 ∈ R

n×n is nonsingular (or has full
rank).
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Controllability (cont.)

Theorem
The controllability property is invariant under any equivalent

similarity transformation.
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Controllability (cont.)

Before we prove, we establish the following rank formulas.

Lemma
Let M ∈ R

n×m, N ∈ R
m×p.

rank[MN] ≤ min(rank[M], rank[N]).

Proof.
Let rank[M] = α. Then M has α linearly independent columns. In
MN, N operates on the columns of M. Thus, MN has at most α
linearly independent columns. Similarly, let rank[N] = β. In MN,
M operates on the rows of N. Then the row rank of MN is at
most β.
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Controllability (cont.)

Lemma
Let X ∈ R

n×n, Y ∈ R
m×n, Z ∈ R

m×m where Y ,Z are

nonsingular. Then

rank[XY ] = rank[X ] = rank[ZX ].

This means that the rank of a matrix will not change after pre or

postmultiplying by a nonsingular matrix.
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Controllability (cont.)

Proof
Note that

rank[X ] ≤ min(m, n), and rank[Y ] = n.

It follows that
rank[X ] ≤ rank[Y ].

From the previous lemma,

rank[XY ] ≤ min(rank[X ], rank[Y ]) = rank[X ].

We now consider

rank[X ] = rank[XYY−1] ≤ min(rank[XY ], rank[Y−1]) = rank[XY ].

These imply that
rank[XY ] = rank[X ].
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Controllability (cont.)
Proof of [Theorem]

For the pair (A,B),

C =
[
B AB A2B · · · An−1B

]
.

For the pair (Â, B̂) where

Â := T−1AT , B̂T−1B ,

Ĉ =
[

B̂ ÂB̂ Â2B̂ · · · Ân−1B̂
]

=
[
T−1B T−1AB T−1A2B · · · T−1An−1B

]

= T−1C.

From the second stated lemma,

rank[T−1C] = rank[C].



36/36

Controllability (cont.)

Theorem
The set of the controllability indices of (A,B) is invariant under
any equivalence transformation and any reordering of the columns

of B.


