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LINEAR SYSTEMS

Lecture 22

Characteristics of Feedback Control Systems IV
– Rejecting Disturbances
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Rejecting Step Disturbances

Let us now consider what happens when disturbances are present.
The plant is now represented as
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Figure 1: A plant with disturbance

with transfer function representation

y(s) = P(s)U(s) + Q(s)D(s) (1a)

=
nP(s)

dP(s)
U(s) +

nQ(s)

dQ(s)
D(s). (1b)
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Rejecting Step Disturbances (cont.)
To simplify our analysis, and without loss of generality, we assume
that

dP(s) = dQ(s) (2)

and consider the closed loop system
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Figure 2: A closed loop system with disturbance

with C (s) =
nC (s)

dC (s)
.
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Rejecting Step Disturbances (cont.)

The Laplace transform of the error e(t) is now given by

E (s) =
1

1 + P(s)C (s)
R(s) − Q(s)

1 + P(s)C (s)
D(s) (3)

=
dP(s) dC (s)

dcl(s)
R(s)︸ ︷︷ ︸

Er (s)

+
−nQ(s)dC (s)

dcl(s)
D(s)︸ ︷︷ ︸

Ed (s)

(4)

where

dcl(s) = dP(s) dC (s) + nP(s) nC (s). (5)
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Rejecting Step Disturbances (cont.)

If d(t) is a step of height d0, we have

Ed(s) =
−nQ(s) dC (s)

dcl(s)
· d0
s

(6)

and it follows that the steady state error due to disturbances is

Ed =
−nQ(0) dC (0)

dcl(0)
· d0. (7)

Clearly Ed can be zeroed if dC (0) = 0, that is if the controller has
an integrator.



6/14

Rejecting Step Disturbances (cont.)

We conclude that by
1) including an integrator in the controller,
2) driving it with the error signal and
3) stabilizing the closed loop,
we obtain zero steady state error for arbitrary step references and
arbitrary step disturbances.

Moreover the zero steady state error condition holds for all
perturbations in the plant and controller parameters as long as the
condition dC (0) = 0 holds, that is as long as the controller
contains an accurate integrator.
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Rejecting Step Disturbances (cont.)

Example

Consider the plant described by

Y (s) =
s − 1

(s − 2)(s + 3)
U(s) +

1

s − 2
D(s) (8)

which is required track step references and reject step disturbances
with zero steady state error.
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Rejecting Step Disturbances (cont.)

We see that the controller must be of form

C (s) =
β(s)

s α(s)
(9)

where the polynomials β(s), α(s) are to be chosen so that the
closed loop is stable or equivalently

dcl(s) = s α(s) (s − 2)(s + 3) + β(s) (s − 1) (10)

is Hurwitz. It is easy to see that the simple choice α(s) = 1,
β(s) = K , which is an integral controller, does not work. (Verify
this.)
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Rejecting Step Disturbances (cont.)

This prompts us to try the higher order, Proportional-Integral (PI),
controller

C1(s) =
β0 + β1 s

s
= β1︸︷︷︸

Proportional

+
β0
s︸︷︷︸

Integral

. (11)

It is seen that the 3rd degree polynomial

dcl(s) = s(s − 2)(s + 3) + (β0 + β1 s)(s − 1) (12)

must be rendered Hurwitz, by adjusting the two parameters β0 and
β1.
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Rejecting Step Disturbances (cont.)

Rewriting (12)

dcl(s) = s3 + (1 + β1)s2 + (β0 − 6)s − β0 − β1 (13)

we see from the Routh Criterion that for stability

1 + β1 > 0 (14a)

β0 − 6 > 0 (14b)

−β0 − β1 > 0 (14c)

(1 + β1)(β0 − 6) + β0 + β1 > 0. (14d)

In this example it is easy to see that (14a), (14b) and (14c) are
incompatible, that is the intersection of the half planes satisfying
(14a), (14b) and (14c) is empty. (Verify this!) Thus a PI
controller cannot stabilize the plant in (8).
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Rejecting Step Disturbances (cont.)

The next step is to try a controller of higher order with more free
parameters. For instance

C2(s) =
β0 + β1 s + β2 s

2

s(s + α0)
(15)

has an integrator, is proper and has 4 adjustable parameters. Note
that it is undesirable to admit improper controllers as they are
equivalent to differentiation of the input and thus are susceptible
to high frequency noise.
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Rejecting Step Disturbances (cont.)

With the controller (15)

dcl(s) = s(s +α0)(s − 2)(s + 3) + (β0 +β1 s +β2 s
2)(s − 1). (16)

The four free parameters (α0, β0, β1, β2) can adjust the 4 roots of
(16) arbitrarily. For example choosing closed loop characteristic
roots

λ1 = −1, λ2 = −2 λ3 = −1 − j , λ4 = −1 + j (17)

we have

dcl(s) = s4 + (α0 + β2 + 1)s3 + (β1 − β2 + α0 − 6)s2

+ (β0 − 6α0 − β1)s − β0

= (s + 1)(s + 2)((s + 1)2 + 12)

= s4 + 5s3 + 10s2 + 10s + 4. (18)
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Rejecting Step Disturbances (cont.)

By equating coefficients in (18) we obtain the matrix equation
1 0 0 1
1 0 1 −1
−6 1 −1 0
0 −1 0 0



α0

β0
β1
β2

 =


5

10
10
4

 . (19)

The coefficient matrix in (19) is nonsingular and thus (19) is
solved by

α0 = −7.25, β0 = −4, β1 = 29.5, β2 = 12.25 (20)

giving the controller

C2(s) =
−4 + 29.5s + 12.25s2

s(s − 7.25)
. (21)
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Rejecting Step Disturbances (cont.)

To summarize, we note that the controller C2(s) provides closed
loop stability with closed loop characteristic roots

λ1 = −1, λ2 = −2 λ3 = −1 − j , λ4 = −1 + j (22)

and provides zero steady state errors to arbitrary step reference
input and arbitrary step disturbances.

In the following section we extend these results to more general
classes of reference and disturbance signals beyond constants
(steps).


