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Abstract

Flow control mechanisms are essential for the efficient and stable operation of store-and-forward
networks. New transport protocols, such as VMTP and NETBLT, intend to use rate-based flow
control. We present a model in which a network with connections subject to rate-based flow control
is considered as a dynamical system, i.e., a set of coupled differential equations. We consider
two scenarios: (1) a single connection over a long delay path involving a bottleneck; and (2)
two connections with different roundtrip delays that share a common bottleneck. For a recently
proposed control scheme, we obtain closed-form solutions for the dynamical model in both transient
and steady state regimes, and evaluate appropriate performance measures. We compare our results
with those obtained by others using experimental and simulation approaches.

1 Introduction

A computer network typically uses store-and-forward routing to transfer data packets between
users at geographically distributed nodes. Packets generated by a source node are delivered to
their destination by routing them via a sequence of intermediate nodes. The traffic flowing through
an intermediate node depends upon the number of source-destination pairs that are routed through
that node and the rates at which these sources introduce packets into the network. If the source
rates are increased without constraint, queues of packets waiting to be routed build up at bottleneck
nodes. Eventually, the buffering capacity of these nodes is exceeded and packets are dropped,
resulting in low throughput and high delay.

Flow control mechanisms attempt to avoid such breakdown by imposing constraints on the
source. Two types of constraint are used. In rate-based flow control, a limit is placed on the rate
at which the source can send packets (4, 2). In window-based flow control, at any time there is a
limit to the number of outstanding packets at the source, but there is no constraint on the rate at
which packets can be sent (3].

We can formulate the objective of flow control as follows: To maximize the throughput for the
source, while minimizing packet loss due to buffer overflows. Consider a source-destination pair
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whose packets are routed via intermediate nodes. Let p; be the service rate offered by intermediate
node ¢ to packets of this source- destination pair. For two nodes ¢ and j, p; and p; can differ for
several reasons: the total traffic through them may differ because they support different source-
destination pairs, their hardware may differ, etc. Assuming that the network is in steady-state,
the ideal flow control policy would be to limit the source rate to p = min;(p;) [6, 2, 4]. Then, no
packet is lost and the bottleneck node is utilized 100%. A higher rate would result in packet loss,
and a lower rate in underutilization.

In a real network, however, the u;’s vary with time because connections (i.e., source-destination
pairs) are constantly set up and terminated, and because sources do not maintain constant data
rates. Consequently, the rate, as well as the identity of the bottleneck node can change with time.
The source must be informed somehow of such a change, and a control mechanism should adapt
the source rate to the change in the bottleneck rate in minimum time, losing a minimum number
of packets in the process. We will look at different feedback and control mechanisms below.

Because the feedback from intermediate nodes reaches the source only after some delay 7, the
two objectives of adapting in minimum time and losing a minimum number of packets are in con-
flict: If the bottleneck rate decreases at time ¢, then the source keeps sending at a rate higher than
the bottleneck can handle until time ¢ 4+ 7, resulting in a large queue at the bottleneck. In order
to minimize packet loss, the bottleneck queue size at time ¢ would have to be minimized. If the
bottleneck rate increases at time ¢, then the bottleneck is underutilized until time ¢ + 7 unless an
appropriately large queue size existed at time ¢.

Comparison of different flow control algorithms

One of the most important characteristics of a flow control mechanism is its feedback: What
information does the source obtain about the state of the intermediate nodes. For example, the
source could be informed of the queue sizes at each intermediate node along the path toward its
destination. A less ambitious variation of this is the scheme proposed by Ramakrishnan and Jain
(13], in which each data packet has a reserved bit initially set to 0. The bit is set to 1 by an
intermediate node if the average queue size at that node is greater than 1. Thus, even if only
one node among all intermediate nodes has an average queue size greater than 1, the destination
receives data packets with bits set to 1. The destination then sends this information back to the
source in the acknowledgement packets. Upon receipt of an acknowledgement, the source decreases
its window size by a multiplicative factor if the bit is set to 1. Otherwise, it increases the window
size linearly. Clearly, the objective here is to keep the bottleneck node 100% utilized and with
no data packet waiting for service. Thus, timeouts and messages losses should be very infrequent
occurrences here.

The situation is different in TCP, where the feedback consists solely of the arrival times of
acknowledgement messages. Jacobson noted that, assuming the network is in steady-state, the
interval between the reception of successive acknowledgement packets equals the bottleneck service
time [7]. Thus, the ideal policy in steady-state would be to send a data packet whenever an
acknowledgement is received. However, this is not appropriate in a dynamic environment; for
example, the source would not be able to adapt to an increase in the bottleneck service rate. The
only way to adapt to this situation is to send at a rate higher that the bottleneck rate. Jacobson
describes a scheme in which the window size increases with time, either exponentially (if it is
currently less than half the size it was before the last timeout) or linearly (otherwise). At every
timeout, the window size is reset to 1, the idea being that a packet loss means that the bottleneck
queue is overflowing. It is clear that in this scheme, the bottleneck queue size is maintained at
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higher levels than in [13] and packet losses and timeouts are more regular occurrences. A good
round trip delay estimate is an essential part of this scheme.

Observe that in both schemes described above, the send window size is controlled at the source.
NETBLT [4, 10] and VMTP [2] are two protocols where the data transmission rate is intended to
be controlled by adjusting interpacket gaps. However, it is not clear from the literature how these
are adjusted or what the feedback would be in a wide-area network.

Three basic approaches, namely experimental, simulation, and analytic approaches, have been
taken to evaluate the performance of flow control mechanisms. Jacobson (7] analyzed the perfor-
mance of his window mechanism by implementing it on a network and observing traces of various
parameters characterizing network congestion, delays, etc. We have used an instrumentation of
TCP to examine the effect of clock resolution and the use of different roundtrip delay estimators
(14]. Ramakrishnan and Jain [13] studied the performance of their window flow control mechanism
with a deterministic simulation model of a connection in a wide-area network. Each link along
the connection is characterized by a fixed service time. The simulation model is run to obtain the
time-dependent behavior of the window size for various increase and decrease algorithms, feedback
schemes, etc. In [1], we presented a Markov model of the performance of window protocols over
channels whose delay and loss characteristics depend significantly upon the number of messages in
transit. Such channels are typical of most store-and-forward networks, including the Internet. We
solved the Markov model numerically to obtain performance measures such as throughput, response
time, congestion in the channels, etc.

Most of the analytic models reported in the literature pertain to the steady-state analysis of
stationary queuing systems. However, the analysis of control mechanisms that dynamically regu-
late data flows according to changing network conditions requires understanding of the dynamic,
i.e., time-dependent network behavior. In this paper, we consider deterministic analytic models of
connections with rate-based flow control in a wide-area network. We show how to solve the models
to obtain closed-form expressions describing the time-dependent behavior of the sending rate and
the queue size at the bottleneck in both steady state and transient regimes.

Outline of the paper

We model a network with connections subject to rate-based flow control as a dynamical system,
i.e., a set of coupled differential equations involving the source rates and the queue sizes. In
Section 2, we formulate a dynamical model of a single connection. The source-to-destination path
is assumed to traverse a sequence of intermediate nodes, one of them being a bottleneck. The
source rate is controlled with a linear increase/exponential decrease algorithm. We also present
performance measures regarding the source rate and the bottleneck queue size for both transient
and steady-state regimes.

In Section 3, we obtain analytical closed-form solutions for the transient and steady-state be-
havior of this dynamical model. Following a finite duration transient behavior, the bottleneck queue
size and the sending rate at the source stabilize into a steady-state limit cycle. We give closed-form
expressions for the performance measures. Our results show that good steady-state performance
can be achieved at the expense of long transient duration; i.e., there is a tradeoff between rapid
relaxation to steady state and the efficiency of that steady state. We also show that it is important
to take the current roundtrip delay into account when adjusting the sending rate at the source.

In Section 4, we formulate a dynamical model of two connections with different roundtrip delays
that share a common bottleneck. Both connections use the same rate-based flow-control scheme
as in Section 2. We present numerical solutions of this dynamical model. Our results show that if
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sources have identical rate adjustment algorithms, their sending rates converge to fair values; i.e.,
both users evenly share the bottleneck’s bandwidth irrespective of differences in their roundtrip
delays. We also show the importance of choosing an appropriate initial send rate.

In Section 5, we point out directions for extending this work.

2 Dynamical Model of a Single Connection

We consider a connection between a source and a destination, where the source and the destination
are on different high-speed local area networks that are connected by a slower, wide-area network.
In this very common scenario, unless care is taken the source can very easily congest the low-speed
network [7]. We model this by representing the slower network by a single bottleneck node and the
high-speed networks by fixed delays as shown in Figure 1.

The parameters describing the connection are:

g(t) : the queue size at time ¢ at the bottleneck

i the bottleneck service rate

T¢ : the propagation delay from the source to the bottleneck

T the propagation delay from the bottleneck to the source via the destination
(including processing time at the destination)

A(t) @ the rate at which data is sent by the source

. q(t) p
AY) ——— O
) ™

Figure 1: Model of a single connection

In this model, we consider A(t) and g¢(t) to be real-valued continuous variables. There are
several reasons for this choice. First, it allows the adjustments to A(?) to be simply described by
specifying A(t) (we use A(t) to denote dA(t)/dt). Second, the dynamical behavior of the model can
be conveniently described in terms of coupled differential equations involving A(2), A(¢), ¢(¢) and
¢(t). Third, this is a standard formulation of control theory; we intend to make use of the results
and insights available in that field. Continuous real-valued variables can also be thought of as first
order fluid approximations of stochastic processes [9]. For example, ¢(t) can be thought of as the
expectation of a stochastic process Q(t) which represents the number of packets present at time ¢
at the bottleneck [9, 11].

We now derive the equations describing ¢() and A(t) in terms of ¢(¢) and A(t). Observe that
data sent by the source at time ¢ arrives at the bottleneck at time ¢ 4 7p. Thus, the data arrival
rate at the bottleneck at time tis A(t — 7r). If ¢(¢) > 0, data departs from the bottleneck at rate p.
If ¢(t) = 0, data departs at the same rate as it arrived, i.e., A(¢ — 7¢). This leads us to the following
equation for ¢(t):

. 0 if g(t) = 0 and A(t — -1 <0 1
q(t)z{)\(t-—rp)—;z otﬁgrzzvise S W



We now derive the equation for A(t). We assume that, at every time ¢, a bit value indicating
whether ¢(¢) > 0 or ¢(t) = 0is fed back to the source from the bottleneck node using a mechanism
similar to that described in [13]. This bit indicates how to adjust A(?) as follows: A(¢) is decreased
exponentially with time constant g if ¢(¢ ~ 7q) > 0 at time ¢ — 7R, i.e., the bottleneck was 100%
utilized. A(t) is increased linearly with rate a if ¢(t ~ Tr) = 0. Thus, we get the following:

. o ifg(t—mm)=0 (2)
/\(t):{ _L[(?ﬂ ifg(t—m™m)>0

Clearly, the situation of 100% bottleneck utilization and no waiting delay corresponds to A(t) =
w and ¢(t) = 0. Observe that A(¢) is changed not in response to acknowledgement packets sent by
the destination node, with increase and decrease done on a per-packet basis. Rather, the feedback
information merely indicates how to adjust A(¢), i.e., the rate is increased linearly in time until
information is received that indicates to switch to exponential decrease. In a system where data
would come in finite-size discrete packets, adjustments to A(t) would not be made continuously.

In our model, adjustments to A(¢) are made based on the instantaneous value of ¢(t — 7). In
recently proposed schemes, the bottleneck node computes an average ¢ of recent values of the queue
size to eliminate short-lived transient variations of ¢(t¢). The feedback information then indicates
whether § > 0 or § = 0. We will not consider such a mechanism here.

Performance measures

We now define performance measures for the dynamical behavior of the system modeled above.
As was mentioned in Section 1, it is important to consider measures that characterize both
steady-state and transient behavior. The system described by our model turns out to have an
initial transient of finite duration, which we shall denote by tg, followed by a steady-state limit
cycle with a period that we shall denote by 7.

We consider the following measures in steady-state

Imac : maximum value of ¢(?)
g : average of ¢(t)
o(q) : standard deviation of ¢(¢)

A—pu i average of A() — p
o(A — p) : standard deviation of A(t) — p

where average and standard deviation of a function f(t) are defined as follows:
F =4 50 (et
*(f) = h ETOLF() - FPar
We characterize the transient behavior by its duration time t;. We could consider measures

similar to those defined above for steady-state, such as the time average %foto g(t)dt of ¢(t), but
they do not prove very interesting as we shall see below.

3 Analytic Solution of the Single Connection Model

We now solve equations (1) and (2) of the single connection model, which are repeated below:



(1) = 0 ifg(t)=0and A(t—mr)—p <0
M= a¢- TR) ~ U otherwise

. a ifg(t—m)=0
’\(t)={ BP0 if gt — ) > 0

The evolution of A(t) and ¢(¢) is depicted pictorially in Figure 2. We now explain it. Assume
that the source starts sending data at time t = 0 at a rate A(0) < p. A(t) increases at rate o and
reaches the value p at time to = pu/o. Only now is A(t) large enough to create a queue buildup
at the bottleneck. Because of the delay 7y, the queue at the bottleneck starts building up at time
to+ 7r. Therefore, the source detects the existence of the queue at the bottleneck only at time tg+ 7,
where the round trip delay 7 = ¢ 4+ ™. Thus, A(%) increases linearly from ¢t = O to ¢t = t; = to + 7,
at which point A(t;) = p + Te.

-,

0 —ri—> b time
TF TR TF TR

Figure 2: Analytic behavior of A(t) and ¢(2)
At time t1, A(t) starts decreasing. However, the queue keeps increasing since A(t) remains higher

than 4 for some time. Let 13 be the time when A(t) again equals u. Then ¢(t) reaches its maximum
at time 3 + 7g, after which it starts decreasing. We define ¢3 as the time at which A(?) has been
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lower than u long enough to drain out the extra packets introduced between #g and ¢ (this time
is evaluated below). ¢(t) becomes zero at time i3 + 7%. Meanwhile, A(t) keeps decreasing until the
source detects, at time t4 = t3 4 7, that the queue size at the bottleneck is down to 0, at which
point it starts increasing again.

Let t5 be the time at which A(¢5) = p. Observe that A(t5) = A(to) and ¢(t5) = q(to), i.e., the
state of the system at time ¢5 is identical to that at time ¢y. Therefore, the steady-state behavior
of both A(?) and ¢(t) is cyclic with period 7' = {5 ~ to. The transient duration ¢o is then tg = p/cr.

To summarize, the transient behavior of the system is defined by :

Alt) = ot
g(t) =0 Ostsh
and the steady-state behavior is defined by :
A(t) = (i + ar)emp(-%(t ~t1 —~nT)) 1 +nT <t <ty +0T
7] et —ts = nT)+ Ain ty +nT <t <ty +(n+1)T

gt) = [L (Mt~ 1) - p)dt

Example evolutions of ¢(t) and A(t) are shown in Figure 3; the periodic behavior of ¢(¢) and A(t)
is obvious.

Performance measures

From the steady-state solution, we now derive closed-form expressions for the values of gnay,
Amaz, and the period T = t5 - {g.

We first consider A,.... Since A(t) increases linearly at rate o for ¢ < ¢4, it follows that

L/\mamzﬂ+aT'

The maximum value ¢nq, of the bottleneck queue is given by gmer = ftt:(/\(t) — p)dt. Since
Alt) = (p+ ar)exp(—%(i —ty)) for t; <t < ty, it follows that

72

ta—-t1 _1
mae = a5+ [ (e ar)e B - s

where ¢ — 7 is the solution of exp(—%(tg — 1)) = pu/(p+ ar). We obtain

’ Gmaz = a%z' + aﬂ'r + N;Bln(ﬂ%?) J

We now compute the period T' = t5s—1t9. Observe that T' = (t1--tg)+(ta—t1)+(ta~ta)+(t5—14) =
T+(ta=t1 )+ (= Amin) /@ = 27+(t3—11 )+ (L= Amin) /. Since Apin = (p+aT) exp(—=%(r+t3~t1)),
the problem reduces to that of finding ¢3 — ¢;. However, t3 is defined such that

t3 72 i3~ _1,
/t (A(t)  )dt = @ + /0 (1 + ar)e™ B — pudt = 0
0

After some algebraic manipulations, we obtain

4
ts = i = RO 357 spluran))
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where Root(a,b) denotes the unique real solution of 1 — e=% = az — b, with 0 < @ < 0o and 0 < b.
We have from above

[T=2T+(t3—t1)+&%mm—]

This concludes the computation of T'.
First order approximation

We now consider a first-order approximation to our original model. Specifically, we consider a
system model in which A(t) is adjusted as follows

. ifglt-m)=0
io-{% NI

This amounts to approximating the exponentially decreasing function (p + a7) exp(——l(t —11)) by
the linearly decreasing function (1 + ar) — £(t — ¢1). Then, assuming that Anin > 0, we obtain:

Amaz = [ '|; ar
Omazr = 72 (1 + aﬁ)

T = r(1+—@)1+ L1+ )
h) = #‘T(gg%‘\/ ag"l)

Setting a8 = p

For convenience and clarity of the presentation, we eliminate the parameter § by assuming,
throughout the rest of the paper, that coefficients & and 3 satisfy the relation af = u. This means
that, near the fixed point A(t) = u, ¢(¢) = 0, the rate at which A(%) increases is equal to the rate
at which it decreases.

We can then simplify the results derived above. For convenience of reference, we now present
the values of the performance measures obtained with the first order approximation. Assuming
that Apin > 0, L.e., g > ar(1 4 4/2), we have:

Amaz = ptoar

dmar = ar?

T = 27(24+v2)

A = p- (3)

We will see later that these approximations for gumae, T, and X are quite accurate. We observe
that the duration of the transient behavior given by to = u/a is inversely proportional to a.
Therefore, steady-state is reached quickly if « is large. However, a large value of o implies a large
value of ¢4 and thus a higher probability of packet loss at the bottleneck due to buffer overflow.
In addition, equation (3) indicates that the average steady-state sending rate X moves farther away
from the ideal value u as « increases. Therefore, a tradeoff has to be found between a rapid
relaxation to steady-state and the efficiency of the steady-state behavior. This is consistent with
the results reported in [13].

In a real network, = varies with time. Therefore, keeping ¢mqr at a given value requires « to
vary with time such that « is proportional to 1/72. Similarly, keeping X at a given value requires o
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to vary with time as 1/7. Which objective is more important will dictate how « should vary with
time. But in any case, these results indicate the need for a time-varying value of a.

Example behaviors of a single connection

We now present example behaviors of the single-connection model described above. We fix the
bottleneck rate at u = 157!, and we assume that 7% = g so that the round trip propagation delay
7 = 27F. Thus, the free parameters are « and 7.

We fix 7 = 20s and consider different values of . Figure 3(a) shows the evolutions of A(¢)
and ¢(t) for « = 1/40. Figure 3(b) shows the evolutions of A(¢) and ¢(t) for @ = 1/160. In each
case, we solve the differential equations for ¢ in the range 0 < t < t4; = 400s. In Table 1, we
show the values of the performance measures (defined in Section 2) for different a’s. We show the
measures obtained by solving the differential equations and the measures obtained with the first
order approximation.

at) ) g(t)
8 4 /A\ A / \ 8 1
/ ‘\‘ B !
[ R *
C E S S A T 4
/ l‘ f l"\ I
i ; \ i , : |
AR AR ANWA
ol v oL g 0L _/ \
|4 ) 0
/\\ ’/ \ '// \\\
1 / / 7;\:~~AV7L-;)‘;—ﬁ—ﬁ;f——rlv\ 1
/ \\ / \ ; \ /
N / \ ' //
. / AV </ \J .
0 100 200 300 400 0 100 200 300 400
(a) time (b) time

Figure 3: Evolutions of A(¢) and ¢(t) for 7 = 20s: « = 1/40 in part (a); & = 1/160 in part (b)

exact measures approximate measures transient

« dmaz q A } T Amaz q A T %o

1/10 29  10.8 0.75 99.7 40 11.7 -0.4 136.6 10

1/20 16.1 5.6 0.75 104.4 20 5.8 0.29 136.6 20
1/40 8.8 2.8 0.80 1144 10 2.9 0.65 136.6 40
1/80 | 4.65 1.4 0.87 1234 5 1.45 0.82 136.6 80
1/160 | 2.4 0.7 0.92 1293 2.5 0.73 0.91 136.6 160
1/320| 1.2 0.36 0.96 132.7| 1.25 037 0.96 136.6 320

1/640 | 0.62 0.18 0.98 134.5 | 0.625 0.183 0.98 136.6 640 |

Table 1: Performance measures versus a for 7 = 20s
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As expected, we observe that small values of « provide good steady-state performance, but long
transient duration. We verify that the analytical results obtained with the first order approximation
are quite accurate for g > ar(1l + v/2), i.e., @ < 1/50. In particular, the values in Table 1 are
consistent with the fact that gma is proportional to o and X — p decreases as o decreases.

We now fix a = 1/40 and consider different values of 7. Figure 4(a) shows the evolutions of
A(t) and ¢(t) when 7 = 20s for 0 <t < ty4:/2 = 4008 and 7 = 30s for tpas/2 < t < typae = 800s.
We observe that gme, and X — p increase as 7 increases, and it can be shown that the first order
approximation is again accurate when p > ar(1 4 v/2),ie., 7 < 17.

Recall that, in the approximation, ¢mqs is proportional to 72, Therefore, ¢,q5 should be constant
as T varies if o varies proportionally to 1/72. This is clear is Figure 4(b), which shows the evolutions
of A(t) and ¢(t) for @ = 10/7%,ie., @ = 1/40 and 7 = 205 for 0 < t < tyaz/2, and a = 1/90 and
7 = 308 for tmas/2 <t < tmax-

q(t) q(?) J

16 | \ ‘ 16/

iy / ol
U\a/ll ' 0

{1 | - [ | ] /
: \ /\ 1R
M) A(t)
\ /\
JAYAATAVAVANES
0 200 400 60 800 200 400 6 800
(a) time (b) time

Figure 4: Evolutions of A(t) and ¢(t) with 7 = 20s for 0 < t < 400s and r = 30s for 400 < ¢t < 800s:
o = 1/40 in part (a); o = 1/40 for 0 <t < 400s and o = 1/90 for 400 < t < 800s in part (b)

4 Dynamics of Two Connections Sharing a Bottleneck

In this section, we consider the situation where two rate-based flow controlled connections share a
common bottleneck as shown in Figure 5. The parameters describing the system are as follows

q(t) : the queue size at time ¢ at the bottleneck

I : the bottleneck service rate

TiF, T1R ¢ the forward and reverse propagation delay for connection 1
ToF, ToR : the forward and reverse propagation delay for connection 2
A1(t)  : the rate at which data is sent by source 1

Xo(t)  : the rate at which data is sent by source 2
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Ap(t) . T2F |
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Figure 5: A model of two connections sharing a bottleneck node

We now derive the equations describing the dynamical behavior of this system. We proceed as
in Section 2. The arrival rate at the bottleneck at time ¢ is now Ay (¢ —7yp) 4+ Aa(t—7op). Therefore,
(1) is given by the following equations

) = 0 if q(2) = 0 and Ai(t — 71p) + Ao(t — 7op) < p
4(t) = Mt = 7ip) -+ Ag(t — moF) — . otherwise

Assuming that the sending rate of each source is controlled in the way described in Section 2, we
have the following equations for A;(¢) and Ay(t)

. o ifg(t~mp)=0
A(t) = { —ag My (t)/ 1 if g(t - TiR) >0
. _J o« if g(t~7m)=10
Ao(t) = { _Zam(z)/u if gt — rzi) >0

We observe that the two sources interact via their feedback ¢(t): the feedback used by source
i depends dynamically on the behavior of X;(t). Therefore, we expect the dynamics of \;(t) to
depend on A;(%).

In the remainder of this section, we consider a scenario in which source 1 starts sending data,
at time ¢t = 0 and source 2 starts sending data at a time ¢, > 0 when source 1 has already reached
steady-state . We expect that the transient behavior initiated by source 2 will last for a finite
duration tg. Thus, at time #g < t., both connections will have settled into a steady-state limit cycle.
Henceforth, the term ‘steady-state’ applies to the interval ¢t > 5 4 ¢, and the term ‘transient’ to
tc .<_ 3 S tO + tc-

The ideal steady-state behavior would be that each source sends at an average rate p/2. There-
fore, the performance measures we consider in steady-state are the averages Ay and g, the standard
deviations o(A; — p/2) and o(Ag — ££/2), and the maximum queue size ¢;7,,. We characterize the
transient behavior by its duration ty and the maximum queue size ¢},,, achieved during the tran-

sient phase.
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Example behaviors

We now present example behaviors of the above dynamical system. They were obtained by
numerically solving the differential equations describing the system over the range 0 < t < tyaz =
800s. We fix the bottleneck rate u = 1s™! and the time ¢, at which source 2 starts sending data at
te = tmaz/4 = 200s. Throughout the rest of this paper, we fix we fix 7jp = 1 = 10s and &y = 1/40
for connection 1. For connection 2, we assume Top = Tor. Thus, ag and 79 = mop -+ TR = 27p are
the free parameters of the system. In the next three subsections, we examine the behaviors for the
following variations of ap and 75: (a) different ay’s with 7o = 7 fixed, (b) different 75’s with oy
fixed and (c) different initial sending rate for source 2 with oy and 7, fixed.

Different a2’s with 79 = 7
We fix 7, = 71 = 20s. Figure 6(a) shows the evolutions of A{(2), As(t) and ¢() for ey = 1/20.
Figure 6(b) shows the evolutions of A1(t), A2(t) and ¢(¢) for oy = 1/160.

q(1) q(t)
30, 30,

/\\ *ﬂ‘ | |

10 N j!,\ 10] / ﬁ
AL T AN
At) /XVA__ r )

0 200 400 600 200 400 600 800
(a) (b) time

Figure 6: Evolutions of A1(2), A2(2) and ¢(t) for 7, = 20s: a; = 1/20 in part (a); g = 1/160 in
part (b)

Consider the variations of A,(t). We observe a phenomenon similar to that described in Section
3. Namely, a high value of a; results in a short transient duration and a large value of gpqz.
However, the dynamics of the system is complicated by the interaction between the two connections.
In Table 2, we show the values of the performance measures defined above for different ay’s. We
observe that, if ag # @1, then the connections settle in a steady-state limit cycle in which they do
not evenly share the hottleneck bandwidth. This unfair behavior is particularly clear when oy is
larger than aj.

Recall that the analytical results in Section 3 suggested that, if 7 varies with time, then «
should vary with time as 1/7 or 1/72. We now realize that this may lead to unfair sharing of the
bottleneck bandwidth. Fair sharing would require a more elaborate mechanism such as the selective
feedback mechanism described in [12].



queue size connection 1 connection 2
ap oz AL o(p/2=M) | A o(p/2—Aa)
1/2 123.0 0.148 0.15 0.74 2.14
1/10 40.2 0.308 0.197 0.52 0.76
1/40 22.3 0.417 0.265 0.417 0.265
1/160 13.8 0.46 0.28 0.413 0.07
1/640 11.3 0.48 0.28 0.417 0.02

Table 2: Performance measures versus og for 7o = 20s

Different r9’s with ag fixed

We fix a3 = 1/40 and consider different values of 7. Figure 7(a) shows the evolutions of A, (%),
A2(2) and ¢(t) for 7, = 10s. Figure 7(b) shows the evolutions of A1(t), A2(t) and ¢(t) for m5 = 1s.
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Figure 7: Evolutions of A1(t), A2(t) and ¢(¢): 72 = 108 in part (a); 72 = 1s in part (b)

The figures clearly show that the rate adjustments made by source 1 and source 2 are not
independent, In particular, we observe that, in steady-state, A1(?) and Ao(?) oscillate with equal
frequency. As may be expected, the phase difference, i.e., the time difference between a peak of
A1(t) and the corresponding peak of Ay(2), is equal to (7 — 72)/2.

We observed above that the connections settle in a steady-state limit cycle in which they evenly
share the bottleneck bandwidth if &y = oy and 7y = 7. Numerical solutions of the differential
equations of the system appear to indicate that this result holds even if r1 # m. This suggests
that connections with identical rate adjustment algorithms evenly share the bottleneck bandwidth,
irrespective of the values of the propagation delays 7 and 3.

Different initial sending rate for source 2 with 7, = 72

In this subsection, we consider a variation on the behavior of source 2. Specifically, when source
2 starts sending data at time 7., it chooses an initial rate Az(t;) greater than zero. We shall now
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see that the value chosen for ¢, and the initial rate strongly affect the dynamics of the system.
Figure 8(a) presents evolutions for 2, = 200s and Ay(t.) = 1s~!. Figure 8(b) presents evolutions
for t, = 2205 and Ag(t,) = 1s7.
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Figure 8: Evolutions of A;(t), A2(t) and ¢(t) for Ag(t.) = 1: ¢, = 200s in part (a); t, = 220s in part

(b)

We observe that a large queue can build up at the bottleneck during the transient. The value
of ¢4, depends on the values of ¢, and As(t.). But in any case, the presence of the queune would
result, in a real network, in increased packet loss and retransmissions. Therefore, care should be
taken that the initial sending rate of user 2 be chosen at an appropriately low value. This is
especially important if the bottleneck were already shared by n users when user 2 becomes active.
This suggests that initial sending rates be chosen quite low, since the value of n is not known to a
new connection as it starts sending data. This is consistent with the idea of slow-start [7].

5 Conclusion

It appears that dynamical modeling holds great promise in analyzing network congestion and flow
control problems. It is very encouraging that the behavior (and thus design choices) indicated by the
relatively simple dynamical model in this paper seems to tie in very well with the results obtained by
others using experimental and simulation approaches. For example, our single-connection model
brings out the tradeoff between good steady-state behavior and rapid adaptability to changing
network conditions such as bottleneck rate and round trip delay changes. Our two-connections
model indicated that when a connection starts, it should use a very low sending rate. Both these
are consistent with the schemes proposed by others (7, 13]. However, further validation is required,
and we intend to do so with discrete-event simulation and experiments [14).

We are extending the models in several ways. One is to consider a very large number of
connections sharing a common bottleneck. Another is to consider the effects of averaging techniques
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in the feedback mechanism. We are examining the control systems literature for more powerful
solution techniques. Our efforts so far have not been particularly rewarding; it appears that not
much is available in the area of coupled differential equations with delays.
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