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LINEAR SYSTEMS

Lecture 25

Matrix Fraction Description II
– Bezout Identity
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Bezout Identity

Theorem
(N(s),D(s)) is right coprime if and only if there exist X (s) and
Y (s) such that

X (s)N(s) + Y (s)D(s) = I
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Bezout Identity (cont.)

Proof
From

R(s) = U11(s)D(s) + U12(s)N(s), (1)

if R(s) is a GCRD, we have

R(s) = X̂ (s)N(s) + Ŷ (s)D(s).

Furthermore, if N(s) and D(s) are coprime, then R(s) is
unimodular. Thus,

I = R−1(s)X̂ (s)
︸ ︷︷ ︸

X (s)

N(s) + R−1(s)Ŷ (s)
︸ ︷︷ ︸

Y (s)

D(s); R−1(s) is polynomial

= X (s)N(s) + Y (s)D(s).
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Bezout Identity (cont.)

Conversely, if there exist X (s) and Y (s) satisfying

I = X (s)N(s) + Y (s)D(s),

let R(s) be any gcrd. Then

N(s) = N̄(s)R(s), D(s) = D̄(s)R(s)

and

I = X (s)N̄(s)R(s) + Y (s)D̄(s)R(s)

=
(
X (s)N̄(s) + Y (s)D̄(s)

)
R(s).
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Bezout Identity (cont.)

It follows that

R−1(s) = X (s)N̄(s) + Y (s)D̄(s) (polynomial)

Since R−1(s) is unimodular, (N(s),D(s)) is coprime.
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Bezout Identity (cont.)

Lemma
(N(s),D(s)) is coprime iff

rank

[
D(s)
N(s)

]

= m, for all s.
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Bezout Identity (cont.)

Lemma

[
U11(s) U12(s)
U21(s) U22(s)

] [
D(s)
N(s)

]

=

[
R(s)
0

]

If D(s) is nonsingular, then
(a) U22(s) is nonsingular,
(b) N(s)D−1(s) = −U−1

22 (s)U21(s),
(c) (U21(s),U22(s)) is left coprime, and
(d) deg (det [D(s)]) = deg (det [U22(s)]) if (N(s),D(s)) is

coprime.
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Bezout Identity (cont.)

Proof

(a) If U22(s) is singular, then there exists nonzero α(s) such that

α(s)U22(s) = 0.

It follows that

α(s)U21(s)D(s) + α(s)U22(s)N(s) = 0

which implies that

α(s)
[
U21(s) U22(s)

]
= [0 0].

This means that U(s) is not unimodular. Therefore, U22(s) is
nonsingular.
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Bezout Identity (cont.)

(b)

U21(s)D(s) + U22(s)N(s) = 0

directly implies that

U21(s)D(s) = −U22(s)N(s)

⇓

U−1
22 (s)U21(s) = −N(s)D−1(s).
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Bezout Identity (cont.)

(c) From Lemma 2, since

[
U21(s) U22(s)

]
has full row rank for all s,

(U21(s),U22(s)) is left coprime.
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Bezout Identity (cont.)
(d) Notice the following two matrix identities1:

det

[
A D
C B

]

= det [A] det
[
B − CA−1D

]
(2)

and
[

A D
C B

]
−1

=

[
A−1E∆−1F − E∆−1

−∆−1F ∆−1

]

(3)

where

∆ = B − CA−1D

E = A−1D

F = CA−1
.

Recall that
[

U11(s) U12(s)
U21(s) U22(s)

] [
D(s)
N(s)

]

=

[
R(s)
0

]
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Bezout Identity (cont.)
and

[
V11(s) V12(s)
V21(s) V22(s)

] [
U11(s) U12(s)
U21(s) U22(s)

]

=

[
I 0
0 I

]

,

then we have
D(s) = V11(s)R(s).

Thus, since deg (det [R(s)]) = 0,

deg (det [D(s)]) = deg (det [V11(s)]) + deg (det [R(s)])

= deg (det [V11(s)]) (4)

Using the formulae given in eq. (2), we have

det [V (s)] = det [V11(s)] det
[
V22(s)− V21(s)V

−1
11 (s)V12(s)

]

= det [V11(s)] det
[
U−1
22

]
(see eq. (3))

= det [V11(s)]
1

det [U22(s)]
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Bezout Identity (cont.)

Thus,

det [U(s)] =
det [U22(s)]

det [V11(s)]
.

Here, we know that det [U(s)] = constant (i.e., unimodular). This
leads

det [V11(s)] =
det [U22(s)]

constant
⇓

deg (det [V11(s)]) = deg (det [U22])

= deg (det [D(s)]) . (see eq. (4))

1T. Kailath,Linear Systems, Prentice-Hall, 1980, p. 680, p. 656
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Generalized Bezout Identity

Theorem
(NR(s),DR(s)) is right coprime with det [DR(s)] 6= 0, then there
exist
(X (s),Y (s),X ∗(s),Y ∗(s)) and (NL(s),DL(s)) such that

[
−X (s) Y (s)
DL(s) NL(s)

] [
− NR(s) X ∗(s)
DR(s) Y ∗(s)

]

=

[
I 0
0 I

]

(5)
and
[

− NR(s) X ∗(s)
DR(s) Y ∗(s)

] [
−X (s) Y (s)
DL(s) NL(s)

]

=

[
I 0
0 I

]

.

(6)
Moreover, the block matrices will be unimodular.
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Generalized Bezout Identity (cont.)

Proof
From the 1st Theorem, we know that (NR(s),DR(s)) being right
coprime implies that there exist polynomial matrices (X (s),Y (s))
such that

X (s)NR(s) + Y (s)DR(s) = I . (7)

From the 3rd Lemma, we also know that there will exist left
coprime polynomial matrices (NL(s),DL(s)) such that

D−1
L (s)NL(s) = NR(s)D

−1
R (s).
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Generalized Bezout Identity (cont.)

Furthermore, the left coprimeness of (NL(s),DL(s)) implies the
existence of polynomial matrices (X̄ (s),Ȳ (s)) such that

DL(s)X̄ (s) + NL(s)Ȳ (s) = I . (8)

Putting eqs. (7) and (8) together, we have

[
−X (s) Y (s)
DL(s) NL(s)

] [
− NR(s) X̄ (s)
DR(s) Ȳ (s)

]

=

[
I Q(s)
0 I

]

where

Q(s) = −X (s)X̄ (s) + Y (s)Ȳ (s).
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Generalized Bezout Identity (cont.)

Thus,

[
−X (s) Y (s)
DL(s) NL(s)

] [
− NR(s) X̄ (s)
DR(s) Ȳ (s)

] [
I − Q(s)
0 I

]

=

[
−X (s) Y (s)
DL(s) NL(s)

] [
− NR(s) NR(s)Q(s) + X̄ (s)
DR(s) − DR(s)Q(s) + Ȳ (s)

]

=

[
I 0
0 I

]

.
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Generalized Bezout Identity (cont.)

If we set

X ∗(s) = NR(s)Q(s) + X̄ (s)

Y ∗(s) = −DR(s)Q(s) + Ȳ (s),

we have eq. (5). Eq. (6) follows by using the fact that CD = I
implies that DC = I when (C ,D) are square constant or
polynomial matrices. Finally, we need to show the block matrices
will be unimodular. This part is obvious from eqs. (5) and (6) that
the inverse of each block matrix is a polynomial matrix.
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Generalized Bezout Identity (cont.)

Remark
To determine properness, the same definitions in the scalar case
hold here.

Proper: lims→∞ H(s) < ∞

Strictly Proper: lims→∞ H(s) = 0
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Generalized Bezout Identity (cont.)

Definition
The highest degree of all the entries of the vector is called the
degree of a polynomial vector (or column degree).

Lemma
If H(s) strictly proper (proper), and

H(s) = N(s)D−1(s)

then every column of N(s) has (column) degree strictly less than
(less than or equal to) that of the corresponding column of D(s).
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Generalized Bezout Identity (cont.)

Proof
Since N(s) = H(s)D(s), we have









h11(s) · · · h1m(s)

.

.

.

.

.

.
hr1(s) · · · hrm(s)

















· · · dj1(s) · · ·

.

.

.
· · · djm(s) · · ·









=









· · · nj1(s) · · ·

.

.

.
· · · njr (s) · · ·









.

Clearly, H(s) being strictly proper (proper) implies that the
column degree of

[
nj1(s) nj2(s) · · · njr (s)

]T

is strictly less that (less than or equal to) the column degree of

[
dj1(s) dj2(s) · · · djm(s)

]T
.
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Generalized Bezout Identity (cont.)

Example (Converse is not true.)

Let

N(s) =
[
2s2 + 1 2

]
, D(s) =

[
s3 + s s

s2 + s + 1 1

]

The column degrees of N(s) are 2 and 0, and the column degrees
of corresponding vectors in D(s) are 3 and 1. Each of the column
degree of N(s) is strictly less than the column degree of the
corresponding column of D(s).
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Generalized Bezout Identity (cont.)

So, is H(s) strictly proper?

H(s) = N(s)D−1(s) =

[

−s2 + s

s2 + s − 1

s3 + s − 1

s2 + s − 1

]

It shows that H(s) is improper.

To make the converse true, we need the concept of column
reduced polynomial matrices.
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Column Reduced Matrices

Let ki be the degree of the i th column of D(s). Then

deg (det [D(s)]) ≤
m∑

i=1

ki .

We say that D(s) is column reduced if the equality holds.
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Column Reduced Matrices (cont.)
Example

D(s) =

[
s3 + s s + 2

s2 + s + 1 1

]

It is easy to see that k1 = 3 and k2 = 1, and the sum of the
column degree is 4. However,

deg

(

det

[
s3 + s s + 2

s2 + s + 1 1

])

6= 4.

Thus, D(s) is not column reduced. This is due to the coefficient
matrix of the highest terms in each column is singular.

D(s) =

[
s3 + s s + 2

s2 + s + 1 1

]

=

[
1 1
0 0

] [
s3 0
0 s

]

+

[
s 2

s2 + s + 1 1

]
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Column Reduced Matrices (cont.)

As seen above, we can always write

D(s) = DhcS(s) + L(s)

where

S(s) =








sk1

sk2

. . .

skm








and Dhc is the highest column degree coefficient matrix. Thus,

det [D(s)] = det [Dhc ] s
∑

i ki + terms of lower degree in s.
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Column Reduced Matrices (cont.)

Lemma
If D(s) is column reduced, H(s) = N(s)D−1(s) is strictly proper
(proper) iff each column degree of N(s) is less than (less than or
equal to) the column degree of the corresponding column of D(s).
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Column Reduced Matrices (cont.)

Proof

We only prove for the case of strictly proper and the case of a
proper matrix is an obvious generalization. We first need to show
that if D(s) is column reduced and each column degree of N(s) is
less than the corresponding column degree of D(s), then H(s) is
strictly proper.
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Column Reduced Matrices (cont.)

Using Cramer’s rule, we know that ij th entry of H(s) can be
written as

hij(s) =
det

[
D ij(s)

]

det [D(s)]
(9)

where

D ij(s) =















d11(s) · · · · · · · · · d1m(s)
...

...
dj−1,1(s) · · · · · · · · · dj−1,m(s)
ni1(s) · · · · · · · · · nim(s)

dj+1,1(s) · · · · · · · · · dj+1,m(s)
...

...
dm1(s) · · · · · · · · · dmm(s)















.
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Column Reduced Matrices (cont.)

Now write

D ij(s) = D ij
hcS(s) + Lij(s).

Note that D ij
hc is identical to Dhc except that the j th row is now

replaced by zero since each entry of the j th row is of lower degree
than the corresponding entry of the j th row of D(s). Hence, D ij

hc is
singular, while Dhc is nonsingular. It implies that

deg
(
det

[
D ij(s)

])
<

m∑

1

ki = deg (det [D(s)]) = deg (det [S(s)]) .

Therefore, hij(s) is strictly proper (see eq. (9)) and hence so is the
matrix H(s). Next, we need to prove that if H(s) is strictly proper
and D(s) is column reduced, then each column degree of N(s) is
less than the corresponding column degree of D(s). This follows
directly from Lemma 7.
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Column Reduced Matrices (cont.)

Remark
D(s) is column reduced iff det [Dhc ] 6= 0.

Lemma
If D(s) is not column reduced there exists unimodular U(s) so that
D(s)U(s) is column reduced.
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Column Reduced Matrices (cont.)

Example

D(s) =

[
(s + 1)2(s + 2)2 −(s + 1)2(s + 2)

0 s + 2

]

k1 = 4, k2 = 3, and

D(s) =

[
1 − 1
0 0

]

︸ ︷︷ ︸

Dhc

[
s4 0
0 s3

]

+ L(s)

D(s) is not column reduced since Dhc is singular.
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Column Reduced Matrices (cont.)

So, there must exist U(s) to make it column reduced. Let us first
take

U1(s) =

[
1 0
s 1

]

,

then we have

D1(s) = D(s)U1(s) =

[
2s3 + 8s2 + 10s + 4 −s3 + 4s2 + 5s + 2

s2 + 2s s + 2

]

.



34/34

Column Reduced Matrices (cont.)

Now let us observe the highest degree coefficient matrix of D1(s).

D1,hc =

[
2 − 1
0 0

]

This shows that it is still not column reduced. So we take

U2(s) =

[
1 0
2 1

]

and we have

D2(s) = D1(s)U2(s) =

[
0 s3 + 4s2 + 5s + 2

s2 + 4s + 4 s + 2

]

.

Since

D2,hc =

[
0 1
1 0

]

is nonsingular, D2(s) is column reduced.


