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LINEAR SYSTEMS

Lecture 23

Characteristics of Feedback Control Systems IV
– Linear Servomechanisms

1/27



2/27

Linear Servomechanisms

In this section we extend the previous results on tracking and
rejection of step inputs to more general classes of persistent or
unstable signals. For example the reference signal may be arbitrary
steps and ramps and the disturbance may be steps and/or
sinusoidal signals of known frequency ω0, and arbitrary amplitude
and phase. In this case,

D2 r(t) = 0 (1a)

D (D2 + ω2
0) d(t) = 0 (1b)

where D ≡ d
d t is the differentiation operator.
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Linear Servomechanisms (cont.)

Taking Laplace transforms we see that

R(s) =
r0 + r1 s

s2
=

nR(s)

s2
(2)

and

D(s) =
d0 + d1 s + d2 s

2

s(s2 + ω2
0)

=
nD(s)

s(s2 + ω2
0)
. (3)
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Linear Servomechanisms (cont.)

As r0, r1 vary (2) generates all steps and ramps in r(t) and as d0,
d1, d2 vary (3) generates all steps and sinusoids of frequency ω0 in
d(t). The polynomial

m(s) = s2(s2 + ω2
0) (4)

is the lowest degree annihilating polynomial for r(t) and d(t) in
the sense that

m(D) r(t) = 0 (5a)

m(D) d(t) = 0 (5b)

for all r(t), d(t) satisfying (1).
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Linear Servomechanisms (cont.)

More generally if (1a) and (1b) are replaced by

mr (D) r(t) = 0 (6a)

md(D) d(t) = 0 (6b)

then

m(D) = l c m (mr (D),md(D)) (7)

is the lowest degree polynomial such that

m(D) r(t) = 0 (8a)

m(D) d(t) = 0 (8b)

for all (r(t), d(t)) satisfying (6) where l c m denotes the least
common multiple.
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Linear Servomechanisms (cont.)

As in (6) we then have

R(s) =
nR(s)

mr (s)
(9)

D(s) =
nD(s)

md(s)
. (10)

In this section we assume that the signals to be tracked or rejected
are persistent (steps, sinusoids, etc) or unstable (ramps,
exponentially increasing, etc) since a stable feedback loop
asymptotically “tracks” signals converging to zero anyway, and is
the “uninteresting case.”
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Linear Servomechanisms (cont.)

Now, let us reconsider the control problem

r(t)

+

e(t)
C

u(t)
Plant

d(t)

y(t)

−

Figure 1: A closed loop system with disturbance

where the controller C is to be designed to track any reference
signal r(t) generated by (6a) and reject any disturbance d(t)
generated by (6b).
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Linear Servomechanisms (cont.)

Writing the signals and controller and plant equations in the
transfer function domain we have:

E (s) = R(s)− Y (s)

U(s) = C (s)E (s)

Y (s) = P(s)U(s) + Q(s)D(s).

(11)
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Linear Servomechanisms (cont.)

With

P(s) =
nP(s)

dP(s)

Q(s) =
nQ(s)

dQ(s)

C (s) =
nC (s)

dC (s)

(12)

we have

E (s) =
dP(s) dC (s)

dcl(s)
R(s)− nQ(s) dC (s)

dcl(s)
D(s). (13)
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Linear Servomechanisms (cont.)

Finally using (6), that is

R(s) =
nR(s)

mr (s)
, D(s) =

nD(s)

md(s)
(14)

we have

E (s) =
dP(s) dC (s)

dcl(s)

nR(s)

mr (s)︸ ︷︷ ︸
Er (s)

− nQ(s) dC (s)

dcl(s)

nD(s)

md(s)︸ ︷︷ ︸
Ed (s)

(15)

where, mr (s) and md(s) are the characteristic polynomials of R(s)
and D(s), respectively, and

dcl(s) = dC (s) dP(s) + nC (s) nP(s). (16)
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Linear Servomechanisms (cont.)

For closed loop stability all the closed loop characteristic roots
represented by the roots of dcl(s) = 0 must lie in the open LHP.

This guarantees that zero input response for e(t)→ 0 as t →∞.

The zero state component or forced response of e(t) is given by
the inverse Laplace transform of E (s) given by (15).
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Linear Servomechanisms (cont.)

Since this must happen for arbitrary nR(s) and nD(s), that is, for
all possible signals satisfying (6), we see that the poles of Er (s)
and Ed(s) must be stable implying that

mr (s) | (dP(s) dC (s)) (17a)

md(s) | (nQ(s) dC (s)). (17b)

Here, A(s)|B(s) means A(s) divides B(s), i.e.,
B(s)

A(s)
is a

polynomial.
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Linear Servomechanisms (cont.)

To guarantee that (17) holds for an arbitrary plant, that is any
dP(s), nQ(s) or for a plant subject to parameter uncertainties
(dP(s)→ d̃P(s), nQ(s)→ ñQ(s)) it is necessary that

mr (s) | dC (s) (18a)

md(s) | dC (s). (18b)



14/27

Linear Servomechanisms (cont.)

Since from (7) we have

m(s) | dC (s) (19)

and thus the controller must have the form

C (s) =
α(s)

m(s)β(s)
(20)

where the coefficients of α(s) and β(s) are to be chosen to
stabilize the closed loop, or equivalently, to render dcl(s) in (16)
Hurwitz. Writing out

dcl(s) = m(s)β(s) dP(s) + α(s) nP(s) (21)

we see that dcl(s) cannot be made Hurwitz by any choice of α(s),
β(s) if m(s) and nP(s) have a common RHP root, or for that
matter if nP(s) and dP(s) have a common RHP root.
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Linear Servomechanisms (cont.)

It can be shown that when nP(s) and m(s) dP(s) are coprime,
there always exist α(s), β(s) such that dcl(s) is Hurwitz. In
general it is also required that C (s) be proper, that is

degreeα(s) ≤ degreeβ(s) + degreem(s) (22)

in order to avoid pure differentiation.

A low order, and thus low complexity controller can be designed if
β(s) can be chosen to be of low degree. The problem of choosing
a low order controller is a relatively difficult problem and does not
have known general solution, even for simple cases such as a first
order or second order controllers. A high order solution exists and
corresponds to the case where β(s) and α(s) are of high enough
degree that all closed loop characteristic can be arbitrarily
assigned. This result is stated below as a theorem.
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Linear Servomechanisms (cont.)

Theorem
The servomechanism problem where r(t) must be tracked and d(t)
rejected with zero steady state error for the class of signals given
by (19) can be solved for a plant of order n (degree of dP(s) = n)
with a proper controller if and only if dP(s)m(s) and nP(s) have
no common roots. If degreeβ(s) is chosen to be n − 1 and
degreem(s) = m then the m + 2n − 1 characteristic roots of the
closed loop system may be arbitrarily assigned by choosing the
coefficients of α(s) and β(s) with

degreeα(s) ≤ degreeβ(s) + m. (23)

The next example shows how this theorem may be applied.



17/27

Linear Servomechanisms (cont.)

Example

Consider the servomechanism problem with following specifications:

Plant :

Y (s) =
1

s − 1
U(s) +

1

s − 1
D(s) (24)

References : Steps

Disturbances : Steps and sinusoids of radian frequency ω0 = 1.
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Linear Servomechanisms (cont.)

We see that mr (s) = s, md(s) = s(s2 + 1). Therefore
m(s) = s(s2 + 1). Since the plant is of order n = 1, we may take
β(s) = 1 (monic polynomial of degree 0) and α(s) = α0+ α1 s+
α2 s

2+ α3 s
3. The controller transfer function is

C (s) =
α0 + α1 s + α2 s

2 + α3 s
3

s(s2 + 1)
(25)

and the closed loop characteristic polynomial

dcl(s) = s(s2 + 1)(s − 1) + (α0 + α1 s + α2 s
2 + α3 s

3)

= s4 + (α3 − 1)s3 + (α2 + 1)s2 + (α1 − 1)s + α0.
(26)
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Linear Servomechanisms (cont.)

To proceed we need to choose the 4 closed loop characteristic
roots to be assigned by the controller (25). For this purposes of
this example we choose these as

λ1 = −1, λ2 = −1 + j , λ3 = −1− j , λ4 = −2 (27)

corresponding to the monic polynomial

(s + 1)((s + 1)2 + 1)(s + 2) = s4 + 5s3 + 10s2 + 10s + 4. (28)

Equating coefficients in (27) and (28) we obtain

α3 = 6, α2 = 9, α1 = 11, α0 = 4 (29)

and the corresponding controller

C (s) =
4 + 11s + 9s2 + 6s3

s(s2 + 1)
. (30)
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Linear Servomechanisms (cont.)

Example

Suppose that the plant is

Y (s) =
s − z

(s − 1)2
U(s) +

1

(s − 1)2
D(s) (31)

and r(t) consists of steps and ramps and d(t) consists of steps and
sinusoids of radian frequency ω0 = 1.
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Linear Servomechanisms (cont.)
Then the controller would be of the form

C (s) =
α0 + α1 s + α2 s

2 + α3 s
3 + α4 s

4 + α5 s
5

s2(s2 + 1)(s + β0)

=
α(s)

s2(s2 + 1)(s + β0)

(32)

and the seven coefficients (α0, . . ., α5, β0) would be determined
by chossing 7 closed loop characteristic roots λ1, . . ., λ7, forming
the design polynomial

a(s) = Π7
i=1(s − λi ) (33)

and equating the coefficients of

dcl(s) = (s − 1)2s2(s2 + 1)(s + β0) + (s − z)α(s) (34)

and those of a(s). Note that a solution can exist if and only if
z 6= 0 and z 6= 1, that is the RHP zeros of the plant do not
coincide with plant poles or signal poles.
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Exercises

Exercise 1

Consider the feedback system,

u

+
A

y

−

α

Figure 2:

Let A be a real number gain which is subject to 30% uncertainty.
Find the value of α so that the closed loop has 3% uncertainty.
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Exercises (cont.)

Exercise 2

u

+
β A

y

−

Figure 3:

Repeat the problem in Exercise 1 with the system in Figure 3. Find
β to make the system robust.
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Exercises (cont.)

Exercise 3

Consider the feedback system,

u

+
C (s) P(s)

y

−

Figure 4:

Let C (s) be a proportional gain controller. That is, we have
C (s) = K where K is a real number gain. Find the range of the
gain of the controller that stabilize the following plants.

a) P(s) =
9

s − 3
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Exercises (cont.)

b) P(s) =
s + 1

s − 1

c) P(s) =
s + 1

(s − 1)(s + 2)

d) P(s) =
s + 1

s(s − 1)(s + 2)
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Exercises (cont.)

Exercise 4

For the plant P(s)’s in Exercise 3, use the proportional and

integral controller. That is, now C (s) =
KP s + KI

s
with KI 6= 0.

First, find the PI gain for each of the systems that stablizes the
plant. Second, find the steady state error for

a) unit step input,

b) unit ramp input.



27/27

Exercises (cont.)

Exercise 5

(MATLAB) For the plant P(s)’s in Exercise 3, design a PI
controller and plot the step reference tracking and the step
disturbance rejection.


