FPGA Based Signal Processing Platform for Weather Radar

Suganth Paul and Sunil P. Khatri

Department of Electrical and Computer Engineering

Texas A&M University

College Station, TX 77843, USA

Charlie Martin, Tom Brimeyer, Eric Loew and Jothiram Vivekanandan

Earth Observing Laboratory

National Center for Atmospheric Research

Boulder, CO 80301

Abstract—We describe an FPGA based signal processor for weather radar applications. The system was designed and validated in software, on a Xilinx FPGA based DSP board. Many of the subsystem components were developed by hand, although “cores” were instantiated wherever practical. The resulting system has several configurable parts, including the IF, number of filter taps, filter coefficients, and the decimation rate. Critical operating parameters are configurable on-the-fly, whereas others are configurable at FPGA compile-time. Four independent parallel channels are implemented in the same FPGA board.

Keywords- Weather radar, Field Programmable Gate Arrays, Digital Signal Processing.

I. Introduction

Weather radars are designed to transmit signals between VHF and millimeter wave frequencies to sense clear and cloudy atmospheric conditions. Generally, VHF or lower frequency (e.g. 915 MHz) radars are optimal for profiling winds in a clear atmosphere and microwave and millimeter frequency radars are better suited for observing clouds and precipitation. Even though radars transmit at various frequencies, the narrow band received signal is mixed down to an intermediate frequency (IF) prior to quadrature detection, low pass filtering, digitization and matched filtering operations. For optimal radar receiver performance, IF frequencies are nominally selected between 60 MHz and 100 MHz. Traditionally, receiver subsystems were designed independently using custom electronic boards and DSP microprocessors [1]. Custom design is difficult to sustain for low volume production due to design, development and maintenance cost and manpower requirements. A desirable alternative would be to develop a common platform with a tunable IF, so it can be used for various types of weather radar systems. The advent of the field programmable gated array (FPGA) has elegantly enabled the implementation of a tunable IF receiver system in a completely digital domain. Given that current FPGAs operate at clock rates up to 400 MHz, these reconfigurable circuits are imminently suitable for radar applications with IFs in the range discussed above. The real time signal processing complexity required can be easily accommodated in the current generation FPGAs, since they contain sufficient hardware resources for up to a few channels of the radar signal processor. Also FPGAs can be equipped with as many as 512 hardware multipliers (referred to as DSP48 blocks in XENIX parlance) which can be used to do multiplier intensive signal processing such as filtering. The next section describes the features of the transceiver and receiver system.

In this paper, we describe our FPGA based radar signal processing board. Our board is frequency agile, allowing the IF frequency to be modified in the range of 60MHz to 100MHz. All signal processing is performed using an Analog-to-Digital Converter (ADC) at the front end, with the remaining processing being performed in the digital domain, using a Software Defined Radio (SDR) paradigm. We use a Xilinx Virtex-4 based FPGA for the receiver, which can accommodate 4 receive channels on the same board.
II. Our Approach

A generic IF radar receiver block diagram for a single channel, using an SDR paradigm is shown below. The receiver consists of an ADC in the front end, a local oscillator and a digital down converter. Quadrature signals are used in this approach. An important component of the IF radar receiver is the digital down converter which comprises the mixer, filters and decimator.
[image: image1.jpg]Local

@ Oscillator

o0

Incomlng N

ADC

Ly

Low Pass
Filter

L

Gaussian
Filter

L

Decimator

s
e

)

Figure 1.
Receiver Block Diagram

In this approach, the input cosine and sine waves from the numerically controlled oscillator (NCO) and the input IF signal are mixed to create the I (in-phase) and Q (quadrature phase) data streams. Both these streams are multiplexed through a 2-channel Kaiser windowed low-pass FIR filter to recover the difference frequency or baseband signal. The I and Q data baseband streams from the output of this filter are passed through a Gaussian low pass FIR filter. The Gaussian filter serves as a matched filter to the received weather radar pulse as well as to bandlimit the data before decimation. The output from the Gaussian filter is passed to a decimator to match up with the desired range resolution. The output of the decimator is further processed to estimate the power, mean velocity and spectrum width of received weather signals. Note that whenever the number of bits in the data stream are truncated (at the outputs of the mixer and at the outputs of the filters), it is important to round off the result. This is done by adding 0.5 to the truncated number. This eliminates a DC component which would otherwise show up in the received spectrum.

The radar signal processor implemented is configurable, in that it can support any radar application by adjusting the programmable parameters namely the local oscillator tuning frequency which controls the intermediate frequency IF, filter coefficients and number of filter taps which control the bandwidth and rejection of the filter, and the decimation rate. The radar system supports up to 4 independent and parallel receivers. The operating parameters of the receiver system can be adjusted either at compile time, or in a real-time manner and therefore can accommodate a wide range of IFs and pulsewidths.
The receiver was implemented using the Red Rapids 314 board, [4] which is equipped with four 14-bit ADCs, and a Xilinx Virtex-4 FPGA with 64 hardware multipliers. We determined that for high-performance and highly complex DSP applications such as radar signal processing, it is crucial to select an FPGA with a large number of hardware multipliers. However, there is a tradeoff between multipliers and logic which must be taken into account. The higher number of multipliers allow for significant increase in filter order and complexity. In our radar processing system, the local oscillator and filters were realized using Xilinx cores available in the Xilinx core generator library [2],[3]. The system is equipped with a high precision tunable numerically controlled oscillator (NCO) which has a frequency resolution of 0.02 Hz while using a 100 MHz clock with an SFDR (Spurious-free Dynamic Range) of up to 115dB.

Four independent channels were implemented with 96 taps for the Kaiser filter, 144 taps for the Gaussian filter, and 16-bit filter coefficients for both the filters. This receiver setup can be used for any weather radar application provided the IF and the number of filter taps required are within the limits of FPGA operation. All the blocks in the figure are completely parameterized and independently configurable during the FPGA compile time. The tunable parameters are the local oscillator frequency, the low pass filter and Gaussian filter coefficients, and the decimation rate.
The local oscillator or NCO is driven by a 32 bit phase accumulator. It has a frequency resolution of 0.02 Hz with a 100 MHz clock and an SFDR of 115 dB. A higher SFDR can be obtained by using Taylor series correction techniques which use additional hardware multipliers [2]. Table 1 reports the maximum theoretical error in frequency resolution.

TABLE I. MAXIMUM ABSOLUTE ERROR IN OUTPUT OF NCO FREQUENCY VERSES PHASE-ACC-BITS
	#Phase-acc-bits
	Max error (Fclk = 48MHz)
	Max error (Fclk = 100MHz)

	32
	0.0056
	0.011642

	31
	0.0112
	0.023283

	30
	0.0224
	0.046566

	29
	0.0447
	0.093132

	28
	0.0894
	0.186265

	27
	0.1788
	0.372529

	26
	0.3576
	0.745058

	25
	0.7153
	1.490116

	24
	1.4305
	2.980232

	23
	2.8610
	5.960464

	22
	5.7220
	11.92093

Table 1 indicates that for the same number of phase accumulator bits, the frequency resolution of the NCO is directly proportional to the clock frequency of the NCO. The output frequency of the NCO can be any multiple of this frequency resolution, from 0 Hz to Fclk/2 Hz. This table can be used as a reference when deciding the number of bits of the phase accumulator. In general, the error in the frequency output for an ‘n’ bit phase accumulator can be calculated as:

· Frequency resolution = Fres = Fclk / 2n

· Phase increment value to be stored = P = round(Fnco/Fres)

· Error in output frequency = Ferr = abs (Fnco – P * Fres)

Table 1 reports the maximum value of the absolute error in the output frequency generated by the NCO, as a function of the input clock frequency and the number of bits of the phase accumulator.

The Kaiser and Gaussian filters are decimating filters that provide a reduced data rate at the filter output as compared to the filter input. They are also clocked at a faster rate (below 300MHz) than the input data rate to the filter. These practices reduce the number of multipliers required for the filter taps. The symmetry in the filter coefficients can also be used to reduce the number of multipliers [3]. The decimation factor of the final stage output decimator can be set in the range of 1‑31, which is user-selectable during run-time.

In our implementation, the system clock rate is an integer multiple of the input sample rate. The advantage of this approach is that it allows the filters more clock cycles to operate on the incoming input samples, essentially allowing the number of DSP48 blocks required to implement the filters to be reduced proportionately. If the design were to utilize an advanced FPGA, then two benefits can be availed – i) since the FPGA is faster, the system clock can be much faster than the input sampling clock, reducing the number of DSP48 blocks, and potentially allowing the multiplexing of multiple channels on the same FPGA hardware and ii) the larger number of DSP48 blocks in advanced FPGAs makes it possible to design higher order FIR filters.

The FPGA resources utilized in our system are summarized in Table 2. This table describes the number of 4-input LUTs, flip-flops (FFs), block RAM (RAMB16) units, and DSP48 blocks available and required for the different sub-systems in our design. We utilized a Xilinx Virtex-4 XC4VLX60 part in our design, which has 64 DSP48 blocks on-chip.

TABLE II. FPGA RESOURCE UTILIZATION
	Component
	FFs
	LUTs
	Slices
	RAMB16
	DSP48

	Base code
	3252
	4544
	3637
	45
	0

	NCO
	208
	187
	164
	8
	0

	Kaiser 6X
	788
	1029
	735
	16
	8

	Kaiser 4X
	1242
	1447
	1350
	24
	12

	Gauss. 6X
	1208
	1115
	875
	12
	12

	Gauss. 4X
	1744
	1351
	1301
	18
	18

	1-DDC 4X
	6953
	7902
	6753
	95
	32

	2-DDC 6X
	8267
	9692
	8267
	109
	44

	Timer
	416
	795
	585
	0
	0

	Virtex-4
	53248
	53248
	26624
	160
	64

In Table 2, the first row describes the resources utilized by the base RedRiver board functionality. This represents the code which is pre-existing in the board, for interfacing to the ADCs, handling the PCI bus protocol, etc. The resources required by the NCO core are listed next. The next 4 rows describe the resources required by the Kaiser (low pass) and Gaussian filters, with a system clock operating at either 6X or 4X faster than the input sampling rate. The total resources required by 1 Digital Down Converter (DDC) channel operating at a 4X system clock is listed next, followed by the resources required by 2 DDC channels operating at a 6X clock. The total number of DSP48s for 2 DDC channels operating at a 6X clock rate is twice the number of DSP48s required by a Kaiser 6X and a Gaussian 6X filter, plus 4 (since two multiplications are required per channel for generating the I and Q streams as shown in Figure 1). In the same manner, the number of DSP48s required for 1 DDC channel operating at 4X the clock rate is 12 (for the Kaiser filter) + 18 (for the Gaussian filter) + 2 (for the mixing operation). Finally the resources required by the timer module (which allows the user to program the pulse width and PRF of the sampling) is listed next. Finally, the total resources available in the Xilinx Virtex-4 XC4VLX60 part are listed. We note that based on the above information, 4 DDC channels could not natively fit in the XC4VLX60 part, since the number of DSP48 blocks would be more than 64. However, a newer version of the filter cores enables the number of DSP48 blocks required in a filter to be halved if the filter has symmetric coefficients (which is the case in our filters). Hence, with this version of the filter core, 4 DDC channels can be fitted into a single XC4VLX60 part. The above discussion underscores the importance of having a large number of DSP48 blocks at our disposal, when designing a FPGA based radar signal processing system. Whenever the system clock rate used is 4X or 6X of the input sampling rate, a digital clock manager (DCM) core is utilized to achieve the frequency multiplication.

Table 3 describes a matrix of filter implementation choices, and their associated utilization of hardware resources. The type of filter, number of taps, number of channels, input and system clock frequencies in MHz, and number of DSP48 blocks required are all listed for different filter realizations. Note that all the filters listed in Table 3 assume a decimation rate of 4. Note that the maximum frequency supported by the XC4VLX60 FPGA is 300MHz, which determines the upper bound of the system clock rate in Table 3. Note that the second listed Kaiser filter and the first listed Gaussian filter of Table 3 correspond to the “Kaiser 6X” and “Gaussian 6X” filters listed in Table 2.

TABLE III. FILTER REALIZATION MATRIX
	Filter
	#taps
	#channels
	ADC sample freq MHz
	System freq MHz
	#DSP48

	Kaiser
	96
	2
	48
	96
	24

	Kaiser
	96
	2
	48
	288
	8

	Kaiser
	96
	2
	48
	240
	10

	Kaiser
	96
	2
	100
	200
	24

	Kaiser
	96
	2
	100
	300
	16

	Gaussian
	144
	2
	48
	288
	12

	Gaussian
	144
	2
	100
	200
	36

	Gaussian
	144
	2
	100
	300
	24

Table 3 is derived from a governing equation that describes the number of DSP48 blocks, which is listed below.
#DSP48 = (#taps * interpolation-rate * #channels * input-freq)/(system-freq * decimation-rate).

In our system, the interpolation rate utilized is unity. This equation indicates that it is best to have a system clock rate which is as fast as the FPGA will allow, in order to minimize the number of DSP48 blocks required. Note that in Table 3, the input sample rate of the Gaussian filter is 4 times smaller than the original sampling rate, due to the decimation performed by the Kaiser filter.

A potential alternative to using DSP48 blocks to realize the filters is the Distributed Arithmetic Filter core. This core utilizes FPGA LUTs (Look-up Tables) and an accumulator to implement the convolution product of the FIR filter. This filter operates on each bit of a single input data word in a serial fashion. Hence it requires the system clock rate to be greater than the input sample clock rate by a factor that is greater than or equal to the number of bits in an input sample. For our problem, the inputs are 16 bits wide, and the input sample rate is between 48MHz and 100MHz. Hence the system clock rate required would be well above 300MHz, and hence this core is not useful in our context. For less aggressive signal processing requirements, such an approach could become useful. The Xilinx tool suite includes a DDC core. However this core utilizes Distributed Arithmetic Filters, making it infeasible for our particular application.

The user interface for our code allows the programmability of the NCO frequency, channels enabled, timer parameters such as PRF, pulse width, delay etc., in real-time. The interfacing is done by a hardware API, through which a user writes data to a set of control registers.

The FPGA design software used in this project was the Xilinx ISE 8.1 code suite. DDC code was written in the VHDL hardware description language. Compilation was done using the Xilinx synthesis tool XST. Initial dry-run compilations were done with ‘low’ synthesis effort. Depending on the difficulty in meeting timing constraints, subsequent runs were performed using ‘medium’ or ‘high’ effort. The use of multiple clocking domains (required when the system clock rate is 4X or 6X the input data sampling rate) required additional clock domain crossing timing constraints to be written, resulting in the need for higher synthesis effort. In the worst case, we had planned to pre-synthesize, place and route crucial portions of the design hierarchically, and then finally place and route these hierarchical blocks in a separate pass. This did not eventually become necessary, since constraints were met with the tools performing synthesis, placement and routing on the entire flattened database. Another alternative which could be invoked in case there is difficulty in meeting timing constraints is to utilize tools from alternative vendors such as Mentor Graphics and Synplicity.

III. Experimental Results

The radar receiver was tested on the Red River 314 board [4]. Testing was done in a hardware laboratory, with a signal generator utilized to drive the input IF signal. A software oscilloscope was utilized to view the output signals from the signal processor engine in real time.

The Power Spectrum of a sample single tone down converted signal is shown in Figure 2. This figure was generated using data captured in Matlab. The incoming signal has a single tone at 14.04555 MHz and it is down converted to DC by mixing it with a 14MHz signal generated by the local oscillator or NCO. The down-converted signal has a single tone at 45.55 kHz as shown. The resulting waveform has approximately 85 dB of dynamic range; this is sufficient for most radar applications.

[image: image2.jpg]Power Spectium of IQ Demodulation Fitered @ 1MSPS Output, Freq = 4555 kiz (1024 PtFFT)
0

-20
-40
-60
-80
- AD

!vequsm:y Hx)

gnitude (4E)

Normalized Ma

X m‘

Figure 2.
Power Spectrum of a Single Tone Output

IV. Conclusions and Future Work

We have described the implementation of a low cost, agile radar signal processing platform for several weather radar applications. The common platform is realized using an FPGA that interfaces with an on-board ADC. The digital down converter can be reconfigured across different implementations as it has been made completely parameterizable with respect to NCO tuning frequency, filter coefficients and decimation rate.

In the future, we hope to integrate the above radar signal processing system with back-end product generation, both of which could be performed on the same FPGA platform. This would enable the development of a ‘host-less’ radar signal processing platform. The findings from this effort suggest that it should be feasible to develop a low-cost, portable, agile radar signal processing platform, with built-in computation and display of weather products. This could significantly improve deployment cost and time for field projects. Finally, with the use of FPGAs with far greater multipliers, we expect that more complex signal processing tasks could be performed on the reconfigurable platform, making the case for FPGA based radar signal processors yet more compelling.
Acknowledgments

This research is sponsored by the National Science Foundation through Interagency Agreement. The views expressed are those of the authors and do not necessarily represent the official policy or position of the U.S. government. The Texas A&M authors would like to gratefully acknowledge the support of the Advanced Study Program (faculty fellowship program) and the Earth Observing Laboratory of the National Center for Atmospheric Research for making this work possible. They also gratefully acknowledge the matching support provided by the Department of Electrical and Computer Engineering at Texas A&M University for this effort.

References

[1] P.E. Andraka, “FPGAs Make a Radar Signal Processor on a Chip a Reality”.
[2] Xilinx Logicore Direct Digital Synthesizer manual, “http://www.xilinx.com/ipcenter/catalog/logicore/docs/dds.pdf”.

[3] Xilinx Logicore MAC FIR Filter manual, “http://www.xilinx.com/ipcenter/catalog/logicore/docs/mac_fir.pdf”.

[4] Red River Inc. “http://www.redrapids.com/Model314.htm”

The National Center for Atmospheric Research is partially sponsored by the National Science Foundation.

