ECEN 605
 LINEAR SYSTEMS

Lecture 13
State Feedback and Observers I

- Eigenvalue Assignment by State Feedback

Multivariable system

Figure 1: Input - Output System

Single Input Systems

Consider a single input system of form:

$$
\begin{aligned}
\dot{x} & =A x+b u \\
y & =C^{T} x .
\end{aligned}
$$

If we let $u(t)=0$, then

$$
\dot{x}=A x \quad y=C^{T} x
$$

Consequently,

$$
x(t)=e^{A t} x(0) \quad \text { and } \quad y(t)=C^{T} e^{A t} x(0)
$$

Single Input Systems (cont.)

Suppose that the output $y(t)$ is unsatisfactory, then we need a controller to regulate the system. The state feedback problem considers the following:

Figure 2: State Feedback Configuration

Single Input Systems (cont.)

Introducing a state feedback f, we have

$$
u(t)=f x(t) \Longrightarrow y(t)=C^{T} e^{(A+b f) t} x(t)
$$

so that $y(t)$ may be satisfactory. For example,

1) If A is unstable, can A be stabilized by f ?
2) Can we find an f such that eigenvalues of $A+b f$ (i.e., poles of the closed loop system) equal to a prescribed set of eigenvalues Λ ?

This problem is the pole assignment problem using state feedback.

Single Input Systems (cont.)

Problem

Given (A, b) and a desired set of eigenvalues, find f so that the eigenvalues of $A+b f$ equal the desired set. Then the feedback control law

$$
u=f x
$$

assigns the eigenvalues of the closed loop system to the desired location.

Single Input Systems (cont.)

Consider the following special case.

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & & & \ddots & 0 \\
\vdots & & & & 1 \\
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1}
\end{array}\right] \quad b=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

and

$$
\Lambda=\left[\lambda_{1}^{d}, \lambda_{2}^{d}, \cdots, \lambda_{n}^{d}\right] .
$$

Single Input Systems (cont.)

Let

$$
f=\left[\begin{array}{lllll}
f_{0} & f_{1} & f_{2} & \cdots & f_{n-1}
\end{array}\right],
$$

then

$$
A+b f=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & & & \ddots & 0 \\
\vdots & & & & 1 \\
a_{0}+f_{0} & a_{1}+f_{1} & a_{2}+f_{2} & \cdots & a_{n-1}+f_{n-1}
\end{array}\right]
$$

and

$$
\begin{aligned}
\operatorname{det}[s l-(A+b f)] & =s^{n}-\left(a_{n-1}+f_{n-1}\right) s^{n-1}+\cdots+\left(a 1+f_{1}\right) s+\left(a_{0}+f_{0}\right) \\
& =\left(s-\lambda_{1}^{d}\right)\left(s-\lambda_{2}^{d}\right) \cdots\left(s-\lambda_{n}^{d}\right) \\
& =s^{n}-a_{n-1}^{d} s^{n-1}+\cdots+a_{1}^{d} s+a_{0}^{d} .
\end{aligned}
$$

Single Input Systems (cont.)

Now we can equate the corresponding coefficients,

$$
\begin{aligned}
a_{0}+f_{0} & =a_{0}^{d} \\
a_{1}+f_{1} & =a_{1}^{d} \\
& \vdots \\
a_{n-1}+f_{n-1} & =a_{n-1}^{d}
\end{aligned}
$$

and solve for $f_{i} s$.

Single Input Systems (cont.)

The solution consists of the following:

1) Taking an arbitrary system (A, b) and transforming it to controllable companion form by a coordinate transformation
2) Solve the easy version of pole assignment problem in this coordinate system
3) transform back to the original coordinates so that the same eigenvalues are obtained.

Single Input Systems (cont.)

When is it possible?

Lemma

If (A, b) is controllable, there exists a coordinate transformation T such that

$$
A_{n}=T^{-1} A T=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & & & \ddots & 0 \\
\vdots & & & & 1 \\
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1}
\end{array}\right] \quad b_{n}=T^{-1} b=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Single Input Systems (cont.)

Theorem
Pole assignment by state feedback is possible iff (A, b) is a controllable pair.

Single Input Systems (cont.)

Proof

Suppose that (A, b) is not controllable, then we know we can separate controllable and uncontrollable parts as follows.

$$
\begin{aligned}
& \dot{x}=A x+b u \\
& \Downarrow \\
& \dot{z}=T z \\
& \dot{z}=T^{-1} A T z+T^{-1} b u \\
& {\left[\begin{array}{c}
\dot{z}_{c} \\
\dot{z}_{u}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{1} & A_{3} \\
0 & A_{2}
\end{array}\right]}_{\hat{A}}\left[\begin{array}{c}
z_{c} \\
z_{u}
\end{array}\right]+\underbrace{\left[\begin{array}{c}
b_{1} \\
0
\end{array}\right]}_{\hat{b}} u }
\end{aligned}
$$

Single Input Systems (cont.)

Since

$$
\begin{gathered}
u=f x=f T z=\hat{f} z=\left[\begin{array}{ll}
\hat{f}_{1} & \hat{f}_{2}
\end{array}\right]\left[\begin{array}{c}
z_{c} \\
z_{u}
\end{array}\right], \\
{\left[\begin{array}{c}
\dot{z}_{c} \\
\dot{z}_{u}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A_{1}+b_{1} \hat{f}_{1} & A_{3}+b_{1} \hat{f}_{2} \\
0 & A_{2}
\end{array}\right]}_{\hat{A}+\hat{b} \hat{f}}\left[\begin{array}{c}
z_{c} \\
z_{u}
\end{array}\right] .}
\end{gathered}
$$

The eigenvalues of $\hat{A}+\hat{b} \hat{f}$ are the roots of the polynomial

$$
\begin{aligned}
\operatorname{det}[s l-(\hat{A}+\hat{b} \hat{f})] & =\operatorname{det}\left[\begin{array}{cc}
s l-\left(A_{1}+b_{1} \hat{f}_{1}\right) & -\left(A_{3}+b_{1} \hat{f}_{2}\right) \\
0 & s l-A_{2}
\end{array}\right] \\
& =\operatorname{det}\left[s l-\left(A_{1}+b_{1} \hat{f}_{1}\right)\right] \operatorname{det}\left[s l-A_{2}\right]
\end{aligned}
$$

As seen f has no effect on the uncontrollable part of eigenvalues that is, the eigenvalues of A_{2} are fixed and independent of f.

Single Input Systems (cont.)

How to make the controllable companion transformation

The following procedure constructs a transformation matrix that coordinate transforms an arbitrary controllable system to the controllable companion form.
1)

$$
L=\left[\begin{array}{llll}
b & A b & \cdots & A^{n-1} b
\end{array}\right]
$$

2) take the last row of L^{-1} and call it q^{T}
3) Construct

$$
T^{-1}=\left[\begin{array}{c}
q^{T} \\
q^{T} A \\
\vdots \\
q^{T} A^{n-1}
\end{array}\right]
$$

Single Input Systems (cont.)

Proceeding, let a state feedback \hat{f} assign the eigenvalues of $\hat{A}+\hat{b} \hat{f}$ to the desired locations. The last step is to find the solution

$$
f=\hat{f} T^{-1}
$$

which is valid in the original coordinates, because from

$$
A+b f=T(\hat{A}+\hat{b} \hat{f}) T^{-1}
$$

$\hat{A}+\hat{b} \hat{f}$ and $A+b f$ have the same eigenvalues.

Multi Input Systems

Consider a multi input system,

$$
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}
$$

In some cases (which cases?) we can reduce this system to a single input system by introducing a new signal

$$
u=g v \quad g \in \mathbb{R}^{m}
$$

and retain controllability of the system from the new input v.

Multi Input Systems (cont.)

Then we have the new system which has a single input,

$$
\dot{x}=A x+B g v:=A x+b v .
$$

We now design a state feedback for this system. In general, we may have to use coordinate transformation of $z=T x$.

$$
\begin{aligned}
\dot{z} & =T^{-1} A T z+T^{-1} b v:=\hat{A} z+\hat{b} v ; \quad v=\hat{f} z \\
& =(\hat{A}+\hat{b} \hat{f}) z
\end{aligned}
$$

Consequently, since

$$
v=\hat{f} z=\hat{f} T^{-1} x=f x
$$

we have

$$
\begin{equation*}
\dot{x}=A x+b v=(A+b \underbrace{\hat{f} T^{-1}}_{f}) x=(A+B \underbrace{g \hat{f} T^{-1}}_{F}) x . \tag{1}
\end{equation*}
$$

Multi Input Systems (cont.)

Remark

This approach of using controllable companion form can be numerically unreliable, because the controllable companion form transformation is sometimes numerically ill conditioned.

Solution Using Sylvester's Equation

An attractive alternative method of solution is as follows.

Consider the equation
$X^{-1}(A+B F) X=\tilde{A} ; \quad \tilde{A}$ has the desired set of eigenvalues.
Then,

$$
\begin{aligned}
A X+B F X & =X \tilde{A} \\
A X-X \tilde{A} & =-B F X
\end{aligned}
$$

This leads the following matrix equations:

$$
\begin{align*}
A X-X \tilde{A} & =-B G ; \quad \text { given } A \text { and } \tilde{A}, \text { a choice of } G \tag{2}\\
F & =G X^{-1} \tag{3}
\end{align*}
$$

Solution Using Sylvester's Equation (cont.)

The questions that arise are:

1) Does the solution of Eq. (2) always exist?
(perhaps, unique?)
2) Is the solution X invertible?
3) How to choose G ?

Solution Using Sylvester's Equation (cont.)

Lemma
If (A, B) is controllable, and (G, \tilde{A}) is observable, then the unique solution X of eq. (2) is "almost always" nonsingular.

Based on this we develop the procedure: Procedure:

1) Pick \tilde{A} such that it has the desired eigenvalues.
2) Pick G with G, \tilde{A} and solve eq. (2). If X is singular, choose a different G and repeat the process.
3) If X is nonsingular, solve for F from eq. (3).
