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LINEAR SYSTEMS

Lecture 10

Structure of LTI Systems II
– Observability
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Observability

Let

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t).

The system in eq. (1) is said to be observable if for any unknown
initial state x(0), there exists a finite t1 > 0 such that the initial
state x(0) is uniquely determined by the input u and the output y
over [0, t1].
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Observability (cont.)

Example

Consider the following two circuits.
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Observability (cont.)

When the circuit is open (i.e., u = 0), the output y will go to zero.
However, there is no way to uniquely determine the initial state.

Thus the corresponding state equation is not observable.
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Observability (cont.)

Consider the system (1). The response is computed as

y(t) = CeAtx(0) + C

∫ t

0
eA(t−τ)Bu(τ)dτ + Du(t).

Assume that the output y(t) and input u(t) are known and the
initial condition x(0) is not known. Then we write

CeAtx(0) = y(t)− C

∫ t

0
eA(t−τ)Bu(τ)dτ − Du(t).
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Observability (cont.)

The observability problem is reduced to solving the above equation
for x(0). For u = 0, the problem is further simplified to solving

CeAtx(0) = y(t)

for x(0). Let q < n that is the case in general, the equation above
cannot be solved for x(0) uniquely due to the existence of null
vectors of the left-hand side expression.

Therefore, we conclude that knowledge of both u(t) and y(t) over
a nonzero time interval is necessary to uniquely determine x(0).
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Observability (cont.)

Similar to the case of controllability, we have the following
equivalent conditions.

Theorem (Observability)

The system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

is observable if and only if one of the following equivalent
conditions hold:
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Observability (cont.)

(1)

rank










C

CA

CA2

...
CAn−1










= n

(2)

rank

[
A− λI

C

]

= n, for all λ ∈ C

(3) rank[Θt ] = n where

Θt =

∫ t

0
eA

T
τCTCeAτdτ.
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Observability (cont.)

Proof
To prove (1), consider the output equation

y(t) = Cx(t) + Du(t).

To compute x(0) from the knowledge of y(t) and u(t) in finite
time, we consider

y(t)|t=0 = Cx(t)|t=0 + Du(t)|t=0

y ′(t)|t=0 = Cẋ(t)|t=0 + Du(t)|t=0 = CAx(t)|t=0 + (u̇(t) terms)|t=0

...

y (n−1)(t) = CAn−1x(t)|t=0 + (u(n−1)(t) terms)|t=0
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Observability (cont.)

Then we write









C

CA

CA2

...
CAn−1










x(0) =










y(0)
y ′(0)
y ′′(0)

...

y (n−1)(0)










−(u(t) and derivatives terms)|t=0

The condition to determine x(0) unqiuely is










C

CA

CA2

...
CAn−1










to be full rank.
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Observability (cont.)

To prove (2), we use contradiction. Assume that the condition (1)
is true and let the condition (2) is not true. Then there exist q 6= 0
such that

rank

[
A− λI

C

]

q = 0.

This implies that

(A− λI )q = 0 and Cq = 0 for q 6= 0.
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Observability (cont.)

Thus, we have

Aq = λq

A2q = A(Aq) = λ(Aq) = λ2q

...

An−1q = λn−1q

and 








C

CA

CA2

...
CAn−1










q = 0

which is contraction. So (2) is proved.
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Observability (cont.)

To prove (3), consider

CeAtx(0) = y(t)− C

∫ t

0
eA(t−τ)Bu(τ)dτ − Du(t)

︸ ︷︷ ︸

=:ŷ(t)

.

Premultiplying eA
T tCT and integrate it over (0, t1), we have

∫ t1

0
eA

T tCTCeAtdt

︸ ︷︷ ︸

Θt1

x(0) =

∫ t1

0
eA

T tCT ŷ(t)dt.

Clearly, if Θt1 has full rank, then x(0) is uniquely determined by

x(0) = Θ−1
t1

∫ t1

0
eA

T tCT ŷ(t)dt.
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Observability (cont.)

To prove sufficiency, we use contradiction. Assume that Θt is
singular. Then there exists v 6= 0 such that

vTΘtv =

∫ t1

0
vT eA

T tCTCeAtvdt =

∫ t1

0
‖CeAtv‖2dt = 0.

It implies that

CeAtv = 0 for all t ∈ [0, t1].

Under this condition, we know that x(0) is not a unique solution of

CeAtx(0) = ŷ(t).

Therefore, it is proved.
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Observability (cont.)

As seen, for a given system (A,B ,C ,D), controllability depends on
the pair (A,B) and observability depends on the pair (C ,A). This
leads the following.

Theorem (Duality Theorem)

The pair (A,B) is controllable if and only if the pair (BT ,AT ) is
observable.
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Observability (cont.)

Proof.
The pair (A,B) controllable implies that

Wc(t) =

∫ t

0
eAτBBT eA

T
τdτ

is nonsingular for all t. On the other hand, the pair (BT ,AT )
observable implies that

Θ(t) =

∫ t

0
e(A

T )T τ (BT )T (BT )eA
T
τdτ =

∫ t

0
eAτBBT eA

T
τdτ

is nonsigular for all t. Since Wc(t) = Θ(t), they are
equivalent.
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Observability (cont.)

Consider the following two system:

S∞ :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

S∈ :

{
ż(t) = AT z(t) + CTu(t)
y(t) = BT z(t) + DTu(t)

System S2 is called the dual of system S1 and vice versa. In
transfer function representation, we have the following.

S1 : C(sI − A)
−1

B + D

S2 : B
T
(sI − A

T
)
−1

C
T

+ D
T

= B
T

[

(sI − A)
T
]

−1
C
T

+ D
T

=
(

C(sI − A)
−1

B + D
)T

As seen, the dual system is obtained by exchanging input and
output of the system.
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Observability (cont.)

The observability indices are also defined similarly. Consider a pair
(C ,A) and let νi be the number of linearly independent rows
associated with the i th ci of C . If the rank of observability matrix
is n where

O :=










C

CA

CA2

...
CAn−1










,

then

ν1 + ν2 + · · ·+ νq = n.

The set {ν1, ν2, · · · , νq} is called the observability indices and

ν := max(ν1, ν2, · · · , νq)

is called the observability index.
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Observability (cont.)

Corollary

The pair (C ,A) is observable if and only if

rank [On−q+1] = n

where

On−q+1 =










C

CA

CA2

...

CAn−q










and rank[C ] = q or OT
n−q+1On−q+1 is nonsingular.

Corollary

The observability property is invariant under any equivalence

transformation.
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Observability (cont.)

Example

Consider the circuit with variables as shown in Figure 1.

+

−

u(t)

x1(t)

R1

L

+ −
x3(t)

C

+

−

x2(t)

R2

+

−

y(t)

Figure 1: An electrical circuit (Example 2)
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Observability (cont.)

We write state equations as follows:

u(t) = R1x1(t) + Lẋ1(t) (2)

u(t) = R2Cẋ2(t) + x2(t) (3)

x2(t) = R1x1(t) + x3(t) (4)
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Observability (cont.)

so that with

τ1 =
R1

L
and τ2 =

1

R2C

ẋ1(t) = −τ1x1(t) +
1

L
u(t)

ẋ2(t) = −τ2x2(t) + τ2u(t)

ẋ3(t) = −R1ẋ1(t) + ẋ2(t)

= R1τ1x1(t)− τ2x2(t) + (τ2 − τ1) u(t)

and

y(t) = −x2(t) + u(t).
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Observability (cont.)

In standard notation





ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





−τ1 0 0
0 − τ2 0

R1τ1 −τ2 0









x1(t)
x2(t)
x3(t)



+






1

L
τ2

τ2 − τ1




 u(t)(5)

y(t) = [0 − 1 0]x(t) + [1]u(t).
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Observability (cont.)

The controllability matrix

C1 :=
[
B AB A2B

]
=











1

L
−
τ1

L

τ21
L

τ2 −τ22 τ32

τ2 − τ1 τ21 − τ22 − τ31 + τ32











(6)
and it is easy to verify that

Rank [C1] ≤ 2, for all τ1, τ2 (7)

and

Rank [C1] = 1, for τ1 = τ2. (8)

This means that the system in (5) is generically uncontrollable.



25/27

Observability (cont.)

This is expected since eq. (4) shows that independent control over
x1(t), x2(t) and x3(t) is impossible. This means that eqs. (2) - (4)
have redundant variables and a more meaningful model could be
the second order model:

[
ẋ1(t)
ẋ2(t)

]

=

[
−τ1 0
0 −τ2

] [
x1(t)
x2(t)

]

+

[
1
L

τ2

]

u(t) (9)

y(t) = [0 − 1]

[
x1(t)
x2(t)

]

+ [1]u(t). (10)



26/27

Observability (cont.)

The controllability matrix of (9) is

C2 :=






1

L

−τ1

L

τ2 −τ22




 (11)

and it is easy to see that

Rank [C2] = 2, for τ1 6= τ2 (12)

and

Rank [C2] = 1, for τ1 = τ2. (13)

Thus, (9) is generically controllable and loses controllability only
when eq. (13) holds. In fact, it can be seen that when eq. (13)
holds two inputs are necessary to render (9) controllable.
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Observability (cont.)

It is easy to check that both the 3rd and 2nd order models are
unobservable independent of the circuit parameter values. Indeed
it is possible to check that the system transfer function is

Y (s)

U(s)
=

−τ2s (s + τ1)

s (s + τ2) (s + τ1)
+ 1

= −
τ2

s + τ2
+ 1 (14)

showing that it is possible to realize it as a first order system. This
is due to the fact that y(t) is determined independent of x1(t).


