ECEN 605
 LINEAR SYSTEMS

Lecture 26

Matrix Fraction Description III

- Minimal Realization from MFD's

Minimal Realization from MFD's

With the results of the last lecture we have
Lemma
Let

$$
G(s)=N(s) D^{-1}(s)
$$

with $D(s)$ column reduced, and let

$$
\operatorname{deg}\left[n_{i}(s)\right]<\operatorname{deg}\left[d_{i}(s)\right]
$$

where $n_{i}(s)$ and $d_{i}(s)$ are the $i^{\text {th }}$ columns of $N(s)$ and $D(s)$, respectively. Then $G(s)$ is strictly proper.

Minimal Realization from MFD's (cont.)

Using this result, we can give the following realization. Let $G(s)=N(s) D^{-1}(s)$ be strictly proper, and write

$$
D(s)=D_{h c} S(s)+D_{l c} \psi(s)
$$

where
with $D_{h c}$ invertible.

Minimal Realization from MFD's (cont.)
Let

Minimal Realization from MFD's (cont.)

Remark

Write

$$
N(s)=N_{l c} \psi(s) .
$$

This is always possible because $\operatorname{deg}\left[n_{i}(s)\right]$ is less than $\operatorname{deg}\left[d_{i}(s)\right]$.
Claim:

$$
\begin{aligned}
A_{c} & =A_{c}^{o}-B_{c}^{o} D_{h l}^{-1} D_{l c} \\
B_{c} & =B_{c}^{o} D_{h l}^{-1} \\
C_{c} & =N_{l c}
\end{aligned}
$$

is a controllable realization. If $(N(s), D(s))$ are right coprime, it is also an observable and therefore minimal, realization.

Minimal Realization from MFD's (cont.)

Example

$$
G(s)=\underbrace{\left[\begin{array}{cc}
s & 0 \\
-s & s^{2}
\end{array}\right]}_{N(s)} \underbrace{\left[\begin{array}{cc}
0 & -\left(s^{3}+4 s^{2}+5 s+2\right) \\
s+2
\end{array}\right]^{-1}}_{D(s)}
$$

As seen, $k_{1}=2$ and $k_{2}=3$. Thus,

$$
D_{h c}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

This implies that $D(s)$ is column reduced. Therefore, $\operatorname{deg}\left[n_{1}(s)\right]=1<\operatorname{deg}\left[d_{1}(s)\right]=2, \quad \operatorname{deg}\left[n_{2}(s)\right]=2<\operatorname{deg}\left[d_{2}(s)\right]=3$.

Minimal Realization from MFD's (cont.)

Now we write

$$
\begin{aligned}
& D(s)=\underbrace{\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]}_{D_{h c}} \underbrace{\left[\begin{array}{cc}
s^{2} & 0 \\
0 & s^{3}
\end{array}\right]}_{S(s)}+\underbrace{\left[\begin{array}{cc}
0 & -4 s^{2}-5 s-2 \\
4 s+4
\end{array}\right]}_{L(s)} \\
& =\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rrrrr}
s^{2} & 0 \\
0 & s^{3}
\end{array}\right]+\underbrace{\left[\begin{array}{llr}
0 & 0 & -2 \\
4 & 4 & -5 \\
\hline
\end{array}\right.}_{D_{l c}} \begin{array}{rl}
-4 \\
0
\end{array}] \quad \underbrace{\left[\begin{array}{l}
1 \\
s \\
0 \\
0 \\
s^{2}
\end{array}\right]}_{\psi(s)}
\end{aligned}
$$

$$
\begin{aligned}
N(s) & =\underbrace{\left[\begin{array}{cc}
s & 0 \\
-s & s^{2}
\end{array}\right]}_{N_{l c}} \\
& =\underbrace{\left[\begin{array}{lrrrr}
0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 1
\end{array}\right]} \underbrace{\left[\begin{array}{lll}
1 & 0 \\
s & 0 \\
0 & 1 \\
0 & s \\
0 & s^{2}
\end{array}\right]}_{\psi(s)}
\end{aligned}
$$

Minimal Realization from MFD's (cont.)

Finally,
$A_{c}=A_{c}^{o}-B_{c}^{o} D_{h c}^{-1} D_{l c}$

	$=\left[\begin{array}{rrrrr}0 & 1 & 0 & 0 & 0 \\ -4 & -4 & -2 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -2 & -5 & -4\end{array}\right] \quad B_{c}=\left[\begin{array}{rr}0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ -1 & 0\end{array}\right]$
C_{c}	$=\left[\begin{array}{rrrrr}0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1\end{array}\right]$.

This realization is guaranteed to be controllable. It will be observable if $(N(s), D(s))$ are right coprime.

