ECEN 605
 LINEAR SYSTEMS

Lecture 14
State Feedback and Observers II

- Observer Theory

Output Feedback Stabilization

Figure 1: A Closed Loop Control System

Output Feedback Stabilization (cont.)

Consider the closed loop control system with the plant and controller described in their respective state space representations.

$$
\begin{aligned}
\text { Plant : } & \dot{x}=A x+B u, \quad x-n \text { vector } \\
& y=C x \\
\text { Controller : } \quad & \dot{x}_{c}=A_{c} x_{c}+B_{c} u_{c}, \quad x_{c}-n_{c} \text { vector } \\
& y_{c}=C_{c} x_{c}+D_{c} u_{c}
\end{aligned}
$$

Output Feedback Stabilization (cont.)

Then,

$$
\begin{array}{ll}
\text { Feedback Connection : } & u_{c}=y \\
& u=y_{c}
\end{array}
$$

and
Closed Loop System : $\left[\begin{array}{c}\dot{x} \\ \dot{x}_{c}\end{array}\right]=\underbrace{\left[\begin{array}{cc}A+B D_{c} C & B C_{c} \\ B_{c} C & A_{c}\end{array}\right]}_{A_{c l} \in \mathbb{R}^{\left(n+n_{c}\right) \times\left(n+n_{c}\right)}}\left[\begin{array}{c}x \\ x_{c}\end{array}\right]$.

Output Feedback Stabilization (cont.)

Is the closed loop system stable?
Consider the stability of

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x .
\end{aligned}
$$

Definition

- Internal Stability: When $u(t)=0, x(t) \longrightarrow 0$.
- External Stability: When $u(t)=0, y(t) \longrightarrow 0$.

Output Feedback Stabilization (cont.)

Internal stability is stronger than and implies external stability, since if $x(t) \rightarrow 0$, then clearly $y(t)=C x(t) \rightarrow 0$. The converse is not true in general. However, if the system is controllable and observable, then external stability implies internal stability.

Remark

- Checking Internal Stability: $\lambda(A) \subset$ LHP.
- Checking External Stability: Poles of G(s) in LHP.

Output Feedback Stabilization (cont.)

Now let us get back to the closed loop system. What we really want is the internal stability of the closed loop system.

Remark
A closed loop system is internally stable iff all eigenvalues of $A_{c l}$ lie in the open LHP.

Output Feedback Stabilization (cont.)

Basic Result

If (A, B, C) is controllable and observable, then a controller of a high enough order n_{c} can always be found to assign the eigenvalues of $A_{c l}$ arbitrarily.

In particular, a controller of order $n-1$ always suffices for a plant of order n.

Plant:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

Controller: $\quad \dot{x}_{c}=A_{c} x_{c}+B_{c} y$
$u=C_{c} x_{c}+D_{c} y$

Output Feedback Stabilization (cont.)

The closed loop system becomes

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{x}_{c}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A+B D_{c} C & B C_{c} \\
B_{c} C & A_{c}
\end{array}\right]}_{A_{c 1}}\left[\begin{array}{c}
x \\
x_{c}
\end{array}\right]
$$

Problem : Given (A, B, C) find $\left(A_{c}, B_{c}, D_{c}, D_{c}\right)$ so that $A_{c l}$ is stable, i.e., $\lambda\left(A_{c l}\right) \subset \mathbb{C}^{-}$.

Theorem
There exists a stabilizing controller if and only if (A, B) is stabilizable and (C, A) is detectable.

State Feedback

A quick recap of the state feedback results:
Theorem
Pole Placement Theorem: Wonham, 1967
If (A, B) is controllable, there exists F so that $\lambda(A+B F)$ is equal to any set of n prescribed eigenvalues (in conjugate pairs).

State Feedback (cont.)

Proof
a) It is true for $B=b$ (single input case). Let

$$
L=\left[\begin{array}{lll}
b & A b & A^{n-1} b
\end{array}\right]
$$

and let q^{\prime} be the last row of L^{-1} and

$$
Q=\left[\begin{array}{c}
q^{\prime} \\
q^{\prime} A \\
\vdots \\
q^{\prime} A^{n-1}
\end{array}\right]
$$

Take $T=Q^{-1}$. Then
$\hat{A}=T^{-1} A T=\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & & 0 \\ \vdots & & & & \vdots \\ 0 & & & & 1 \\ -a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}\end{array}\right]$
$\hat{b}_{n}=T^{-1} b=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 1\end{array}\right]$.

State Feedback (cont.)

Let

$$
\hat{f}=\left[\begin{array}{llll}
\hat{f}_{1} & \hat{f}_{2} & \cdots & \hat{f}_{n}
\end{array}\right] .
$$

Then we have

$$
\begin{aligned}
& \hat{A}+\hat{b} \hat{f}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & & & \vdots \\
0 & & & & 1 \\
-a_{0}+\hat{f}_{1} & -a_{1}+\hat{f}_{2} & -a_{2}+\hat{f}_{3} & \cdots & -a_{n-1}+\hat{f}_{n}
\end{array}\right] . \\
& |s|-\hat{A}-\hat{b} \hat{f} \mid=s^{n}+\left(a_{n-1}-\hat{f}_{n}\right) s^{n-1}+\cdots+\left(a_{0}-\hat{f}_{1}\right) \\
& =s^{n}+a_{n-1}^{d} s^{n-1}+a_{n-2}^{d} s^{n-2}+\cdots+a_{0}^{d} \quad \text { (arbitrary). }
\end{aligned}
$$

Then $\hat{f} T^{-1}=f$ gives $A+b f$ the same characteristic polynomial.

State Feedback (cont.)

b) The multi input case can be proved by reducing to the single input case via the following lemma. The proof of this lemma is omitted.

Lemma
If (A, B) is controllable and $g \neq 0$ is any vector, then there exists F_{0} such that $\left(A+B F_{0}, B g\right)$ is controllable.

State Feedback (cont.)

In practice, an arbitrary F_{0} will "almost always" work! Let

$$
A_{0}=A+B F_{0}, \quad b_{0}=B g
$$

Then find f_{0} so that $A_{0}+b_{0} f_{0}$ has the desired eigenvalues. Then

$$
F=F_{0}+g f_{0}
$$

is the state feedback so that $A+B F$ has the desired eigenvalues.

Full Order Observers

To proceed with our construction of the feedback controller we need to bring in the concept of an "observer".

Problem: Design a device which will "measure" $x(n$ dimensional state vector) from external measurements y (m vector) and u (r vector).

Full Order Observers (cont.)

Figure 2: A Feedback with State Estimator

Full Order Observers (cont.)

System: $\quad \dot{x}=A x+B u$

$$
y=C x
$$

Observer: $\quad \dot{z}=M z+L y+G u$

$$
\hat{x}=P z+Q y+R u
$$

Requirement Design (M, L, G, P, Q, R) so that

$$
\lim _{t \rightarrow \infty}(\hat{x}(t)-x(t))=0 \quad \forall x(0), z(0), u(t)
$$

It will turn out that this will be possible if (C, A) is detectable.

Full Order Observers (cont.)

Let $P=I_{n}, Q=R=0$, then we have

$$
\hat{x}=z
$$

Let

$$
e=z-x
$$

Then

$$
\begin{aligned}
\dot{e} & =\dot{z}-\dot{x} \\
& =\underbrace{M z+L y+G u}_{\dot{z}}-\underbrace{(A x+B u)}_{\dot{\dot{x}}} \\
& =M z+L C x+G u-A x-B u \\
& =M e+(M-A+L C) x+(G-B) u .
\end{aligned}
$$

Full Order Observers (cont.)

Therefore, if we set

$$
\begin{aligned}
G & =B \\
M & =A-L C
\end{aligned}
$$

so that

$$
\dot{e}=M e=(A-L C) e
$$

and the influence of x and u on e are cancelled. For convergence of $e(t) \rightarrow 0$, we need that

$$
\lambda(A-L C) \subset \mathbb{C}^{-}
$$

If (C, A) observable, we can find L to place $\lambda(A-L C)$ arbitrarily by the pole placement theorem.

Full Order Observers (cont.)

Remark

The eigenvalues of $(A-L C)$ is identical to the eigenvalues of $\left(A^{T}-C^{T} L^{T}\right) .(C, A)$ is observable iff $\left(A^{T}, C^{T}\right)$ is controllable.

The observer designed above is sometimes called an identity observer because each component of z estimates the corresponding component of x.

Minimal Order Observers

Since some of the n system states are measurable in the form of y, it should be possible to estimate only the remaining ($n-m$) "unmeasurable" states. Without loss of generality (change coordinates if necessary), let

$$
y=x_{1}
$$

the first m components of the state vector and let x_{2} be the remaining $n-m$ components which are not measurable.

Minimal Order Observers (cont.)

Then the system equations are

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u \\
y & =x_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

or since x_{2} is the state to be estimated, write

$$
\begin{align*}
\dot{x}_{2} & =A_{22} x_{2}+\left(B_{2} u+A_{21} y\right) \tag{1}\\
A_{12} x_{2} & =\dot{y}-A_{11} y-B_{1} u . \tag{2}
\end{align*}
$$

Minimal Order Observers (cont.)

Think of (1) as the dynamic equation for x_{2} and (2) as the measurement equation for x_{2}.

Lemma
If (C, A) is observable then so is $\left(A_{12}, A_{22}\right)$.

Now we apply the full order observer formulas

$$
\dot{z}=(A-L C) z+L y+B u
$$

to x_{2} and we have

$$
\begin{equation*}
\dot{z}_{2}=\left(A_{22}-L_{2} A_{12}\right) z_{2}+L_{2}\left(\dot{y}-A_{11} y-B_{1} u\right)+\left(B_{2} u+A_{21} y\right) \tag{3}
\end{equation*}
$$

and the error will satisfy

$$
\begin{aligned}
& e_{2}=z_{2}-x_{2} \\
& \dot{e}_{2}=\left(A_{22}-L_{2} A_{12}\right) e_{2} .
\end{aligned}
$$

Minimal Order Observers (cont.)

The same as the case of full order observer, for $e(t) \rightarrow 0$, it is necessary that $\lambda\left(A_{22}-L_{2} A_{12}\right) \subset \mathbb{C}^{-}$by a choice of L_{2}. Now let us eliminate \dot{y} to write the reduced order observer equation. Write

$$
\begin{aligned}
\dot{z}_{2}-L_{2} \dot{y} & =\left(A_{22}-L_{2} A_{12}\right) z_{2}+L_{2}\left(-A_{11} y-B_{1} u\right)+\left(B_{2} u+B_{21} y\right) \\
& =\left(A_{22}-L_{2} A_{12}\right)\left(z_{2}-L_{2} y\right)+\left(A_{22}-L_{2} A_{12}\right) L_{2} y-L_{2} A_{11} y-L_{2} B_{2} u+A_{21} y \\
& =\left(A_{22}-L_{2} A_{12}\right)\left(z_{2}-L_{2} y\right)+\left[\left(A_{22}-L_{2} A_{12}\right) L_{2}-L_{2} A_{11}+A_{21}\right] y+\left(B_{2}-L_{2} B_{1}\right) u .
\end{aligned}
$$

Let

$$
w=z_{2}-L_{2} y .
$$

Then eq. (3) is rewritten as follows:
$\dot{w}=\left(A_{22}-L_{2} A_{12}\right) w+\left[\left(A_{22}-L_{2} A_{12}\right) L_{2}-L_{2} A_{11}+A_{21}\right] y+\left(B_{2}-L_{2} B_{1}\right) u$
$z_{2}=w+L_{2} y$.

