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– Hermite Forms and GCD’s
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Right and Left Factorization

In some cases an easier approach to finding a minimal realization is
through a factorization of the rational transfer matrix G (s) as a
“ratio” of polynomial matrices representing the “numerator” and
“denominator.”

Any r ×m rational matrix transfer function G (s) can be written as
follows:

G (s)
︸︷︷︸
r×m

= NR(s)
︸ ︷︷ ︸
r×m

D−1
R (s)

︸ ︷︷ ︸
m×m

(right MFD)

= D−1
L (s)

︸ ︷︷ ︸
r×r

NL(s)
︸ ︷︷ ︸
r×m

(left MFD)

where NR(s), DR(s), NL(s), DL(s) are polynomial matrices.
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Right and Left Factorization (cont.)

Example

G (s) =














n11(s)

d11(s)
· · ·

n1m(s)

d1m(s)

...
...

nr1(s)

dr1(s)
· · ·

nrm(s)

drm(s)














=






ñ11(s) · · · ñ1m(s)
...

...
ñr1(s) · · · ñrm(s)











d1(s)
. . .

dm(s)






−1

=






d̄1(s)
. . .

d̄r






−1 




n̄11(s) · · · n̄1m(s)
...

...
n̄r1(s) · · · n̄rm(s)




 .
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Right and Left Factorization (cont.)

The right decomposition can lead to a controllable realization and
the left decomposition to an observable realization of

order = degree [det(DR(s))] or

= degree [det(DL(s))] ,

respectively as we show in the example below.
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Right and Left Factorization (cont.)

Example

G (s) =








1

s − 1

1

s + 1

1

s

1

s + 1

1

s

1

s − 1







=








1 + s

s2 − 1

s

s2 + s

−1 + s

s2 − s

−1 + s

s2 − 1

1 + s

s2 + s

s

s2 − s








︸ ︷︷ ︸

A(s)

=








s + s2

s3 − s

−s + s2

s3 − s

s2 − 1

s3 − s

−s + s2

s3 − s

−1 + s2

s3 − s

s + s2

s3 − s








︸ ︷︷ ︸

B(s)

.
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Right and Left Factorization (cont.)

Let us observe A(s). It can be decomposed as follows:

A(s) =

[
1 + s s − 1 + s

−1 + s 1 + s s

]




s2 − 1
s2 + s

s2 − s





−1

.
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Right and Left Factorization (cont.)

A state space realization can be easily obtained form the above as
follows:

Ac =























































0 1

.

.

.

1 0

.

.

.
· · · · · · · · · · · ·

.

.

. 0 1

.

.

.

.

.

. 0 −1

.

.

.
· · · · · · · · · · · ·

.

.

. 0 1

.

.

. 0 1























































Bc =























0 0 0
1 0 0

· · · · · · · · ·

0 0 0
0 1 0

· · · · · · · · ·

0 0 0
0 0 1























Cc =











1 1

.

.

. 0 1

.

.

. −1 1

−1 1

.

.

. 1 1

.

.

. 0 1











.

As seen, the above realization is controllable of order 6 which is
equal to the degree of the determinant of DR(s).
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Right and Left Factorization (cont.)
Now let us observe the MFD B(s). It can be decomposed as:

B(s) =

[
s3 − s 0

0 s3 − s

]
−1 [

s + s2 −s + s2 − 1 + s2

−s + s2 − 1 + s2 s + s2

]

.

A state space realization may be

Ao =



















































0 0 0

.

.

.

1 0 1

.

.

.

0 1 0

.

.

.
· · · · · · · · · · · · · · · · · ·

.

.

. 0 0 0

.

.

. 1 0 1

.

.

. 0 1 0



















































Bo =



















































0

.

.

. 0

.

.

. −1

1

.

.

. −1

.

.

. 0

1

.

.

. 1

.

.

. 1
· · · · · · · · ·

0

.

.

. −1

.

.

. 0

−1

.

.

. 0

.

.

. 1

1

.

.

. 1

.

.

. 1



















































Co =















0 0 1

.

.

. 0 0 0
· · · · · · · · · · · · · · · · · ·

0 0 0

.

.

. 0 0 1















.



9/20

Right and Left Factorization (cont.)

This realization is observable and of order is equal to the degree of
the determinant of DL(s).
To get minimality we must extend the concept of coprimeness of
scalar polynomials to polynomial matrices.
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Hermite Forms and GCD’s

We first need the concept of Hermite form of a polynomial matrix.

Row Hermite form = Upper Triangular form

















a11(s) a12(s) · · · · · · · · ·

0 a22(s)
...

...
...

. . .
...

0 0 arr (s) ar ,r+1(s)
... 0 0
...

...
0 · · · · · · · · · 0

















with aii (s) of degree higher than all others in i th column.
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Hermite Forms and GCD’s (cont.)

The construction can be done by row elementary operations
corresponding to multiplication with unimodular matrices on the
left constructed from quotients and remainders using the Euclidean
division algorithm.
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Hermite Forms and GCD’s (cont.)

Example (Reduction to Hermite Form)





s2 0

0 s2

1 s + 1



 −→





1 s + 1

0 s2

s2 0



 −→





1 s + 1

0 s2

0 − s2(s + 1)



 −→





1 s + 1

0 s2

0 0





The corresponding unimodular matrix is





1 0 0
0 1 0
0 s + 1 1









1 0 0
0 1 0

− s2 0 1









0 0 1
0 1 0
1 0 0



 =





0 0 1
0 1 0

1 s + 1 s2





.
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Construction of GCRD’s

To construct a GCRD of N(s),D(s) we find a unimodular U(s) to
carry out the row compression









U11(s)
︸ ︷︷ ︸
m×m

U12(s)

U21(s) U22(s)
︸ ︷︷ ︸
p×p









︸ ︷︷ ︸

U(s)









D(s)
︸︷︷︸
m×m

N(s)
︸︷︷︸
p×m









=





R(s)

0





Then, R(s) is a GCRD.
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Construction of GCRD’s (cont.)

Proof
Let

[
U11(s) U12(s)
U21(s) U22(s)

]
−1

=

[
V11(s) V12(s)
V21(s) V22(s)

]

Then,
[
D(s)
N(s)

]

=

[
V11(s)R(s)
V21(s)R(s)

]

and it is easy to see that R(s) is a common right divisor.
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Construction of GCRD’s (cont.)

Consequently, we have the following matrix equation.

R(s) = U11(s)D(s) + U12(s)N(s). (1)

If R1(s) is another common right divisor, then

D(s) = D1(s)R1(s), N(s) = N1(s)R1(s)

and we have

R(s) = [U11(s)D1(s) + U12(s)N1(s)]R1(s)

so that R1(s) is a right divisor of R(s) and so R(s) is a GCRD.
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Construction of GCRD’s (cont.)

If R1(s), R2(s) are two GCRDs, then

R1(s) = W2(s)R2(s), R2(s) = W1(s)R1(s)

R1(s) = W2(s)W1(s)R1(s).

If R1(s) is nonsingular, then R2(s) is nonsingular and R1(s), R2(s)
can only differ by a unimodular factor. If R1(s) is unimodular then

R2(s) is also. If

[
D(s)
N(s)

]

has full column rank, all GCRD’s are

nonsingular.
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Construction of GCRD’s (cont.)

Remark (Nonuniqueness of GCRDs: Summary)

Notice that by carrying out the elementary operations to reduce to
Hermite form in difference orders we may get different matrices
U(s) and hence different GCRDs. However, any two GCRDs, R1(s)
and R2(s), say, must be related (by definition) as

R1(s) = W2(s)R2(s), R2(s) = W1(s)R1(s), Wi (s) polynomial.
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Construction of GCRD’s (cont.)

Since

R1(s) = W2(s)W1(s)R1(s)

it follows that
1) If R1(s) is nonsingular, then the Wi (s), i = 1, 2, must be
unimodular, and hence the GCRD R2(s) is also nonsingular. That
is, if one GCRD is nonsingular, then all GCRDs must be so, and
they can only differ by a unimodular (left) factor.
2) If a gcrd is unimodular, then all gcrds must be unimodular.



19/20

Construction of GCRD’s (cont.)

Remark (Nonsingular GCRDs)

If [
D(s)
N(s)

]

has full column rank,

then all GCRDs of (N(s),D(s)) must be nonsingular and can differ
only by unimodular (left) factors.
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Construction of GCRD’s (cont.)

Definition
(NR(s),DR(s)) is right coprime if and only if all its GCRDs are
unimodular.

Similarly,
(NL(s),DL(s)) is left coprime if and only if all its GCLDs are
unimodular.


