
ECEN 605

LINEAR SYSTEMS

Lecture 13

State Feedback and Observers I
– Eigenvalue Assignment by State Feedback

1/22



2/22

Multivariable system

n internal states

u1

u2

ur

y1

y2

ym

Figure 1: Input - Output System
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Single Input Systems

Consider a single input system of form:

ẋ = Ax + bu

y = CT x .

If we let u(t) = 0, then

ẋ = Ax y = CT x .

Consequently,

x(t) = eAtx(0) and y(t) = CT eAtx(0).
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Single Input Systems (cont.)

Suppose that the output y(t) is unsatisfactory, then we need a
controller to regulate the system. The state feedback problem
considers the following:

f

CT

u x y

Figure 2: State Feedback Configuration
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Single Input Systems (cont.)

Introducing a state feedback f , we have

u(t) = fx(t) =⇒ y(t) = CT e(A+bf )tx(t)

so that y(t) may be satisfactory. For example,

1) If A is unstable, can A be stabilized by f ?

2) Can we find an f such that eigenvalues of A+ bf
(i.e., poles of the closed loop system) equal to a
prescribed set of eigenvalues Λ?

This problem is the pole assignment problem using state feedback.



6/22

Single Input Systems (cont.)

Problem

Given (A, b) and a desired set of eigenvalues, find f so that the
eigenvalues of A+ bf equal the desired set. Then the feedback
control law

u = fx

assigns the eigenvalues of the closed loop system to the desired
location.
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Single Input Systems (cont.)

Consider the following special case.
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.



8/22

Single Input Systems (cont.)

Let
f =

[
f0 f1 f2 · · · fn−1

]
,

then

A+ bf =


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and

det [sI − (A+ bf )] = sn − (an−1 + fn−1)s
n−1 + · · ·+ (a1 + f1)s + (a0 + f0)

= (s − λd

1 )(s − λd

2 ) · · · (s − λd

n)

= sn − adn−1s
n−1 + · · ·+ ad1 s + ad0 .
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Single Input Systems (cont.)

Now we can equate the corresponding coefficients,

a0 + f0 = ad0

a1 + f1 = ad1
...

an−1 + fn−1 = adn−1

and solve for fi s.
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Single Input Systems (cont.)

The solution consists of the following:

1) Taking an arbitrary system (A, b) and
transforming it to controllable companion form by a
coordinate transformation

2) Solve the easy version of pole assignment problem
in this coordinate system

3) transform back to the original coordinates so that
the same eigenvalues are obtained.
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Single Input Systems (cont.)

When is it possible?

Lemma
If (A, b) is controllable, there exists a coordinate transformation T
such that

An = T−1AT =
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.
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Single Input Systems (cont.)

Theorem
Pole assignment by state feedback is possible iff (A, b) is a
controllable pair.
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Single Input Systems (cont.)

Proof
Suppose that (A, b) is not controllable, then we know we can
separate controllable and uncontrollable parts as follows.

ẋ = Ax + bu

⇓ x = Tz

ż = T−1ATz + T−1bu

[
żc
żu

]

=

[
A1 A3

0 A2

]

︸ ︷︷ ︸

Â

[
zc
zu

]

+

[
b1
0

]

︸ ︷︷ ︸

b̂

u
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Single Input Systems (cont.)

Since

u = fx = fTz = f̂ z =
[

f̂1 f̂2
]
[
zc
zu

]

,

[
żc
żu

]

=

[
A1 + b1 f̂1 A3 + b1 f̂2

0 A2

]

︸ ︷︷ ︸

Â+b̂f̂

[
zc
zu

]

.

The eigenvalues of Â+ b̂f̂ are the roots of the polynomial

det
[

sI − (Â+ b̂f̂ )
]

= det

[
sI − (A1 + b1 f̂1) −(A3 + b1 f̂2)

0 sI − A2

]

= det
[

sI − (A1 + b1 f̂1)
]

det [sI − A2] .

As seen f has no effect on the uncontrollable part of eigenvalues
that is, the eigenvalues of A2 are fixed and independent of f .
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Single Input Systems (cont.)

How to make the controllable companion transformation

The following procedure constructs a transformation matrix that
coordinate transforms an arbitrary controllable system to the
controllable companion form.

1)

L =
[
b Ab · · · An−1b

]

2) take the last row of L−1 and call it qT

3) Construct

T−1 =








qT

qTA
...

qTAn−1
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






16/22

Single Input Systems (cont.)

Proceeding, let a state feedback f̂ assign the eigenvalues of Â+ b̂f̂
to the desired locations. The last step is to find the solution

f = f̂ T−1

which is valid in the original coordinates, because from

A+ bf = T (Â+ b̂f̂ )T−1

Â+ b̂f̂ and A+ bf have the same eigenvalues.
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Multi Input Systems

Consider a multi input system,

ẋ = Ax + Bu, A ∈ R
n×n,B ∈ R

n×m.

In some cases (which cases?) we can reduce this system to a single
input system by introducing a new signal

u = gv g ∈ R
m

and retain controllability of the system from the new input v .
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Multi Input Systems (cont.)
Then we have the new system which has a single input,

ẋ = Ax + Bgv := Ax + bv .

We now design a state feedback for this system. In general, we
may have to use coordinate transformation of z = Tx .

ż = T−1ATz + T−1bv := Âz + b̂v ; v = f̂ z

= (Â+ b̂f̂ )z .

Consequently, since

v = f̂ z = f̂ T−1x = fx ,

we have

ẋ = Ax + bv = (A+ b f̂ T−1
︸ ︷︷ ︸

f

)x = (A+ B gf̂ T−1

︸ ︷︷ ︸

F

)x . (1)
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Multi Input Systems (cont.)

Remark
This approach of using controllable companion form can be
numerically unreliable, because the controllable companion form
transformation is sometimes numerically ill conditioned.
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Solution Using Sylvester’s Equation

An attractive alternative method of solution is as follows.

Consider the equation

X−1(A+ BF )X = Ã; Ã has the desired set of eigenvalues.

Then,

AX + BFX = XÃ

AX − XÃ = −BFX .

This leads the following matrix equations:

AX − XÃ = −BG ; given A and Ã, a choice of G (2)

F = GX−1. (3)
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Solution Using Sylvester’s Equation (cont.)

The questions that arise are:

1) Does the solution of Eq. (2) always exist?
(perhaps, unique?)

2) Is the solution X invertible?

3) How to choose G?
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Solution Using Sylvester’s Equation (cont.)

Lemma
If (A,B) is controllable, and (G , Ã) is observable, then the unique
solution X of eq. (2) is “almost always” nonsingular.

Based on this we develop the procedure:
Procedure:

1) Pick Ã such that it has the desired eigenvalues.

2) Pick G with G , Ã and solve eq. (2). If X is
singular, choose a different G and repeat the process.

3) If X is nonsingular, solve for F from eq. (3).


