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LINEAR SYSTEMS

Lecture 20

Characteristics of Feedback Control Systems II
– Feedback and Stability
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Feedback System

Consider the feedback system

+

u
Gol(s)

y

−

Figure 1: A unity feedback system

where Gol(s) is the open loop transfer function.
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Feedback System (cont.)

The closed loop transfer function is

Y (s)

U(s)
=

Gol(s)

1 + Gol(s)
=: Gcl(s). (1)

If the open loop transfer function is written in terms of numerator
and denominator polynomials,

Gol(s) =
nol(s)

dol(s)
(2)

we have

Gcl(s) =
ncl(s)

dcl(s)
=

nol(s)

dol(s) + nol(s)
, (3)
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Feedback System (cont.)

so that

ncl(s) = nol(s) (4)

and

dcl(s) = dol(s) + nol(s). (5)

Equations (4) and (5) show that

a) the zeros of the unity feedback system are identical to the zeros
of the open loop system,

b) the poles of the closed loop system in general differ from those
of the open loop system and are given by the roots of
dcl(s) = 0.
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Feedback System (cont.)

In view of the above

dcl(s) = dol(s) + nol(s) (6)

is called the closed loop characteristic polynomial. It follows
that the closed loop system is stable if and only if all roots of

dcl(s) = 0 (7)

called closed loop characteristic roots lie in the open left half of
the complex plane (LHP), or equivalently dcl(s) is a Hurwitz
polynomial.
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Feedback System (cont.)

Example

Gol(s) =
K (s − 1)

(s + 1)
(8)

Gcl(s) =
K (s − 2)

(s + 1) + K (s − 2)
(9a)

=
K (s − 2)

(1 + K )s + (1− 2K )
(9b)
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Feedback System (cont.)

If K = 1,

dcl(s) = 2s − 1 = 0 ⇒ s = 1/2, (10)

but if K = 1/4

dcl(s) = 5/4 s + 1/2 = 0 ⇒ s = −2/5. (11)

This example shows that the closed loop may be stable or unstable,
depending on the value of K , even though the open loop is stable.
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Feedback System (cont.)

Example

Gol(s) =
K

s − 2
(12)

Gcl(s) =
K

s − 2 + K
(13)

Thus the open loop system is unstable but the feedback system is
stable for K > 2.
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Control System

In a control system containing plant and controller in unity
feedback we have

r

+

e
C (s)

u
P(s)

y

−

Gol(s)

Figure 2: Unity feedback system with a controller and a plant
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Control System (cont.)

Gol(s) = P(s)C (s) (14)

Gcl(s) =
P(s)C (s)

1 + P(s)C (s)
. (15)

Writing the transfer functions in terms of numerator and
denominator polynomials

Gol(s) =
nP(s)

dP(s)︸ ︷︷ ︸
P(s)

nC (s)

dC (s)︸ ︷︷ ︸
C(s)

(16)

Gcl(s) =
nP(s) nC (s)

dP(s) dC (s) + nP(s) nC (s)
. (17)
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Control System (cont.)

Therefore the closed loop characteristic polynomial is given by

dcl(s) = dP(s) dC (s) + nP(s) nC (s). (18)

The roots of dcl(s) = 0 are the closed loop characteristic roots and
a controller C (s) stabilizes a plant P(s) if and only if the roots lie
in the LHP, or dcl(s) is Hurwitz.
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Control System (cont.)

Example

+
Ci (s) = Ki P(s) =

1

s − 1

−

Figure 3: A gain controller with an unstable plant
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Control System (cont.)

The controller C1(s) = K1 = 2 stabilizes the closed loop system
since dcl(s) = s − 1 + K1 = s + 1 has an LHP root at s = −1. The
controller C2(s) = K2 = 1/2 does not stabilize the closed loop
system since dcl(s) = s − 1 + K2 = s − 1/2 has an RHP root at
s = 1/2.
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Control System (cont.)

Example (Routh Criterion)

Consider the following system.

r

+
K P(s)

−

Figure 4: A gain controller K with plant P(s)
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Control System (cont.)

Find the range of stabilizing K.

a) P(s) =
s − 1

s(s + 1)

b) P(s) =
1

s(s + 1)(s + 2)

c) P(s) =
1

s(s + 1)(s + 2)(s + 3)

d) P(s) =
s + 1

s2(s + 2)

e) P(s) =
s + 2

s2(s + 1)

f ) P(s) =
s − 1

(s + 1)(s − 2)
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Control System (cont.)

Solution. In each case apply the Routh criterion to the
characteristic polynomial of the closed loop system:
a)

dcl(s) = s(s + 1) + K (s − 1)

= s2 + (K + 1)s − K .
(19)

Stabilizing range : −1 < K < 0.
b)

dcl(s) = s(s + 1)(s + 2) + K

= s3 + 3 s2 + 2 s + K .
(20)

Stabilizing range : 0 < K < 6.
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Control System (cont.)

c)

dcl(s) = s(s + 1)(s + 2)(s + 3) + K

= s4 + 6 s3 + 11 s2 + 6 s + K .
(21)

Stabilizing range : 0 < K < 10.
d)

dcl(s) = s2(s + 2) + K (s + 1)

= s3 + 2 s2 + K s + K .
(22)

Stabilizing range : 0 < K .
e)

dcl(s) = s2(s + 1) + K (s + 2)

= s3 + s2 + K s + 2K .
(23)

Stabilizing range : does not exist.
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Tracking Step Inputs

In this section we discuss the problem of designing a controller to
track step inputs. Consider first the system

r

+

e
C (s)

u
P(s)

y

−

Figure 5: A unity feedback system

where

P(s) =
nP(s)

dP(s)
, C (s) =

nC (s)

dC (s)
. (24)
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Tracking Step Inputs (cont.)

The error transfer function is given by

E (s) =
1

1 + P(s)C (s)
R(s) (25a)

=
dP(s) dC (s)

dP(s) dC (s) + nP(s) nC (s)
R(s) (25b)

=
dP(s) dC (s)

dcl(s)
R(s). (25c)
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Tracking Step Inputs (cont.)

Suppose now that r(t) is a step input of height R0

R(s) =
R0

s
(26)

and

E (s) =
dP(s) dC (s)

dcl(s)

R0

s
. (27)

Thus the forced response e(t) = L−1(E (s)) consists of weighted
exponential terms eλi t , λi being the closed loop characteristic
roots and a constant term Ess which is the steady state error.
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Tracking Step Inputs (cont.)

Since the closed loop must be stable the λi must have negative
real parts and so Ess is the residue of the pole at s = 0 in a partial
fraction expansion of E (s). Thus, by usual partial fraction formula,

lim
t→∞

e(t) = Ess =
dP(0) dC (0)R0

dcl(0)
(28)

is the steady state error.
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Tracking Step Inputs (cont.)

Example

Consider the plant P(s) =
1

s − 2
and controller C (s) = K . As seen

before the closed loop is stable if and only if K > 2. For a unit
step input the steady state error is

E =
−2 · 1
−2 + K

=
−2

K − 2
(29)
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Tracking Step Inputs (cont.)

E

K
2

Figure 6:

which shows that the steady state error can be reduced to zero
only with infinite gain.
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Tracking Step Inputs (cont.)

Example

Consider the system

r

+
K

s − z

s2 + a s + b

y

−

Figure 7: A gain controller

subject to a unit step input r(t).
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Tracking Step Inputs (cont.)

The closed loop characteristic polynomial

dcl(s) = (s2 + a s + b) + K (s − z) (30a)

= s2 + (a + K )s + (b − K z) (30b)

and closed loop stability is equivalent to

K + a > 0 (31a)

b − K z > 0 (31b)

so that

−a < K <
b

z
. (32)
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Tracking Step Inputs (cont.)

The steady state error to a unit step is

Ess =
dC (0) dP(0)

dcl(0)
=

1 · b
b − K z

. (33)

Assuming that the range in (32) is nonempty, that is

b

z
> −a (34)

we can sketch the function (33).
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Tracking Step Inputs (cont.)

E

K
b
z

−a

b
(b−a z)

1

Figure 8:

We note that in this example the steady state error has an infimum

or a lower bound of
b

b − a z
, over the stabilizing range of controller

gains.


