
ECEN 605

LINEAR SYSTEMS

Lecture 14

State Feedback and Observers II
– Observer Theory
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Output Feedback Stabilization
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Figure 1: A Closed Loop Control System
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Output Feedback Stabilization (cont.)

Consider the closed loop control system with the plant and
controller described in their respective state space representations.

Plant : ẋ = Ax + Bu, x − n vector

y = Cx

Controller : ẋc = Acxc + Bcuc , xc − nc vector

yc = Ccxc + Dcuc
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Output Feedback Stabilization (cont.)

Then,

Feedback Connection : uc = y

u = yc

and

Closed Loop System :

[
ẋ
ẋc

]

=

[
A+ BDcC BCc

BcC Ac

]

︸ ︷︷ ︸

Acl∈R
(n+nc )×(n+nc )

[
x
xc

]

.
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Output Feedback Stabilization (cont.)

Is the closed loop system stable?

Consider the stability of

ẋ = Ax + Bu

y = Cx .

Definition

◮ Internal Stability: When u(t) = 0, x(t) −→ 0.

◮ External Stability: When u(t) = 0, y(t) −→ 0.
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Output Feedback Stabilization (cont.)

Internal stability is stronger than and implies external stability,
since if x(t) → 0, then clearly y(t) = Cx(t) → 0. The converse is
not true in general. However, if the system is controllable and
observable, then external stability implies internal stability.

Remark

◮ Checking Internal Stability: λ(A) ⊂ LHP.

◮ Checking External Stability: Poles of G (s) in LHP.
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Output Feedback Stabilization (cont.)

Now let us get back to the closed loop system. What we really
want is the internal stability of the closed loop system.

Remark
A closed loop system is internally stable iff all eigenvalues of Acl lie
in the open LHP.
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Output Feedback Stabilization (cont.)

Basic Result

If (A,B ,C ) is controllable and observable, then a controller of a
high enough order nc can always be found to assign the
eigenvalues of Acl arbitrarily.

In particular, a controller of order n − 1 always suffices for a plant
of order n.

Plant: ẋ = Ax + Bu
y = Cx

Controller: ẋc = Acxc + Bcy
u = Ccxc + Dcy
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Output Feedback Stabilization (cont.)

The closed loop system becomes

[
ẋ
ẋc

]

=

[
A+ BDcC BCc

BcC Ac

]

︸ ︷︷ ︸

Acl

[
x
xc

]

Problem : Given (A,B ,C ) find (Ac ,Bc ,Dc ,Dc) so that Acl is
stable, i.e., λ(Acl) ⊂ C

−.

Theorem
There exists a stabilizing controller if and only if (A,B) is
stabilizable and (C ,A) is detectable.
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State Feedback

A quick recap of the state feedback results:

Theorem
Pole Placement Theorem: Wonham, 1967

If (A,B) is controllable, there exists F so that λ(A+ BF ) is equal
to any set of n prescribed eigenvalues (in conjugate pairs).
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State Feedback (cont.)
Proof

a) It is true for B = b (single input case). Let

L =
[
b Ab An−1b

]

and let q′ be the last row of L−1 and

Q =








q′

q′A
...

q′An−1







.

Take T = Q−1. Then

Â = T−1AT =










0 1 0 · · · 0
0 0 1 0
...

...
0 1

−a0 −a1 −a2 · · · −an−1










b̂n = T−1b =










0
0
...
0
1










.
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State Feedback (cont.)

Let

f̂ =
[

f̂1 f̂2 · · · f̂n
]
.

Then we have

Â+ b̂f̂ =










0 1 0 · · · 0
0 0 1 0
...

...
0 1

−a0 + f̂1 −a1 + f̂2 −a2 + f̂3 · · · −an−1 + f̂n










.

|sI − Â− b̂f̂ | = sn + (an−1 − f̂n)s
n−1 + · · ·+ (a0 − f̂1)

= sn + adn−1s
n−1 + adn−2s

n−2 + · · ·+ ad0 (arbitrary).

Then f̂ T−1 = f gives A+ bf the same characteristic polynomial.
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State Feedback (cont.)

b) The multi input case can be proved by reducing to the single
input case via the following lemma. The proof of this lemma is
omitted.

Lemma
If (A,B) is controllable and g 6= 0 is any vector, then there exists
F0 such that (A+ BF0,Bg) is controllable.
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State Feedback (cont.)

In practice, an arbitrary F0 will “almost always” work! Let

A0 = A+ BF0, b0 = Bg .

Then find f0 so that A0 + b0f0 has the desired eigenvalues. Then

F = F0 + gf0

is the state feedback so that A+ BF has the desired eigenvalues.
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Full Order Observers

To proceed with our construction of the feedback controller we
need to bring in the concept of an “observer”.

Problem: Design a device which will “measure” x (n
dimensional state vector) from external measurements y (m
vector) and u (r vector).
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Full Order Observers (cont.)
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Figure 2: A Feedback with State Estimator
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Full Order Observers (cont.)

System: ẋ = Ax + Bu
y = Cx

Observer: ż = Mz + Ly + Gu
x̂ = Pz + Qy + Ru

Requirement Design (M, L,G ,P ,Q,R) so that

lim
t→∞

(x̂(t)− x(t)) = 0 ∀ x(0), z(0), u(t).

It will turn out that this will be possible if (C ,A) is detectable.
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Full Order Observers (cont.)

Let P = In, Q = R = 0, then we have

x̂ = z .

Let

e = z − x .

Then

ė = ż − ẋ

= Mz + Ly + Gu
︸ ︷︷ ︸

ż

− (Ax + Bu)
︸ ︷︷ ︸

ẋ

= Mz + LCx + Gu − Ax − Bu

= Me + (M − A+ LC )x + (G − B)u.
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Full Order Observers (cont.)

Therefore, if we set

G = B

M = A− LC

so that

ė = Me = (A− LC )e

and the influence of x and u on e are cancelled. For convergence
of e(t) → 0, we need that

λ(A− LC ) ⊂ C
−.

If (C ,A) observable, we can find L to place λ(A− LC ) arbitrarily
by the pole placement theorem.
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Full Order Observers (cont.)

Remark
The eigenvalues of (A− LC ) is identical to the eigenvalues of
(AT − CTLT ). (C ,A) is observable iff (AT ,CT ) is controllable.

The observer designed above is sometimes called an identity
observer because each component of z estimates the corresponding
component of x .
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Minimal Order Observers

Since some of the n system states are measurable in the form of y ,
it should be possible to estimate only the remaining (n −m)
“unmeasurable”states. Without loss of generality (change
coordinates if necessary), let

y = x1

the first m components of the state vector and let x2 be the
remaining n −m components which are not measurable.
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Minimal Order Observers (cont.)

Then the system equations are

[
ẋ1
ẋ2

]

=

[
A11 A12

A21 A22

] [
x1
x2

]

+

[
B1

B2

]

u

y = x1 =
[
I 0

]
[
x1
x2

]

or since x2 is the state to be estimated, write

ẋ2 = A22x2 + (B2u + A21y) (1)

A12x2 = ẏ − A11y − B1u. (2)
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Minimal Order Observers (cont.)

Think of (1) as the dynamic equation for x2 and (2) as the
measurement equation for x2.

Lemma
If (C ,A) is observable then so is (A12,A22).

Now we apply the full order observer formulas

ż = (A− LC )z + Ly + Bu,

to x2 and we have

ż2 = (A22 − L2A12)z2 + L2(ẏ − A11y − B1u) + (B2u + A21y) (3)

and the error will satisfy

e2 = z2 − x2

ė2 = (A22 − L2A12)e2.
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Minimal Order Observers (cont.)

The same as the case of full order observer, for e(t) → 0, it is
necessary that λ(A22 − L2A12) ⊂ C

− by a choice of L2. Now let us
eliminate ẏ to write the reduced order observer equation. Write

ż2 − L2 ẏ = (A22 − L2A12)z2 + L2(−A11y − B1u) + (B2u + B21y)

= (A22 − L2A12)(z2 − L2y) + (A22 − L2A12)L2y − L2A11y − L2B2u + A21y

= (A22 − L2A12)(z2 − L2y) + [(A22 − L2A12)L2 − L2A11 + A21] y + (B2 − L2B1)u.

Let

w = z2 − L2y .

Then eq. (3) is rewritten as follows:

ẇ = (A22 − L2A12)w + [(A22 − L2A12)L2 − L2A11 + A21] y + (B2 − L2B1)u

z2 = w + L2y .


