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Introduction

In engineering systems one often needs to be able to set variables
such as temperature, velocity, position and flow rate, to prescribed
or desired values despite the presence of unknown disturbances and
large uncertainties. It is the task of a control system to provide
this capability.

In biological systems there exist built in control systems that
regulate for instance, body temperature, blood pressure and blood
glucose levels despite varying external weather, exercise level and
sugar intake. In economic systems the Federal Reserve tries to
maintain buying power despite inflationary tendencies.

A common structural characteristic of all the above systems is the
presence of feedback, which allows corrective action to be taken on
the error when deviations from desired values occur.
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Black’s Amplifier (Reliable Gains Using
Reliable and Unreliable Components)

Consider the problem of designing an amplifier which is to provide
an accurate gain of say A = 100, using unreliable components,
which may vary by as much as, say 50%.

u
A = 100

y

Figure 1: An open loop system

With an input u = 1, y = Au may vary between 150 and 50, in
Figure 1, which is an open loop system.
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Black’s Amplifier (Reliable Gains Using
Reliable and Unreliable Components) (cont.)

Now consider the feedback system below,

u

+ A
y

−

β

Figure 2: A feedback system

in Figure 2 where A is made with the same unreliable components
as before but with the nominal value A0 = 10, 000, and β = 0.01.
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Black’s Amplifier (Reliable Gains Using
Reliable and Unreliable Components) (cont.)

It is easy to see that

y =
A0

1 + A0 β
u (1a)

=
10, 000

1 + 10, 000× 0.01
=

10, 000

101
= 99.001 ∼= 100. (1b)

Moreover under ±50% variation in A0, we have

y =
15, 000

1 + 15, 000× 0.01
=

15, 000

151
= 99, (2)

and

y =
5, 000

1 + 5, 000× 0.01
=

5, 000

51
= 98. (3)
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Black’s Amplifier (Reliable Gains Using
Reliable and Unreliable Components) (cont.)

We see from (1b), (2) and (3) that despite 50% variation in A, the
variation in y is only about 1% ! Compared to the 50% variation
in y in the open loop case (Figure 1) this is a very significant
improvement.
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Black’s Amplifier (Reliable Gains Using
Reliable and Unreliable Components) (cont.)

To complete the above analysis we note that the gain of the
feedback system, denoted Af , is given by,

Af =
A

1 + β A
(4)

=
1

1

A
+ β

so that as A↗∞, Af →
1

β
. By setting β = 0.01 =

1

100
, we

achieve Af ≈ 100.
We note that the above robustness result with respect to A was
achieved by using high gain and also that there is no robustness
of Af with respect to β.
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Unity Closed Loop Gain

As another application consider the feedback system

u

+
β A

y

−

Figure 3: A unity feedback system

where a unity gain between u and y is to be achieved.



9/19

Unity Closed Loop Gain (cont.)

Since

y =
Aβ

1 + Aβ︸ ︷︷ ︸
Af

u (5)

one achieves unity gain by letting β ↗∞ so that

lim
β↗∞

= Af = lim
β↗∞

1

1 +
1

Aβ

= 1, (6)

independent of A, or robustly with respect to A.
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Unity Closed Loop Gain (cont.)

The reader can convince oneself that the system in Figure 3 is far
more robust than the open loop solution, where

u 1

A0
A

y

Figure 4: A unity gain open loop system

and A0 is the nominal value of A which is subject to say 50%
variation.
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Robust Linearization

In many instances a physical element may have a nonlinear
characteristic f , y = f (u). Of may

u
f

y

Figure 5: A nonlinear relationship

be desirable, for calibration or measurement purposes to have a
linear input output relationship.
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Robust Linearization (cont.)

This could be achieved by the high-gain feedback system

v

+
K

u
f (u)

y

L

−

Figure 6: A high gain feedback system

since

v = L y +
1

K
f −1(y) (7)

so that as K ↗∞, v ↗ L y .
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Robust Linearization (cont.)

Example

f (u) = 10 u3 = y . (8)

Choose L = 10, K = 100 so that in Figure 6

v = 10 y +
1

100
3

√
y

10
. (9)

If y varies between 0 and 10 we have v varying between 0 and 100
linearly with y with an error less than 1%.
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Feedback Control Systems

A typical feedback control system is represented by the block
diagram below; representing a unity feedback system:

r

+

Reference

e

Tracking
error

Controller
u

Control
variable

Plant

d Disturbance

y Output to be
controlled to
track r−

Figure 7: Unity Feedback Control System



15/19

Feedback Control Systems (cont.)

The main features of Figure 7 are:

Plant
This is the system (such as a DC Motor) whose
output y (say, speed of output shaft) is to be
controlled by manipulating the control input u (say,
armature voltage), so that y equals the reference r
(desired speed).

Controller
The controller input is the error e = r − y , which is
the signal processed by it to determine the control
signal u in such a way that y is driven into
correspondence with r , despite the presence of the
disturbance d (load torque).
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Feedback Control Systems (cont.)

Assuming all systems are linear and time-invariant and using
transfer function matrix representations we have

Y (s) = P(s)U(s) + Q(s)D(s) (10a)

U(s) = C (s)E (s) (10b)

E (s) = R(s)− Y (s), (10c)

where P(s) (Q(s)) is the transfer function between y and u (y and
d). So,

E (s) = [I + P(s)C (s)]−1︸ ︷︷ ︸
A(s)

R(s) + [I + P(s)C (s)]−1Q(s)︸ ︷︷ ︸
B(s)

D(s).

(11)
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Feedback Control Systems (cont.)

Equation (11) may be represented as

R(s)

+ (I + P(s)C (s))−1
E (s)

D(s)
Q(s)

Figure 8: Diagram of Equation (11)
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Feedback Control Systems (cont.)

In the representation of Figure 8 we see that the task of the
control system is to maintain e(t) “close” to zero even though r(t)
and d(t) may work against it. The figure also shows that e(t) may
be maintained “close” to zero as long as (I + P(s)C (s))−1 is
“small”. Since P(s) is given, the latter condition means that C (s)
must be “large” or equivalently that P(s)C (s), called the loop
gain, must be “large”.

We summarize this conclusion by noting that, qualitatively
speaking, in a unity feedback system, tracking and disturbance
rejection, that is, “small” errors with respect to reference inputs
and disturbance inputs may be simultaneously achieved by using
“large” loop gain, P(s)C (s) =: L(s).
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Feedback Control Systems (cont.)

The statement above is a “rough” statement since L(s) is a
transfer function matrix and not a number, or even a numerical
matrix. In the following section we elaborate on “large” loop gain
and its precise meaning. For now it suffices to note that “large”
loop gain is needed over the frequency bands in which r and d
have significant energy. For instance if they are slowly varying
signals, “large” loop gain must be achieved over a suitable low
frequency band.


