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LINEAR SYSTEMS

Lecture 21

Characteristics of Feedback Control Systems III
– Integral Control and Pole Placement Compensator
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Integral Control

In the following example we show that including an integrator in
the loop driven by the tracking can allow us to achieve zero steady
state tracking error.
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Integral Control (cont.)

Example

Consider the plant of the previous example with the integral

controller C (s) =
K

s
,

r

+

K

s

s − z

s2 + a s + b

y

−

Figure 1: A feedback loop with an integral controller
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Integral Control (cont.)

We see that

dcl(s) = s3 + a s2 + (b + K )s − Kz (1)

and using the Routh criterion the stability conditions are

a > 0 (2a)

b + K > 0 (2b)

−K z > 0 (2c)

a(b + K ) > −K z . (2d)

For example, let a = 1, b = 1, z = −1, then (2) is satisfied if

K > 0 (Stability condition). (3)
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Integral Control (cont.)

The steady state error to a unit step is zero since

Ess =
dC (0) dP(0)

dcl(0)
=

0 · b
−K z

= 0 (4)

for all K satisfying the stability condition (2). We see that this
holds due to the presence of the integrator in the controller.
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Integral Control (cont.)

In this example the stability condition (2a) is independent of K . If
a is negative or zero, stability cannot be attained by adjusting K .

A possible solution to this is a more general controller such as the
proportional-integral (PI) controller

C (s) = KP +
KI

s
=

s KP + KI

s
. (5)

With the controller (5) the closed loop characteristic polynomial is

dcl(s) = s(s2 + a s + b) + (s KP + KI )(s − z) (6a)

= s3 + (a + KP)s2 + (b − z KP + KI )s − z KI . (6b)
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Integral Control (cont.)

Thus the stability conditions, from the Routh criterion, are:

a + KP > 0 (7a)

b − z KP + KI > 0 (7b)

−KI z > 0 (7c)

(a + KP)(b − z KP + KI ) + KI z > 0. (7d)

and the steady state error to a unit step is

Ess =
dC (0) dP(0)

dcl(0)
=

0 · b
−z KI

= 0. (8)

We note that stability cannot be achieved if z = 0, that is, the
plant has a zero at the origin.
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Integral Control (cont.)

Example

Consider the feedback control of the unstable plant, with transfer
function

P(s) =
1

s − 1
. (9)
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Integral Control (cont.)

We construct the feedback loop

r

+

e
K

1

s − 1

y

−

Figure 2: A feedback loop with an unstable plant

and first attempt to determine the range of controller gain K , that
renders the closed loop system stable.
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Integral Control (cont.)

The closed loop characteristic polynomial is:

dcl(s) = (s − 1) + K (10)

and so the closed loop system is stable if

K > 1. (11)
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Integral Control (cont.)

As shown in the diagram below the gain K “pushes” the open loop
pole at s = 1 to the left and succeeds in pushing it into the left
half plane only when K > 1.

s − plane

×
1

K

Figure 3: The location of the pole depending on the value of K
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Integral Control (cont.)

Now, let us consider the task of tracking a unit step in r(t), the
reference signal. The Laplace transform E (s) of the error e(t) is
given by:

E (s) =
s − 1

(s − 1 + K )

1

s
(12)

and so assuming K satisfies (11)

Ess = lim
s→0

s E (s)

=
−1

−1 + K
=
−1

K − 1
.

(13)
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Integral Control (cont.)

The graphical representation of (13) is shown below:

Ess

K
1

Figure 4:

It is seen that |Ess | → 0 only when K →∞.
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Integral Control (cont.)

To obtain zero steady state error without infinite gain we know
that integral control is necessary. If

C (s) =
KC

s
(14)

is a proposed controller the closed loop system is:

r

+

e KC

s

1

s − 1

y

−

Figure 5: An integral controller with the unstable plant
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Integral Control (cont.)

The closed loop characteristic polynomial for this system is:

dcl(s) = s2 − s + KC (15)

and this clearly shows that Kc is unable to stabilize the closed loop
system.
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Integral Control (cont.)

With the above analysis in hand consider the Proportional Integral
(PI) controller, with transfer function

C (s) = KP +
KI

s
=

s KP + KI

s
. (16)

The closed loop system is

r

+

e s KP + KI

s

1

s − 1

y

−

Figure 6: A PI controller with the unstable plant
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Integral Control (cont.)

and the closed loop characteristic polynomial is

dcl(s) = s(s − 1) + s KP + KI

= s2 + s(KP − 1) + KI .
(17)
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Integral Control (cont.)
Clearly, KP and KI can be chosen to arbitrarily assign closed loop
characteristic roots to (17) and in particular render dcl(s) Hurwitz
and thus the closed loop system stable. The stabilizing region is
described in the KP , KI plane by

KP > 1, KI > 0 (18)

and is displayed below:

KP

KI

1

Figure 7: The stabilizing region
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Integral Control (cont.)
Note that the closed loop transfer functions are:

Y (s) =
s KP + KI

s2 + (KP − 1)s + KI
R(s) (19)

and

E (s) =
s(s − 1)

s2 + (KP − 1)s + KI
R(s). (20)

The steady state error to a unit ramp (u(t) = t) is

E (s) =
dC (s) dP(s)

dcl(s)
R(s)

=
s(s − 1)

s2 + s(KP − 1) + KI

1

s2

=
s − 1

s2 + s(KP − 1) + KI

1

s

=
A0

s
+

A1

s − λ1
+

A2

s − λ2
.

(21)
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Integral Control (cont.)

So,

Ess = A0 =
−1

KI
. (22)

If we want the magnitude of the error to be less than 0.05, then∣∣∣∣− 1

KI

∣∣∣∣ < 0.05. (23)

Thus,

|KI | > 20. (24)
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Integral Control (cont.)

Example

Consider the control system,

r

+

e
K P(s)

y

−

Figure 8: A gain controller

with,
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Integral Control (cont.)

a) P(s) =
s + 1

s(s − 1)(s + 6)
The closed loop characteristic polynomial is

dcl(s) = s(s − 1)(s + 6) + K (s + 1)

= s3 + 5 s2 + (K − 6)s + K .
(25)

For the system to be stable,

K − 6 > 0, (26)

K > 0, (27)

5(K − 6) > K . (28)

Hence, any K > 7.5 will stabilize the system.
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Integral Control (cont.)

b) P(s) =
1

s(s + 1)(s + 2)
The closed loop characteristic polynomial is

dcl(s) = s(s + 1)(s + 2) + K

= s3 + 3 s2 + 2s + K .
(29)

For the system to be stable,

K > 0, (30)

6 > K . (31)

Hence any K such that 0 < K < 6 will stabilize the system.
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Integral Control (cont.)
Moreover, for the steady state error to a unit ramp, the error
transfer function is

E (s) =
dC (s) dP(s)

dcl(s)

1

s2

=
s(s + 1)(s + 2)

s3 + 3 s2 + 2s + K

1

s2

=
2/K

s
+

A1

s − λ1
+

A2

s − λ2
+

A3

s − λ3
.

(32)

Therefore the steady state error, denoted as Ess, ramp, is

Ess, ramp =
2

K
. (33)

Note that by (31), the minimum error bound is

Ess, ramp >
1

3
. (34)
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Pole Placement Compensator

Example

Consider the system,

r

+

e
C (s)

s − 2

(s − 1)(s − 3)

y

−

Figure 9: A pole placement compensator

We are to design C (s) so that y tracks a step input r with zero
steady state error and choose closed loop poles so that the error
goes to zero in 5 seconds.
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Pole Placement Compensator (cont.)

The controller must have the form,

C (s) =
α0 + α1 s + α2 s

2

s(s + β0)
(35)

in order to have sufficient freedom to assign all closed loop poles
arbitrarily and “push” them to the left of the line Re s = −1, to
achieve error convergence in 5 secs, corresponding to a time
constant of 1 sec .

The closed loop characteristic polynomial is

dcl(s) = s(s +β0)(s − 1)(s − 3) + (α0 +α1 s +α2 s
2)(s − 2). (36)
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Pole Placement Compensator (cont.)

The time constant of the system have to be ≤ 1. Choosing poles
at −1± j , −2, −2 we have[

(s + 1)2 + 1
]

[s + 2]2 = (s2 + 2 s + 2)(s2 + 4 s + 4)

= s4 + 6 s3 + 14 s2 + 16 s + 8.
(37)

Equation (36) can be expanded as

(s2 + β0 s)(s2 − 4 s + 3)

+ α0 s + α1 s
2 + α2 s

3 − 2α0 − 2α1 s − 2α2 s
2

= s4 + s3 (β0 − 4 + α2) + s2 (3− 4β0 + α1 − 2α2)

+ s (3β0 + α0 − 2α1)− 2α0. (38)
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Pole Placement Compensator (cont.)

Equating coefficients in (37) and (38)

− 2α0 = 8 (α0 = −4) (39)

3β0 + α0 − 2α1 = 16 (30− 3α2 − 4− 2α1 = 16) (40)

3− 4β0 + α1 − 2α2 = 14 (3− 40 + 4α2 + α1 − 2α2 = 14)
(41)

β0 − 4 + α2 = 6 (β0 = 10− α2). (42)

These reduce to

α1 + 2α2 = 51 (43)

2α1 + 3α2 = 10 (44)

so that α2 = 92, α1 = −133, β0 = −82, α0 = −4.
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Pole Placement Compensator (cont.)

Therefore the controller transfer function is

C (s) =
−4− 133 s + 92 s2

s(s − 82)
. (45)

In addition, we find the steady state error to a unit ramp. The
Laplace transform of the error is

E (s) =
dC (s) dP(s)

dcl(s)

1

s2

=
s(s − 82)

s4 + 6 s3 + 14 s2 + 16 s + 8

1

s2
.

(46)

Hence, the steady state error to a unit ramp is
−82

8
.


