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Lecture 15

State Feedback and Observers III
– Observer Based Feedback
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Closed-lop Eigenvalues

Suppose we calculate a state feedback u = Fx to place the
eigenvalues of A+ BF . Now we design an observer with
eigenvalues of M chosen by us. From the observer we obtain x̂ .
What if we close the loop with

u = F x̂

instead of u = Fx? What are the closed loop eigenvalues? This
answer is given by the so-called Separation Principle.
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Closed-lop Eigenvalues (cont.)

Theorem
The closed loop system under observed state feedback has

eigenvalues

λ(A+ BF ) ∪ λ(M).
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Closed-lop Eigenvalues (cont.)

(Proof of Separation Principle) Consider the general observer

ż = Mz + Ly + Gu.

Let

z − Tx = e.

Then

ė = Me + (MT − TA+ LC )x + (G − TB)u.

Therefore to make z estimate Tx , we want e(t) → 0. Thus, set

MT − TA+ LC = 0 (1)

G − TB = 0 (2)

and

λ(M) ⊂ C
−.
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Closed-lop Eigenvalues (cont.)
To estimate Fx we use the observer output

t := F x̂ = S1z + S2y

= (S1T + S2C )x + S1e

and set
S1T + S2C = F . (3)

The loop is closed by setting u = t (instead of u = Fx). Now look
at the closed loop equations:

ẋ = Ax + Bu

ż = Mz + Ly + Gu

u = S1z + S2y .

We have
[
ẋ

ż

]

=

[
A+ BS2C BS1
LC + GS2C M + GS1

]

︸ ︷︷ ︸

Acl

[
x

z

]

. (4)
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Closed-lop Eigenvalues (cont.)

Now make the coordinate transformation
[
x

z

]

=

[
I 0
T I

] [
x

e

]

[
x

e

]

=

[
I 0

−T I

] [
x

z

]

.

Then using (1) - (4), we have

[
I 0

−T I

]

Acl

[
I 0
T I

]

=

[
A+ BF BS1

0 M

]

Therefore,

λ(Acl) = λ(A+ BF ) ∪ λ(M).
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Closed-lop Eigenvalues (cont.)

The transfer function of the observer as controller is derived as
follows:

ż = Mz + Ly + Gu

t = S1z + S2y

ż = (M + GS1)z + (L+ GS2)y

Therefore,

t(s) =
[
S1(sI −M − GS1)

−1 (L+ GS2) + S2
]

︸ ︷︷ ︸

C(s)

y(s)
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Closed-lop Eigenvalues (cont.)

Example

Consider the following single-input two-output system:

ẋ =





0 1 0
0 0 0
1 0 0



 x +





1
0
1



 u

y =

[
1 0 0
0 0 1

]

x

Design a full order observer with eigenvalues at −1, −2, −3 to
estimate the state x .
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Closed-lop Eigenvalues (cont.)

Solution

A− LC =





0 1 0
0 0 0
1 0 0



−





l11 l12
l21 l22
l31 l32





[
1 0 0
0 0 1

]

=





−l11 1 −l12
−l21 0 −l22
1− l31 0 −l32





One easy choice is:

l31 = 1, l32 = 3, s2 + l11s + l21 = s2 + 3s + 2

Thus, we have

l11 = 3, l21 = 2, l12, l22 arbitrary, say, 0.
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Closed-lop Eigenvalues (cont.)

Then

L =





3 0
2 0
1 3





and

A− LC =





−3 1 0
−2 0 0
0 0 −3





Therefore, the observer is

ż =





−3 1 0
−2 0 0
0 0 −3



 z +





3 0
2 0
1 3



 y +





1
0
1



 u

z = x̂ is the estimate of x .
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Closed-lop Eigenvalues (cont.)

Example

For the system given in the previous example, design a minimal
order observer with eigenvalue at −3.
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Closed-lop Eigenvalues (cont.)
Solution

y =

[
y1
y2

]

=

[
x1
x3

]

:=

[
x̄1
x̄2

]

Now

˙̄x1 = ẋ1 = x2 + u = x̄3 + u

˙̄x2 = ẋ3 = x1 + u = x̄1 + u

˙̄x3 = ẋ2 = 0

⇓





˙̄x1
˙̄x2
˙̄x3



 =









0 0
... 1

1 0
... 0

· · · · · · · · ·

0 0
... 0













x̄1
x̄2
x̄3



+







1
1
· · ·
0






u

[
y1
y2

]

=

[
x̄1
x̄2

]

=




1 0

... 0

0 1
... 0









x̄1
x̄2
x̄3




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Closed-lop Eigenvalues (cont.)
Thus,

A11 =

[
0 0
1 0

]

A12 =

[
1
0

]

B1 =

[
1
1

]

A21 =
[
0 0

]
A22 = 0 B2 = 0

The observer is:

ẇ2 = (A22 − L2A12)w2 + [(A22 − L2A12)L2 − L2A11 + A21]y + (B2 − L2B1)u

ˆ̄x3 = w2 − L2y .

Since the eigenvalue of A22 − L2A12 should be −3, we have

0−
[
l21 l22

]
[
1
0

]

:= −3

Here, we choose l21 = 3 and l22 = 0. Therefore,

ẇ2 = −3w2 − 9y1 − 3u

ˆ̄x3 = w2 + 3y1 = x̂2.
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Closed-lop Eigenvalues (cont.)

Example

A =

[
0 1
0 0

]

b =

[
0
1

]

c =
[
1 1

]

i) Design a minimal order state estimator with its pole at −1.

ẋ = Ax + bu y = cx

We need to pick T so that

cV =
[
1 0

]
.

We choose

V =

[
1 1
0 −1

]

and V−1 =

[
1 1
0 −1

]
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Closed-lop Eigenvalues (cont.)

So, we have new coordinate system with V as follows:

˙̄x = Āx̄ + b̄u y = c̄ x̄

where

Ā = V−1AV =







0
... −1

· · · · · ·

0
... 0







b̄ = V−1B =





1
· · ·
−1





c̄ = cV =
[

1
... 0

]

.

The minimal order state estimator equation is

ẇ = (Ā22−L2Ā12)w+
[
(Ā22 − L2Ā12)L2 + L2Ā11 + Ā21

]
y+(b̄2−L2b̄1)u
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Closed-lop Eigenvalues (cont.)

Let us select L2 such that

λ(Ā22 − L2Ā12) = −1.

Then we have L2 = −1. Therefore, the minimal order state
estimator becomes

ẇ = −w + y

ˆ̄x2 = w + L2y .
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Closed-lop Eigenvalues (cont.)

ii) Combine the state feedback and the observer into an output
feedback controllor, and give the state equations as well as the
transfer function of this controller. Choose a state feedback to
assign poles of the original system at all −1.
Now we need to consider the coordinate transformation.

x̂ = V ˆ̄x , y = c̄ x̄ , w = ˆ̄x2 − L2y

[
y

w

]

=

[
1 0

−L2 1

] [
x̄1
ˆ̄x2

]

︸ ︷︷ ︸

ˆ̄x

.

Thus,

x̂ = V ˆ̄x = V

[
1 0
L2 1

] [
y

w

]

=

[
1 0
1 −1

] [
y

w

]
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Closed-lop Eigenvalues (cont.)

From the control law, f = [f1 f2] = [−1 − 2] which assigns the
original poles at −1, we have

u = F x̂ =
[
−1 −2

]
[
1 0
1 −1

] [
y

w

]

= −3y + 2w .

Therefore, the controller state equations are:

ẇ = −w + y

u = F x̂ = 2w − 3y
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Closed-lop Eigenvalues (cont.)

and the controller transfer function is:

G (s) = c(sI − A)−1b + d

= 2(s + 1)−11 + (−3)

=
2

s + 1
− 3

=
−3s − 1

s + 1
.
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Closed-lop Eigenvalues (cont.)

Example

Consider a system

A =





1 0 0
0 0 0
0 1 0



 B =





1 0
0 −1
1 1



 C =

[
1 0 0
0 0 1

]

.

Let a full order observer be

ż = Mz + Ly + Gu

x̂ = Pz + Qy .

We choose the observer poles

Λo = {−0.1,−0.2,−0.3} ,
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Closed-lop Eigenvalues (cont.)

then from M = A− LC , we have

L =





1.1998 −0.0008
−0.0148 0.0301
−0.0644 0.4002





and

M = A− LC =





−0.1998 0 0.0008
0.0148 0 −0.0301
0.0644 1 −0.4002



 .

Thus, the observer equations are (seting G = B , P = I ,
Q = R = 0)

ż =





−0.1998 0 0.0008
0.0148 0 −0.0301
0.0644 1 −0.4002



 z +





1.1998 −0.0008
−0.0148 0.0301
−0.0644 0.4002



 y +





1 0
0 −1
1 1



 u

x̂ =





1 0 0
0 1 0
0 0 1



 z. (5)
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Closed-lop Eigenvalues (cont.)

The first figure in Figure 1 shows the plots of the states x(t) and
the estimated states x̂(t). This shows all three states are estimated
correctly. To close look at the convergence, we plot the error state

e(t) = x̂(t)− x(t)

in the second figure of Figure 1 which shows the convergence. The
initial conditions of these plot were:

x(0) = [0 − 1 − 2] and z(0) = [−5 0 5].
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Closed-lop Eigenvalues (cont.)

-30

-20

-10

0

10

0 2 4 6 8 10 12 14 16 18 20

sec

st
at

es
 x

 a
nd

 z

-5

0

5

10

0 2 4 6 8 10 12 14 16 18 20

sec

er
ro

r

Figure 1: x(t), x̂(t), and e(t) (x(0) = [0 − 1 − 2])
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Closed-lop Eigenvalues (cont.)

Now let us choose a different initial conditions: we choose

x(0) = [1 2 3]

while maintaining z(0) the same. The state x(t) and x̂(t) are
shown in Figure 2. The error e(t) is also shown.
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Closed-lop Eigenvalues (cont.)
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Figure 2: x(t), x̂(t), and e(t) (Problem 3: x(0) = [1 2 3])
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Closed-lop Eigenvalues (cont.)

This shows that the estimated states do not converge to the true
states. Obviously the full order observer we designed does not
function properly. This interesting fact can be explained in terms
of the robustness of the observer.


